/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
* Copyright (C) 2013 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/** \file molecules.cpp
*
* Functions for the class molecule.
*
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include
#include "molecule.hpp"
#include "Atom/atom.hpp"
#include "Bond/bond.hpp"
#include "Box.hpp"
#include "CodePatterns/enumeration.hpp"
#include "CodePatterns/Log.hpp"
#include "config.hpp"
#include "Descriptors/AtomIdDescriptor.hpp"
#include "Element/element.hpp"
#include "Graph/BondGraph.hpp"
#include "LinearAlgebra/Exceptions.hpp"
#include "LinearAlgebra/leastsquaremin.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinkedCell/linkedcell.hpp"
#include "IdPool_impl.hpp"
#include "Shapes/BaseShapes.hpp"
#include "Tesselation/tesselation.hpp"
#include "World.hpp"
#include "WorldTime.hpp"
/************************************* Functions for class molecule *********************************/
/** Constructor of class molecule.
* Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
*/
molecule::molecule() :
Observable("molecule"),
MDSteps(0),
NoNonBonds(0),
NoCyclicBonds(0),
ActiveFlag(false),
IndexNr(-1),
NoNonHydrogen(this,boost::bind(&molecule::doCountNoNonHydrogen,this),"NoNonHydrogen"),
BondCount(this,boost::bind(&molecule::doCountBonds,this),"BondCount"),
atomIdPool(1, 20, 100),
last_atom(0)
{
// add specific channels
Channels *OurChannel = new Channels;
NotificationChannels.insert( std::make_pair( static_cast(this), OurChannel) );
for (size_t type = 0; type < (size_t)NotificationType_MAX; ++type)
OurChannel->addChannel(type);
strcpy(name,World::getInstance().getDefaultName().c_str());
};
molecule *NewMolecule(){
return new molecule();
}
/** Destructor of class molecule.
* Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
*/
molecule::~molecule()
{
CleanupMolecule();
};
void DeleteMolecule(molecule *mol){
delete mol;
}
// getter and setter
const std::string molecule::getName() const{
return std::string(name);
}
int molecule::getAtomCount() const{
return atomIds.size();
}
size_t molecule::getNoNonHydrogen() const{
return *NoNonHydrogen;
}
int molecule::getBondCount() const{
return *BondCount;
}
void molecule::setName(const std::string _name){
OBSERVE;
NOTIFY(MoleculeNameChanged);
cout << "Set name of molecule " << getId() << " to " << _name << endl;
strncpy(name,_name.c_str(),MAXSTRINGSIZE);
}
void molecule::InsertLocalToGlobalId(atom * const pointer)
{
#ifndef NDEBUG
std::pair< LocalToGlobalId_t::iterator, bool > inserter =
#endif
LocalToGlobalId.insert( std::make_pair(pointer->getNr(), pointer) );
ASSERT( inserter.second,
"molecule::AddAtom() - local number "+toString(pointer->getNr())+" appears twice.");
}
bool molecule::changeAtomNr(int oldNr, int newNr, atom* target){
OBSERVE;
if(atomIdPool.reserveId(newNr)){
NOTIFY(AtomNrChanged);
if (oldNr != -1) // -1 is reserved and indicates no number
atomIdPool.releaseId(oldNr);
LocalToGlobalId.erase(oldNr);
ASSERT (target,
"molecule::changeAtomNr() - given target is NULL, cannot set Nr or name.");
target->setNr(newNr);
InsertLocalToGlobalId(target);
setAtomName(target);
return true;
} else{
return false;
}
}
bool molecule::changeId(moleculeId_t newId){
// first we move ourselves in the world
// the world lets us know if that succeeded
if(World::getInstance().changeMoleculeId(id,newId,this)){
id = newId;
return true;
}
else{
return false;
}
}
moleculeId_t molecule::getId() const {
return id;
}
void molecule::setId(moleculeId_t _id){
id =_id;
}
const Formula &molecule::getFormula() const {
return formula;
}
unsigned int molecule::getElementCount() const{
return formula.getElementCount();
}
bool molecule::hasElement(const element *element) const{
return formula.hasElement(element);
}
bool molecule::hasElement(atomicNumber_t Z) const{
return formula.hasElement(Z);
}
bool molecule::hasElement(const string &shorthand) const{
return formula.hasElement(shorthand);
}
/************************** Access to the List of Atoms ****************/
molecule::const_iterator molecule::erase( const_iterator loc )
{
OBSERVE;
NOTIFY(AtomRemoved);
const_iterator iter = loc;
++iter;
atom * const _atom = const_cast(*loc);
atomIds.erase( _atom->getId() );
{
NOTIFY(AtomNrChanged);
atomIdPool.releaseId(_atom->getNr());
LocalToGlobalId.erase(_atom->getNr());
_atom->setNr(-1);
}
formula-=_atom->getType();
_atom->removeFromMolecule();
return iter;
}
molecule::const_iterator molecule::erase( atom * key )
{
OBSERVE;
NOTIFY(AtomRemoved);
const_iterator iter = find(key);
if (iter != end()){
++iter;
atomIds.erase( key->getId() );
{
NOTIFY(AtomNrChanged);
atomIdPool.releaseId(key->getNr());
LocalToGlobalId.erase(key->getNr());
key->setNr(-1);
}
formula-=key->getType();
key->removeFromMolecule();
}
return iter;
}
pair molecule::insert ( atom * const key )
{
OBSERVE;
NOTIFY(AtomInserted);
std::pair res = atomIds.insert(key->getId());
if (res.second) { // push atom if went well
NOTIFY(AtomNrChanged);
key->setNr(atomIdPool.getNextId());
InsertLocalToGlobalId(key);
setAtomName(key);
formula+=key->getType();
return res;
} else {
return pair(end(),res.second);
}
}
void molecule::setAtomName(atom *_atom) const
{
std::stringstream sstr;
sstr << _atom->getType()->getSymbol() << _atom->getNr();
_atom->setName(sstr.str());
}
World::AtomComposite molecule::getAtomSet() const
{
World::AtomComposite vector_of_atoms;
for (molecule::iterator iter = begin(); iter != end(); ++iter)
vector_of_atoms.push_back(*iter);
return vector_of_atoms;
}
/** Adds given atom \a *pointer from molecule list.
* Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
* \param *pointer allocated and set atom
* \return true - succeeded, false - atom not found in list
*/
bool molecule::AddAtom(atom *pointer)
{
if (pointer != NULL) {
// molecule::insert() is called by setMolecule()
pointer->setMolecule(this);
}
return true;
};
/** Adds a copy of the given atom \a *pointer from molecule list.
* Increases molecule::last_atom and gives last number to added atom.
* \param *pointer allocated and set atom
* \return pointer to the newly added atom
*/
atom * molecule::AddCopyAtom(atom *pointer)
{
atom *retval = NULL;
if (pointer != NULL) {
atom *walker = pointer->clone();
AddAtom(walker);
retval=walker;
}
return retval;
};
/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
* Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
* a different scheme when adding \a *replacement atom for the given one.
* -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
* -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
* *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
* The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
* replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
* element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
* hydrogens forming this angle with *origin.
* -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
* triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
* determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
* We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
* \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
* \f]
* vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
* the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
* The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
* the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
* \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
* \f]
* as the coordination of all three atoms in the coordinate system of these three vectors:
* \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
*
* \param *out output stream for debugging
* \param *Bond pointer to bond between \a *origin and \a *replacement
* \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
* \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
* \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
* \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
* \return number of atoms added, if < bond::BondDegree then something went wrong
* \todo double and triple bonds splitting (always use the tetraeder angle!)
*/
//bool molecule::AddHydrogenReplacementAtom(bond::ptr TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem)
//{
//// Info info(__func__);
// bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
// double bondlength; // bond length of the bond to be replaced/cut
// double bondangle; // bond angle of the bond to be replaced/cut
// double BondRescale; // rescale value for the hydrogen bond length
// bond::ptr FirstBond;
// bond::ptr SecondBond; // Other bonds in double bond case to determine "other" plane
// atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
// double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
// Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
// Vector InBondvector; // vector in direction of *Bond
// const RealSpaceMatrix &matrix = World::getInstance().getDomain().getM();
// bond::ptr Binder;
//
// // create vector in direction of bond
// InBondvector = TopReplacement->getPosition() - TopOrigin->getPosition();
// bondlength = InBondvector.Norm();
//
// // is greater than typical bond distance? Then we have to correct periodically
// // the problem is not the H being out of the box, but InBondvector have the wrong direction
// // due to TopReplacement or Origin being on the wrong side!
// const BondGraph * const BG = World::getInstance().getBondGraph();
// const range MinMaxBondDistance(
// BG->getMinMaxDistance(TopOrigin,TopReplacement));
// if (!MinMaxBondDistance.isInRange(bondlength)) {
//// LOG(4, "InBondvector is: " << InBondvector << ".");
// Orthovector1.Zero();
// for (int i=NDIM;i--;) {
// l = TopReplacement->at(i) - TopOrigin->at(i);
// if (fabs(l) > MinMaxBondDistance.last) { // is component greater than bond distance (check against min not useful here)
// Orthovector1[i] = (l < 0) ? -1. : +1.;
// } // (signs are correct, was tested!)
// }
// Orthovector1 *= matrix;
// InBondvector -= Orthovector1; // subtract just the additional translation
// bondlength = InBondvector.Norm();
//// LOG(4, "INFO: Corrected InBondvector is now: " << InBondvector << ".");
// } // periodic correction finished
//
// InBondvector.Normalize();
// // get typical bond length and store as scale factor for later
// ASSERT(TopOrigin->getType() != NULL, "AddHydrogenReplacementAtom: element of TopOrigin is not given.");
// BondRescale = TopOrigin->getType()->getHBondDistance(TopBond->getDegree()-1);
// if (BondRescale == -1) {
// ELOG(1, "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->getDegree() << "!");
// return false;
// BondRescale = bondlength;
// } else {
// if (!IsAngstroem)
// BondRescale /= (1.*AtomicLengthToAngstroem);
// }
//
// // discern single, double and triple bonds
// switch(TopBond->getDegree()) {
// case 1:
// FirstOtherAtom = World::getInstance().createAtom(); // new atom
// FirstOtherAtom->setType(1); // element is Hydrogen
// FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// if (TopReplacement->getType()->getAtomicNumber() == 1) { // neither rescale nor replace if it's already hydrogen
// FirstOtherAtom->father = TopReplacement;
// BondRescale = bondlength;
// } else {
// FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
// }
// InBondvector *= BondRescale; // rescale the distance vector to Hydrogen bond length
// FirstOtherAtom->setPosition(TopOrigin->getPosition() + InBondvector); // set coordination to origin and add distance vector to replacement atom
// AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
//// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
// Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// break;
// case 2:
// {
// // determine two other bonds (warning if there are more than two other) plus valence sanity check
// const BondList& ListOfBonds = TopOrigin->getListOfBonds();
// for (BondList::const_iterator Runner = ListOfBonds.begin();
// Runner != ListOfBonds.end();
// ++Runner) {
// if ((*Runner) != TopBond) {
// if (FirstBond == NULL) {
// FirstBond = (*Runner);
// FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
// } else if (SecondBond == NULL) {
// SecondBond = (*Runner);
// SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
// } else {
// ELOG(2, "Detected more than four bonds for atom " << TopOrigin->getName());
// }
// }
// }
// }
// if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
// SecondBond = TopBond;
// SecondOtherAtom = TopReplacement;
// }
// if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
//// LOG(3, "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane.");
//
// // determine the plane of these two with the *origin
// try {
// Orthovector1 = Plane(TopOrigin->getPosition(), FirstOtherAtom->getPosition(), SecondOtherAtom->getPosition()).getNormal();
// }
// catch(LinearDependenceException &excp){
// LOG(0, boost::diagnostic_information(excp));
// // TODO: figure out what to do with the Orthovector in this case
// AllWentWell = false;
// }
// } else {
// Orthovector1.GetOneNormalVector(InBondvector);
// }
// //LOG(3, "INFO: Orthovector1: " << Orthovector1 << ".");
// // orthogonal vector and bond vector between origin and replacement form the new plane
// Orthovector1.MakeNormalTo(InBondvector);
// Orthovector1.Normalize();
// //LOG(3, "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << ".");
//
// // create the two Hydrogens ...
// FirstOtherAtom = World::getInstance().createAtom();
// SecondOtherAtom = World::getInstance().createAtom();
// FirstOtherAtom->setType(1);
// SecondOtherAtom->setType(1);
// FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// SecondOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// SecondOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
// SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
// bondangle = TopOrigin->getType()->getHBondAngle(1);
// if (bondangle == -1) {
// ELOG(1, "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->getDegree() << "!");
// return false;
// bondangle = 0;
// }
// bondangle *= M_PI/180./2.;
//// LOG(3, "INFO: ReScaleCheck: InBondvector " << InBondvector << ", " << Orthovector1 << ".");
//// LOG(3, "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle));
// FirstOtherAtom->Zero();
// SecondOtherAtom->Zero();
// for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
// FirstOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (sin(bondangle)));
// SecondOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (-sin(bondangle)));
// }
// FirstOtherAtom->Scale(BondRescale); // rescale by correct BondDistance
// SecondOtherAtom->Scale(BondRescale);
// //LOG(3, "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << ".");
// *FirstOtherAtom += TopOrigin->getPosition();
// *SecondOtherAtom += TopOrigin->getPosition();
// // ... and add to molecule
// AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
// AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
//// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
//// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << ".");
// Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// break;
// case 3:
// // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
// FirstOtherAtom = World::getInstance().createAtom();
// SecondOtherAtom = World::getInstance().createAtom();
// ThirdOtherAtom = World::getInstance().createAtom();
// FirstOtherAtom->setType(1);
// SecondOtherAtom->setType(1);
// ThirdOtherAtom->setType(1);
// FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// SecondOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// SecondOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// ThirdOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity
// ThirdOtherAtom->setFixedIon(TopReplacement->getFixedIon());
// FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
// SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
// ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
//
// // we need to vectors orthonormal the InBondvector
// AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(InBondvector);
//// LOG(3, "INFO: Orthovector1: " << Orthovector1 << ".");
// try{
// Orthovector2 = Plane(InBondvector, Orthovector1,0).getNormal();
// }
// catch(LinearDependenceException &excp) {
// LOG(0, boost::diagnostic_information(excp));
// AllWentWell = false;
// }
//// LOG(3, "INFO: Orthovector2: " << Orthovector2 << ".")
//
// // create correct coordination for the three atoms
// alpha = (TopOrigin->getType()->getHBondAngle(2))/180.*M_PI/2.; // retrieve triple bond angle from database
// l = BondRescale; // desired bond length
// b = 2.*l*sin(alpha); // base length of isosceles triangle
// d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
// f = b/sqrt(3.); // length for Orthvector1
// g = b/2.; // length for Orthvector2
//// LOG(3, "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", ");
//// LOG(3, "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g));
// factors[0] = d;
// factors[1] = f;
// factors[2] = 0.;
// FirstOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
// factors[1] = -0.5*f;
// factors[2] = g;
// SecondOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
// factors[2] = -g;
// ThirdOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
//
// // rescale each to correct BondDistance
//// FirstOtherAtom->x.Scale(&BondRescale);
//// SecondOtherAtom->x.Scale(&BondRescale);
//// ThirdOtherAtom->x.Scale(&BondRescale);
//
// // and relative to *origin atom
// *FirstOtherAtom += TopOrigin->getPosition();
// *SecondOtherAtom += TopOrigin->getPosition();
// *ThirdOtherAtom += TopOrigin->getPosition();
//
// // ... and add to molecule
// AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
// AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
// AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
//// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << ".");
//// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << ".");
//// LOG(4, "INFO: Added " << *ThirdOtherAtom << " at: " << ThirdOtherAtom->x << ".");
// Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
// Binder->Cyclic = false;
// Binder->Type = GraphEdge::TreeEdge;
// break;
// default:
// ELOG(1, "BondDegree does not state single, double or triple bond!");
// AllWentWell = false;
// break;
// }
//
// return AllWentWell;
//};
/** Creates a copy of this molecule.
* \param offset translation Vector for the new molecule relative to old one
* \return copy of molecule
*/
molecule *molecule::CopyMolecule(const Vector &offset) const
{
molecule *copy = World::getInstance().createMolecule();
// copy all atoms
std::map< const atom *, atom *> FatherFinder;
for (iterator iter = begin(); iter != end(); ++iter) {
atom * const copy_atom = copy->AddCopyAtom(*iter);
copy_atom->setPosition(copy_atom->getPosition() + offset);
FatherFinder.insert( std::make_pair( *iter, copy_atom ) );
}
// copy all bonds
for(const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) {
const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds();
for(BondList::const_iterator BondRunner = ListOfBonds.begin();
BondRunner != ListOfBonds.end();
++BondRunner)
if ((*BondRunner)->leftatom == *AtomRunner) {
bond::ptr Binder = (*BondRunner);
// get the pendant atoms of current bond in the copy molecule
ASSERT(FatherFinder.count(Binder->leftatom),
"molecule::CopyMolecule() - No copy of original left atom "
+toString(Binder->leftatom)+" for bond copy found");
ASSERT(FatherFinder.count(Binder->rightatom),
"molecule::CopyMolecule() - No copy of original right atom "
+toString(Binder->rightatom)+" for bond copy found");
atom * const LeftAtom = FatherFinder[Binder->leftatom];
atom * const RightAtom = FatherFinder[Binder->rightatom];
bond::ptr const NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->getDegree());
NewBond->Cyclic = Binder->Cyclic;
if (Binder->Cyclic)
copy->NoCyclicBonds++;
NewBond->Type = Binder->Type;
}
}
// correct fathers
//for_each(begin(),end(),mem_fun(&atom::CorrectFather));
return copy;
};
/** Destroys all atoms inside this molecule.
*/
void molecule::removeAtomsinMolecule()
{
// remove each atom from world
for(iterator AtomRunner = begin(); !empty(); AtomRunner = begin())
World::getInstance().destroyAtom(*AtomRunner);
};
/**
* Copies all atoms of a molecule which are within the defined parallelepiped.
*
* @param offest for the origin of the parallelepiped
* @param three vectors forming the matrix that defines the shape of the parallelpiped
*/
molecule* molecule::CopyMoleculeFromSubRegion(const Shape ®ion) const {
molecule *copy = World::getInstance().createMolecule();
// copy all atoms
std::map< const atom *, atom *> FatherFinder;
for (iterator iter = begin(); iter != end(); ++iter) {
if (region.isInside((*iter)->getPosition())) {
atom * const copy_atom = copy->AddCopyAtom(*iter);
FatherFinder.insert( std::make_pair( *iter, copy_atom ) );
}
}
// copy all bonds
for(molecule::const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) {
const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds();
for(BondList::const_iterator BondRunner = ListOfBonds.begin();
BondRunner != ListOfBonds.end();
++BondRunner)
if ((*BondRunner)->leftatom == *AtomRunner) {
bond::ptr Binder = (*BondRunner);
if ((FatherFinder.count(Binder->leftatom))
&& (FatherFinder.count(Binder->rightatom))) {
// if copy present, then it must be from subregion
atom * const LeftAtom = FatherFinder[Binder->leftatom];
atom * const RightAtom = FatherFinder[Binder->rightatom];
bond::ptr const NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->getDegree());
NewBond->Cyclic = Binder->Cyclic;
if (Binder->Cyclic)
copy->NoCyclicBonds++;
NewBond->Type = Binder->Type;
}
}
}
// correct fathers
//for_each(begin(),end(),mem_fun(&atom::CorrectFather));
//TODO: copy->BuildInducedSubgraph(this);
return copy;
}
/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
* Also updates molecule::BondCount and molecule::NoNonBonds.
* \param *first first atom in bond
* \param *second atom in bond
* \return pointer to bond or NULL on failure
*/
bond::ptr molecule::AddBond(atom *atom1, atom *atom2, int degree)
{
bond::ptr Binder;
// some checks to make sure we are able to create the bond
ASSERT(atom1,
"molecule::AddBond() - First atom "+toString(atom1)
+" is not a invalid pointer");
ASSERT(atom2,
"molecule::AddBond() - Second atom "+toString(atom2)
+" is not a invalid pointer");
ASSERT(isInMolecule(atom1),
"molecule::AddBond() - First atom "+toString(atom1)
+" is not part of molecule");
ASSERT(isInMolecule(atom2),
"molecule::AddBond() - Second atom "+toString(atom2)
+" is not part of molecule");
Binder.reset(new bond(atom1, atom2, degree));
atom1->RegisterBond(WorldTime::getTime(), Binder);
atom2->RegisterBond(WorldTime::getTime(), Binder);
if ((atom1->getType() != NULL)
&& (atom1->getType()->getAtomicNumber() != 1)
&& (atom2->getType() != NULL)
&& (atom2->getType()->getAtomicNumber() != 1))
NoNonBonds++;
return Binder;
};
/** Set molecule::name from the basename without suffix in the given \a *filename.
* \param *filename filename
*/
void molecule::SetNameFromFilename(const char *filename)
{
OBSERVE;
int length = 0;
const char *molname = strrchr(filename, '/');
if (molname != NULL)
molname += sizeof(char); // search for filename without dirs
else
molname = filename; // contains no slashes
const char *endname = strchr(molname, '.');
if ((endname == NULL) || (endname < molname))
length = strlen(molname);
else
length = strlen(molname) - strlen(endname);
cout << "Set name of molecule " << getId() << " to " << molname << endl;
strncpy(name, molname, length);
name[length]='\0';
};
/** Removes atom from molecule list, but does not delete it.
* \param *pointer atom to be removed
* \return true - succeeded, false - atom not found in list
*/
bool molecule::UnlinkAtom(atom *pointer)
{
if (pointer == NULL)
return false;
pointer->removeFromMolecule();
return true;
};
/** Removes every atom from molecule list.
* \return true - succeeded, false - atom not found in list
*/
bool molecule::CleanupMolecule()
{
for (molecule::iterator iter = begin(); !empty(); iter = begin())
(*iter)->removeFromMolecule();
return empty();
};
/** Finds an atom specified by its continuous number.
* \param Nr number of atom withim molecule
* \return pointer to atom or NULL
*/
atom * molecule::FindAtom(int Nr) const
{
LocalToGlobalId_t::const_iterator iter = LocalToGlobalId.find(Nr);
if (iter != LocalToGlobalId.end()) {
//LOG(0, "Found Atom Nr. " << walker->getNr());
return iter->second;
} else {
ELOG(1, "Atom with Nr " << Nr << " not found in molecule " << getName() << "'s list.");
return NULL;
}
}
/** Checks whether the given atom is a member of this molecule.
*
* We make use here of molecule::atomIds to get a result on
*
* @param _atom atom to check
* @return true - is member, false - is not
*/
bool molecule::isInMolecule(const atom * const _atom)
{
ASSERT(_atom->getMolecule() == this,
"molecule::isInMolecule() - atom is not designated to be in molecule '"
+toString(this->getName())+"'.");
molecule::const_iterator iter = atomIds.find(_atom->getId());
return (iter != atomIds.end());
}
/** Asks for atom number, and checks whether in list.
* \param *text question before entering
*/
atom * molecule::AskAtom(std::string text)
{
int No;
atom *ion = NULL;
do {
//std::cout << "============Atom list==========================" << std::endl;
//mol->Output((ofstream *)&cout);
//std::cout << "===============================================" << std::endl;
std::cout << text;
cin >> No;
ion = this->FindAtom(No);
} while (ion == NULL);
return ion;
};
/** Checks if given coordinates are within cell volume.
* \param *x array of coordinates
* \return true - is within, false - out of cell
*/
bool molecule::CheckBounds(const Vector *x) const
{
const RealSpaceMatrix &domain = World::getInstance().getDomain().getM();
bool result = true;
for (int i=0;iat(i) >= 0) && (x->at(i) < domain.at(i,i)));
}
//return result;
return true; /// probably not gonna use the check no more
};
/** Prints molecule to *out.
* \param *out output stream
*/
bool molecule::Output(ostream * const output) const
{
if (output == NULL) {
return false;
} else {
int AtomNo[MAX_ELEMENTS];
memset(AtomNo,0,(MAX_ELEMENTS-1)*sizeof(*AtomNo));
enumeration elementLookup = formula.enumerateElements();
*output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
for_each(begin(),end(),boost::bind(&atom::OutputArrayIndexed,_1,output,elementLookup,AtomNo,(const char*)0));
return true;
}
};
/** Outputs contents of each atom::ListOfBonds.
* \param *out output stream
*/
void molecule::OutputListOfBonds() const
{
std::stringstream output;
LOG(2, "From Contents of ListOfBonds, all atoms:");
for (molecule::const_iterator iter = begin();
iter != end();
++iter) {
(*iter)->OutputBondOfAtom(output);
output << std::endl << "\t\t";
}
LOG(2, output.str());
}
/** Brings molecule::AtomCount and atom::*Name up-to-date.
* \param *out output stream for debugging
*/
size_t molecule::doCountNoNonHydrogen() const
{
int temp = 0;
// go through atoms and look for new ones
for (molecule::const_iterator iter = begin(); iter != end(); ++iter)
if ((*iter)->getType()->getAtomicNumber() != 1) // count non-hydrogen atoms whilst at it
++temp;
return temp;
};
/** Counts the number of present bonds.
* \return number of bonds
*/
int molecule::doCountBonds() const
{
unsigned int counter = 0;
for(molecule::const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) {
const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds();
for(BondList::const_iterator BondRunner = ListOfBonds.begin();
BondRunner != ListOfBonds.end();
++BondRunner)
if ((*BondRunner)->leftatom == *AtomRunner)
counter++;
}
return counter;
}
/** Returns an index map for two father-son-molecules.
* The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
* \param *out output stream for debugging
* \param *OtherMolecule corresponding molecule with fathers
* \return allocated map of size molecule::AtomCount with map
* \todo make this with a good sort O(n), not O(n^2)
*/
int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule)
{
LOG(3, "Begin of GetFatherAtomicMap.");
int *AtomicMap = new int[getAtomCount()];
for (int i=getAtomCount();i--;)
AtomicMap[i] = -1;
if (OtherMolecule == this) { // same molecule
for (int i=getAtomCount();i--;) // no need as -1 means already that there is trivial correspondence
AtomicMap[i] = i;
LOG(4, "Map is trivial.");
} else {
std::stringstream output;
output << "Map is ";
for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
if ((*iter)->father == NULL) {
AtomicMap[(*iter)->getNr()] = -2;
} else {
for (molecule::const_iterator runner = OtherMolecule->begin(); runner != OtherMolecule->end(); ++runner) {
//for (int i=0;igetAtomCount();j++) {
//LOG(4, "Comparing father " << (*iter)->father << " with the other one " << (*runner)->father << ".");
if ((*iter)->father == (*runner))
AtomicMap[(*iter)->getNr()] = (*runner)->getNr();
}
}
output << AtomicMap[(*iter)->getNr()] << "\t";
}
LOG(4, output.str());
}
LOG(3, "End of GetFatherAtomicMap.");
return AtomicMap;
};
void molecule::flipActiveFlag(){
ActiveFlag = !ActiveFlag;
}
Shape molecule::getBoundingShape(const double scale) const
{
// create Sphere around every atom
if (empty())
return Nowhere();
const_iterator iter = begin();
const Vector center = (*iter)->getPosition();
const double vdWRadius = (*iter)->getElement().getVanDerWaalsRadius();
Shape BoundingShape = Sphere(center, vdWRadius*scale);
for(++iter; iter != end(); ++iter) {
const Vector center = (*iter)->getPosition();
const double vdWRadius = (*iter)->getElement().getVanDerWaalsRadius();
if (vdWRadius*scale != 0.)
BoundingShape = Sphere(center, vdWRadius*scale) || BoundingShape;
}
return BoundingShape;
}
Shape molecule::getBoundingSphere(const double boundary) const
{
// get center and radius
Vector center;
double radius = 0.;
{
center.Zero();
for(const_iterator iter = begin(); iter != end(); ++iter)
center += (*iter)->getPosition();
center *= 1./(double)size();
for(const_iterator iter = begin(); iter != end(); ++iter) {
const Vector &position = (*iter)->getPosition();
const double temp_distance = position.DistanceSquared(center);
if (temp_distance > radius)
radius = temp_distance;
}
}
// convert radius to true value and add some small boundary
radius = sqrt(radius) + boundary + 1e+6*std::numeric_limits::epsilon();
LOG(1, "INFO: The " << size() << " atoms of the molecule are contained in a sphere at "
<< center << " with radius " << radius << ".");
// TODO: When we do not use a Sphere here anymore, then FillRegularGridAction will
// will not work as it expects a sphere due to possible random rotations.
Shape BoundingShape(Sphere(center, radius));
LOG(1, "INFO: Created sphere at " << BoundingShape.getCenter() << " and radius "
<< BoundingShape.getRadius() << ".");
return BoundingShape;
}
// construct idpool
CONSTRUCT_IDPOOL(atomId_t, continuousId)