/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * Copyright (C) 2013 Frederik Heber. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /** \file molecules.cpp * * Functions for the class molecule. * */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include #include #include #include #include #include "molecule.hpp" #include "Atom/atom.hpp" #include "Bond/bond.hpp" #include "Box.hpp" #include "CodePatterns/enumeration.hpp" #include "CodePatterns/Log.hpp" #include "config.hpp" #include "Descriptors/AtomIdDescriptor.hpp" #include "Element/element.hpp" #include "Graph/BondGraph.hpp" #include "LinearAlgebra/Exceptions.hpp" #include "LinearAlgebra/leastsquaremin.hpp" #include "LinearAlgebra/Plane.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "LinearAlgebra/Vector.hpp" #include "LinkedCell/linkedcell.hpp" #include "IdPool_impl.hpp" #include "Shapes/BaseShapes.hpp" #include "Tesselation/tesselation.hpp" #include "World.hpp" #include "WorldTime.hpp" /************************************* Functions for class molecule *********************************/ /** Constructor of class molecule. * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero. */ molecule::molecule() : Observable("molecule"), MDSteps(0), NoNonBonds(0), NoCyclicBonds(0), ActiveFlag(false), IndexNr(-1), NoNonHydrogen(this,boost::bind(&molecule::doCountNoNonHydrogen,this),"NoNonHydrogen"), BondCount(this,boost::bind(&molecule::doCountBonds,this),"BondCount"), atomIdPool(1, 20, 100), last_atom(0) { // add specific channels Channels *OurChannel = new Channels; NotificationChannels.insert( std::make_pair( static_cast(this), OurChannel) ); for (size_t type = 0; type < (size_t)NotificationType_MAX; ++type) OurChannel->addChannel(type); strcpy(name,World::getInstance().getDefaultName().c_str()); }; molecule *NewMolecule(){ return new molecule(); } /** Destructor of class molecule. * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero. */ molecule::~molecule() { CleanupMolecule(); }; void DeleteMolecule(molecule *mol){ delete mol; } // getter and setter const std::string molecule::getName() const{ return std::string(name); } int molecule::getAtomCount() const{ return atomIds.size(); } size_t molecule::getNoNonHydrogen() const{ return *NoNonHydrogen; } int molecule::getBondCount() const{ return *BondCount; } void molecule::setName(const std::string _name){ OBSERVE; NOTIFY(MoleculeNameChanged); cout << "Set name of molecule " << getId() << " to " << _name << endl; strncpy(name,_name.c_str(),MAXSTRINGSIZE); } void molecule::InsertLocalToGlobalId(atom * const pointer) { #ifndef NDEBUG std::pair< LocalToGlobalId_t::iterator, bool > inserter = #endif LocalToGlobalId.insert( std::make_pair(pointer->getNr(), pointer) ); ASSERT( inserter.second, "molecule::AddAtom() - local number "+toString(pointer->getNr())+" appears twice."); } bool molecule::changeAtomNr(int oldNr, int newNr, atom* target){ OBSERVE; if(atomIdPool.reserveId(newNr)){ NOTIFY(AtomNrChanged); if (oldNr != -1) // -1 is reserved and indicates no number atomIdPool.releaseId(oldNr); LocalToGlobalId.erase(oldNr); ASSERT (target, "molecule::changeAtomNr() - given target is NULL, cannot set Nr or name."); target->setNr(newNr); InsertLocalToGlobalId(target); setAtomName(target); return true; } else{ return false; } } bool molecule::changeId(moleculeId_t newId){ // first we move ourselves in the world // the world lets us know if that succeeded if(World::getInstance().changeMoleculeId(id,newId,this)){ id = newId; return true; } else{ return false; } } moleculeId_t molecule::getId() const { return id; } void molecule::setId(moleculeId_t _id){ id =_id; } const Formula &molecule::getFormula() const { return formula; } unsigned int molecule::getElementCount() const{ return formula.getElementCount(); } bool molecule::hasElement(const element *element) const{ return formula.hasElement(element); } bool molecule::hasElement(atomicNumber_t Z) const{ return formula.hasElement(Z); } bool molecule::hasElement(const string &shorthand) const{ return formula.hasElement(shorthand); } /************************** Access to the List of Atoms ****************/ molecule::const_iterator molecule::erase( const_iterator loc ) { OBSERVE; NOTIFY(AtomRemoved); const_iterator iter = loc; ++iter; atom * const _atom = const_cast(*loc); atomIds.erase( _atom->getId() ); { NOTIFY(AtomNrChanged); atomIdPool.releaseId(_atom->getNr()); LocalToGlobalId.erase(_atom->getNr()); _atom->setNr(-1); } formula-=_atom->getType(); _atom->removeFromMolecule(); return iter; } molecule::const_iterator molecule::erase( atom * key ) { OBSERVE; NOTIFY(AtomRemoved); const_iterator iter = find(key); if (iter != end()){ ++iter; atomIds.erase( key->getId() ); { NOTIFY(AtomNrChanged); atomIdPool.releaseId(key->getNr()); LocalToGlobalId.erase(key->getNr()); key->setNr(-1); } formula-=key->getType(); key->removeFromMolecule(); } return iter; } pair molecule::insert ( atom * const key ) { OBSERVE; NOTIFY(AtomInserted); std::pair res = atomIds.insert(key->getId()); if (res.second) { // push atom if went well NOTIFY(AtomNrChanged); key->setNr(atomIdPool.getNextId()); InsertLocalToGlobalId(key); setAtomName(key); formula+=key->getType(); return res; } else { return pair(end(),res.second); } } void molecule::setAtomName(atom *_atom) const { std::stringstream sstr; sstr << _atom->getType()->getSymbol() << _atom->getNr(); _atom->setName(sstr.str()); } World::AtomComposite molecule::getAtomSet() const { World::AtomComposite vector_of_atoms; for (molecule::iterator iter = begin(); iter != end(); ++iter) vector_of_atoms.push_back(*iter); return vector_of_atoms; } /** Adds given atom \a *pointer from molecule list. * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount * \param *pointer allocated and set atom * \return true - succeeded, false - atom not found in list */ bool molecule::AddAtom(atom *pointer) { if (pointer != NULL) { // molecule::insert() is called by setMolecule() pointer->setMolecule(this); } return true; }; /** Adds a copy of the given atom \a *pointer from molecule list. * Increases molecule::last_atom and gives last number to added atom. * \param *pointer allocated and set atom * \return pointer to the newly added atom */ atom * molecule::AddCopyAtom(atom *pointer) { atom *retval = NULL; if (pointer != NULL) { atom *walker = pointer->clone(); AddAtom(walker); retval=walker; } return retval; }; /** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin. * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand * a different scheme when adding \a *replacement atom for the given one. * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector(). * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two * hydrogens forming this angle with *origin. * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin): * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2). * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}} * \f] * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above. * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that * the median lines in an isosceles triangle meet in the center point with a ratio 2:1. * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2} * \f] * as the coordination of all three atoms in the coordinate system of these three vectors: * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$. * * \param *out output stream for debugging * \param *Bond pointer to bond between \a *origin and \a *replacement * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin) * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true) * \return number of atoms added, if < bond::BondDegree then something went wrong * \todo double and triple bonds splitting (always use the tetraeder angle!) */ //bool molecule::AddHydrogenReplacementAtom(bond::ptr TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem) //{ //// Info info(__func__); // bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit // double bondlength; // bond length of the bond to be replaced/cut // double bondangle; // bond angle of the bond to be replaced/cut // double BondRescale; // rescale value for the hydrogen bond length // bond::ptr FirstBond; // bond::ptr SecondBond; // Other bonds in double bond case to determine "other" plane // atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added // double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination // Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction // Vector InBondvector; // vector in direction of *Bond // const RealSpaceMatrix &matrix = World::getInstance().getDomain().getM(); // bond::ptr Binder; // // // create vector in direction of bond // InBondvector = TopReplacement->getPosition() - TopOrigin->getPosition(); // bondlength = InBondvector.Norm(); // // // is greater than typical bond distance? Then we have to correct periodically // // the problem is not the H being out of the box, but InBondvector have the wrong direction // // due to TopReplacement or Origin being on the wrong side! // const BondGraph * const BG = World::getInstance().getBondGraph(); // const range MinMaxBondDistance( // BG->getMinMaxDistance(TopOrigin,TopReplacement)); // if (!MinMaxBondDistance.isInRange(bondlength)) { //// LOG(4, "InBondvector is: " << InBondvector << "."); // Orthovector1.Zero(); // for (int i=NDIM;i--;) { // l = TopReplacement->at(i) - TopOrigin->at(i); // if (fabs(l) > MinMaxBondDistance.last) { // is component greater than bond distance (check against min not useful here) // Orthovector1[i] = (l < 0) ? -1. : +1.; // } // (signs are correct, was tested!) // } // Orthovector1 *= matrix; // InBondvector -= Orthovector1; // subtract just the additional translation // bondlength = InBondvector.Norm(); //// LOG(4, "INFO: Corrected InBondvector is now: " << InBondvector << "."); // } // periodic correction finished // // InBondvector.Normalize(); // // get typical bond length and store as scale factor for later // ASSERT(TopOrigin->getType() != NULL, "AddHydrogenReplacementAtom: element of TopOrigin is not given."); // BondRescale = TopOrigin->getType()->getHBondDistance(TopBond->getDegree()-1); // if (BondRescale == -1) { // ELOG(1, "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->getDegree() << "!"); // return false; // BondRescale = bondlength; // } else { // if (!IsAngstroem) // BondRescale /= (1.*AtomicLengthToAngstroem); // } // // // discern single, double and triple bonds // switch(TopBond->getDegree()) { // case 1: // FirstOtherAtom = World::getInstance().createAtom(); // new atom // FirstOtherAtom->setType(1); // element is Hydrogen // FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // if (TopReplacement->getType()->getAtomicNumber() == 1) { // neither rescale nor replace if it's already hydrogen // FirstOtherAtom->father = TopReplacement; // BondRescale = bondlength; // } else { // FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father // } // InBondvector *= BondRescale; // rescale the distance vector to Hydrogen bond length // FirstOtherAtom->setPosition(TopOrigin->getPosition() + InBondvector); // set coordination to origin and add distance vector to replacement atom // AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); //// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << "."); // Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // break; // case 2: // { // // determine two other bonds (warning if there are more than two other) plus valence sanity check // const BondList& ListOfBonds = TopOrigin->getListOfBonds(); // for (BondList::const_iterator Runner = ListOfBonds.begin(); // Runner != ListOfBonds.end(); // ++Runner) { // if ((*Runner) != TopBond) { // if (FirstBond == NULL) { // FirstBond = (*Runner); // FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin); // } else if (SecondBond == NULL) { // SecondBond = (*Runner); // SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin); // } else { // ELOG(2, "Detected more than four bonds for atom " << TopOrigin->getName()); // } // } // } // } // if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond) // SecondBond = TopBond; // SecondOtherAtom = TopReplacement; // } // if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all //// LOG(3, "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane."); // // // determine the plane of these two with the *origin // try { // Orthovector1 = Plane(TopOrigin->getPosition(), FirstOtherAtom->getPosition(), SecondOtherAtom->getPosition()).getNormal(); // } // catch(LinearDependenceException &excp){ // LOG(0, boost::diagnostic_information(excp)); // // TODO: figure out what to do with the Orthovector in this case // AllWentWell = false; // } // } else { // Orthovector1.GetOneNormalVector(InBondvector); // } // //LOG(3, "INFO: Orthovector1: " << Orthovector1 << "."); // // orthogonal vector and bond vector between origin and replacement form the new plane // Orthovector1.MakeNormalTo(InBondvector); // Orthovector1.Normalize(); // //LOG(3, "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "."); // // // create the two Hydrogens ... // FirstOtherAtom = World::getInstance().createAtom(); // SecondOtherAtom = World::getInstance().createAtom(); // FirstOtherAtom->setType(1); // SecondOtherAtom->setType(1); // FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // SecondOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // SecondOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father // SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father // bondangle = TopOrigin->getType()->getHBondAngle(1); // if (bondangle == -1) { // ELOG(1, "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->getDegree() << "!"); // return false; // bondangle = 0; // } // bondangle *= M_PI/180./2.; //// LOG(3, "INFO: ReScaleCheck: InBondvector " << InBondvector << ", " << Orthovector1 << "."); //// LOG(3, "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle)); // FirstOtherAtom->Zero(); // SecondOtherAtom->Zero(); // for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction) // FirstOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (sin(bondangle))); // SecondOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (-sin(bondangle))); // } // FirstOtherAtom->Scale(BondRescale); // rescale by correct BondDistance // SecondOtherAtom->Scale(BondRescale); // //LOG(3, "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "."); // *FirstOtherAtom += TopOrigin->getPosition(); // *SecondOtherAtom += TopOrigin->getPosition(); // // ... and add to molecule // AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); // AllWentWell = AllWentWell && AddAtom(SecondOtherAtom); //// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << "."); //// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << "."); // Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // Binder = AddBond(BottomOrigin, SecondOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // break; // case 3: // // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid) // FirstOtherAtom = World::getInstance().createAtom(); // SecondOtherAtom = World::getInstance().createAtom(); // ThirdOtherAtom = World::getInstance().createAtom(); // FirstOtherAtom->setType(1); // SecondOtherAtom->setType(1); // ThirdOtherAtom->setType(1); // FirstOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // FirstOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // SecondOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // SecondOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // ThirdOtherAtom->setAtomicVelocity(TopReplacement->getAtomicVelocity()); // copy velocity // ThirdOtherAtom->setFixedIon(TopReplacement->getFixedIon()); // FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father // SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father // ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father // // // we need to vectors orthonormal the InBondvector // AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(InBondvector); //// LOG(3, "INFO: Orthovector1: " << Orthovector1 << "."); // try{ // Orthovector2 = Plane(InBondvector, Orthovector1,0).getNormal(); // } // catch(LinearDependenceException &excp) { // LOG(0, boost::diagnostic_information(excp)); // AllWentWell = false; // } //// LOG(3, "INFO: Orthovector2: " << Orthovector2 << ".") // // // create correct coordination for the three atoms // alpha = (TopOrigin->getType()->getHBondAngle(2))/180.*M_PI/2.; // retrieve triple bond angle from database // l = BondRescale; // desired bond length // b = 2.*l*sin(alpha); // base length of isosceles triangle // d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector // f = b/sqrt(3.); // length for Orthvector1 // g = b/2.; // length for Orthvector2 //// LOG(3, "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", "); //// LOG(3, "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g)); // factors[0] = d; // factors[1] = f; // factors[2] = 0.; // FirstOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors); // factors[1] = -0.5*f; // factors[2] = g; // SecondOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors); // factors[2] = -g; // ThirdOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors); // // // rescale each to correct BondDistance //// FirstOtherAtom->x.Scale(&BondRescale); //// SecondOtherAtom->x.Scale(&BondRescale); //// ThirdOtherAtom->x.Scale(&BondRescale); // // // and relative to *origin atom // *FirstOtherAtom += TopOrigin->getPosition(); // *SecondOtherAtom += TopOrigin->getPosition(); // *ThirdOtherAtom += TopOrigin->getPosition(); // // // ... and add to molecule // AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); // AllWentWell = AllWentWell && AddAtom(SecondOtherAtom); // AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom); //// LOG(4, "INFO: Added " << *FirstOtherAtom << " at: " << FirstOtherAtom->x << "."); //// LOG(4, "INFO: Added " << *SecondOtherAtom << " at: " << SecondOtherAtom->x << "."); //// LOG(4, "INFO: Added " << *ThirdOtherAtom << " at: " << ThirdOtherAtom->x << "."); // Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // Binder = AddBond(BottomOrigin, SecondOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1); // Binder->Cyclic = false; // Binder->Type = GraphEdge::TreeEdge; // break; // default: // ELOG(1, "BondDegree does not state single, double or triple bond!"); // AllWentWell = false; // break; // } // // return AllWentWell; //}; /** Creates a copy of this molecule. * \param offset translation Vector for the new molecule relative to old one * \return copy of molecule */ molecule *molecule::CopyMolecule(const Vector &offset) const { molecule *copy = World::getInstance().createMolecule(); // copy all atoms std::map< const atom *, atom *> FatherFinder; for (iterator iter = begin(); iter != end(); ++iter) { atom * const copy_atom = copy->AddCopyAtom(*iter); copy_atom->setPosition(copy_atom->getPosition() + offset); FatherFinder.insert( std::make_pair( *iter, copy_atom ) ); } // copy all bonds for(const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) { const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds(); for(BondList::const_iterator BondRunner = ListOfBonds.begin(); BondRunner != ListOfBonds.end(); ++BondRunner) if ((*BondRunner)->leftatom == *AtomRunner) { bond::ptr Binder = (*BondRunner); // get the pendant atoms of current bond in the copy molecule ASSERT(FatherFinder.count(Binder->leftatom), "molecule::CopyMolecule() - No copy of original left atom " +toString(Binder->leftatom)+" for bond copy found"); ASSERT(FatherFinder.count(Binder->rightatom), "molecule::CopyMolecule() - No copy of original right atom " +toString(Binder->rightatom)+" for bond copy found"); atom * const LeftAtom = FatherFinder[Binder->leftatom]; atom * const RightAtom = FatherFinder[Binder->rightatom]; bond::ptr const NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->getDegree()); NewBond->Cyclic = Binder->Cyclic; if (Binder->Cyclic) copy->NoCyclicBonds++; NewBond->Type = Binder->Type; } } // correct fathers //for_each(begin(),end(),mem_fun(&atom::CorrectFather)); return copy; }; /** Destroys all atoms inside this molecule. */ void molecule::removeAtomsinMolecule() { // remove each atom from world for(iterator AtomRunner = begin(); !empty(); AtomRunner = begin()) World::getInstance().destroyAtom(*AtomRunner); }; /** * Copies all atoms of a molecule which are within the defined parallelepiped. * * @param offest for the origin of the parallelepiped * @param three vectors forming the matrix that defines the shape of the parallelpiped */ molecule* molecule::CopyMoleculeFromSubRegion(const Shape ®ion) const { molecule *copy = World::getInstance().createMolecule(); // copy all atoms std::map< const atom *, atom *> FatherFinder; for (iterator iter = begin(); iter != end(); ++iter) { if (region.isInside((*iter)->getPosition())) { atom * const copy_atom = copy->AddCopyAtom(*iter); FatherFinder.insert( std::make_pair( *iter, copy_atom ) ); } } // copy all bonds for(molecule::const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) { const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds(); for(BondList::const_iterator BondRunner = ListOfBonds.begin(); BondRunner != ListOfBonds.end(); ++BondRunner) if ((*BondRunner)->leftatom == *AtomRunner) { bond::ptr Binder = (*BondRunner); if ((FatherFinder.count(Binder->leftatom)) && (FatherFinder.count(Binder->rightatom))) { // if copy present, then it must be from subregion atom * const LeftAtom = FatherFinder[Binder->leftatom]; atom * const RightAtom = FatherFinder[Binder->rightatom]; bond::ptr const NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->getDegree()); NewBond->Cyclic = Binder->Cyclic; if (Binder->Cyclic) copy->NoCyclicBonds++; NewBond->Type = Binder->Type; } } } // correct fathers //for_each(begin(),end(),mem_fun(&atom::CorrectFather)); //TODO: copy->BuildInducedSubgraph(this); return copy; } /** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second. * Also updates molecule::BondCount and molecule::NoNonBonds. * \param *first first atom in bond * \param *second atom in bond * \return pointer to bond or NULL on failure */ bond::ptr molecule::AddBond(atom *atom1, atom *atom2, int degree) { bond::ptr Binder; // some checks to make sure we are able to create the bond ASSERT(atom1, "molecule::AddBond() - First atom "+toString(atom1) +" is not a invalid pointer"); ASSERT(atom2, "molecule::AddBond() - Second atom "+toString(atom2) +" is not a invalid pointer"); ASSERT(isInMolecule(atom1), "molecule::AddBond() - First atom "+toString(atom1) +" is not part of molecule"); ASSERT(isInMolecule(atom2), "molecule::AddBond() - Second atom "+toString(atom2) +" is not part of molecule"); Binder.reset(new bond(atom1, atom2, degree)); atom1->RegisterBond(WorldTime::getTime(), Binder); atom2->RegisterBond(WorldTime::getTime(), Binder); if ((atom1->getType() != NULL) && (atom1->getType()->getAtomicNumber() != 1) && (atom2->getType() != NULL) && (atom2->getType()->getAtomicNumber() != 1)) NoNonBonds++; return Binder; }; /** Set molecule::name from the basename without suffix in the given \a *filename. * \param *filename filename */ void molecule::SetNameFromFilename(const char *filename) { OBSERVE; int length = 0; const char *molname = strrchr(filename, '/'); if (molname != NULL) molname += sizeof(char); // search for filename without dirs else molname = filename; // contains no slashes const char *endname = strchr(molname, '.'); if ((endname == NULL) || (endname < molname)) length = strlen(molname); else length = strlen(molname) - strlen(endname); cout << "Set name of molecule " << getId() << " to " << molname << endl; strncpy(name, molname, length); name[length]='\0'; }; /** Removes atom from molecule list, but does not delete it. * \param *pointer atom to be removed * \return true - succeeded, false - atom not found in list */ bool molecule::UnlinkAtom(atom *pointer) { if (pointer == NULL) return false; pointer->removeFromMolecule(); return true; }; /** Removes every atom from molecule list. * \return true - succeeded, false - atom not found in list */ bool molecule::CleanupMolecule() { for (molecule::iterator iter = begin(); !empty(); iter = begin()) (*iter)->removeFromMolecule(); return empty(); }; /** Finds an atom specified by its continuous number. * \param Nr number of atom withim molecule * \return pointer to atom or NULL */ atom * molecule::FindAtom(int Nr) const { LocalToGlobalId_t::const_iterator iter = LocalToGlobalId.find(Nr); if (iter != LocalToGlobalId.end()) { //LOG(0, "Found Atom Nr. " << walker->getNr()); return iter->second; } else { ELOG(1, "Atom with Nr " << Nr << " not found in molecule " << getName() << "'s list."); return NULL; } } /** Checks whether the given atom is a member of this molecule. * * We make use here of molecule::atomIds to get a result on * * @param _atom atom to check * @return true - is member, false - is not */ bool molecule::isInMolecule(const atom * const _atom) { ASSERT(_atom->getMolecule() == this, "molecule::isInMolecule() - atom is not designated to be in molecule '" +toString(this->getName())+"'."); molecule::const_iterator iter = atomIds.find(_atom->getId()); return (iter != atomIds.end()); } /** Asks for atom number, and checks whether in list. * \param *text question before entering */ atom * molecule::AskAtom(std::string text) { int No; atom *ion = NULL; do { //std::cout << "============Atom list==========================" << std::endl; //mol->Output((ofstream *)&cout); //std::cout << "===============================================" << std::endl; std::cout << text; cin >> No; ion = this->FindAtom(No); } while (ion == NULL); return ion; }; /** Checks if given coordinates are within cell volume. * \param *x array of coordinates * \return true - is within, false - out of cell */ bool molecule::CheckBounds(const Vector *x) const { const RealSpaceMatrix &domain = World::getInstance().getDomain().getM(); bool result = true; for (int i=0;iat(i) >= 0) && (x->at(i) < domain.at(i,i))); } //return result; return true; /// probably not gonna use the check no more }; /** Prints molecule to *out. * \param *out output stream */ bool molecule::Output(ostream * const output) const { if (output == NULL) { return false; } else { int AtomNo[MAX_ELEMENTS]; memset(AtomNo,0,(MAX_ELEMENTS-1)*sizeof(*AtomNo)); enumeration elementLookup = formula.enumerateElements(); *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl; for_each(begin(),end(),boost::bind(&atom::OutputArrayIndexed,_1,output,elementLookup,AtomNo,(const char*)0)); return true; } }; /** Outputs contents of each atom::ListOfBonds. * \param *out output stream */ void molecule::OutputListOfBonds() const { std::stringstream output; LOG(2, "From Contents of ListOfBonds, all atoms:"); for (molecule::const_iterator iter = begin(); iter != end(); ++iter) { (*iter)->OutputBondOfAtom(output); output << std::endl << "\t\t"; } LOG(2, output.str()); } /** Brings molecule::AtomCount and atom::*Name up-to-date. * \param *out output stream for debugging */ size_t molecule::doCountNoNonHydrogen() const { int temp = 0; // go through atoms and look for new ones for (molecule::const_iterator iter = begin(); iter != end(); ++iter) if ((*iter)->getType()->getAtomicNumber() != 1) // count non-hydrogen atoms whilst at it ++temp; return temp; }; /** Counts the number of present bonds. * \return number of bonds */ int molecule::doCountBonds() const { unsigned int counter = 0; for(molecule::const_iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner) { const BondList& ListOfBonds = (*AtomRunner)->getListOfBonds(); for(BondList::const_iterator BondRunner = ListOfBonds.begin(); BondRunner != ListOfBonds.end(); ++BondRunner) if ((*BondRunner)->leftatom == *AtomRunner) counter++; } return counter; } /** Returns an index map for two father-son-molecules. * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers. * \param *out output stream for debugging * \param *OtherMolecule corresponding molecule with fathers * \return allocated map of size molecule::AtomCount with map * \todo make this with a good sort O(n), not O(n^2) */ int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule) { LOG(3, "Begin of GetFatherAtomicMap."); int *AtomicMap = new int[getAtomCount()]; for (int i=getAtomCount();i--;) AtomicMap[i] = -1; if (OtherMolecule == this) { // same molecule for (int i=getAtomCount();i--;) // no need as -1 means already that there is trivial correspondence AtomicMap[i] = i; LOG(4, "Map is trivial."); } else { std::stringstream output; output << "Map is "; for (molecule::const_iterator iter = begin(); iter != end(); ++iter) { if ((*iter)->father == NULL) { AtomicMap[(*iter)->getNr()] = -2; } else { for (molecule::const_iterator runner = OtherMolecule->begin(); runner != OtherMolecule->end(); ++runner) { //for (int i=0;igetAtomCount();j++) { //LOG(4, "Comparing father " << (*iter)->father << " with the other one " << (*runner)->father << "."); if ((*iter)->father == (*runner)) AtomicMap[(*iter)->getNr()] = (*runner)->getNr(); } } output << AtomicMap[(*iter)->getNr()] << "\t"; } LOG(4, output.str()); } LOG(3, "End of GetFatherAtomicMap."); return AtomicMap; }; void molecule::flipActiveFlag(){ ActiveFlag = !ActiveFlag; } Shape molecule::getBoundingShape(const double scale) const { // create Sphere around every atom if (empty()) return Nowhere(); const_iterator iter = begin(); const Vector center = (*iter)->getPosition(); const double vdWRadius = (*iter)->getElement().getVanDerWaalsRadius(); Shape BoundingShape = Sphere(center, vdWRadius*scale); for(++iter; iter != end(); ++iter) { const Vector center = (*iter)->getPosition(); const double vdWRadius = (*iter)->getElement().getVanDerWaalsRadius(); if (vdWRadius*scale != 0.) BoundingShape = Sphere(center, vdWRadius*scale) || BoundingShape; } return BoundingShape; } Shape molecule::getBoundingSphere(const double boundary) const { // get center and radius Vector center; double radius = 0.; { center.Zero(); for(const_iterator iter = begin(); iter != end(); ++iter) center += (*iter)->getPosition(); center *= 1./(double)size(); for(const_iterator iter = begin(); iter != end(); ++iter) { const Vector &position = (*iter)->getPosition(); const double temp_distance = position.DistanceSquared(center); if (temp_distance > radius) radius = temp_distance; } } // convert radius to true value and add some small boundary radius = sqrt(radius) + boundary + 1e+6*std::numeric_limits::epsilon(); LOG(1, "INFO: The " << size() << " atoms of the molecule are contained in a sphere at " << center << " with radius " << radius << "."); // TODO: When we do not use a Sphere here anymore, then FillRegularGridAction will // will not work as it expects a sphere due to possible random rotations. Shape BoundingShape(Sphere(center, radius)); LOG(1, "INFO: Created sphere at " << BoundingShape.getCenter() << " and radius " << BoundingShape.getRadius() << "."); return BoundingShape; } // construct idpool CONSTRUCT_IDPOOL(atomId_t, continuousId)