/** \file molecules.cpp * * Functions for the class molecule. * */ #include #include #include "atom.hpp" #include "bond.hpp" #include "config.hpp" #include "element.hpp" #include "graph.hpp" #include "helpers.hpp" #include "leastsquaremin.hpp" #include "linkedcell.hpp" #include "lists.hpp" #include "log.hpp" #include "molecule.hpp" #include "memoryallocator.hpp" #include "periodentafel.hpp" #include "stackclass.hpp" #include "tesselation.hpp" #include "vector.hpp" /************************************* Functions for class molecule *********************************/ /** Constructor of class molecule. * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero. */ molecule::molecule(const periodentafel * const teil) : elemente(teil), start(new atom), end(new atom), first(new bond(start, end, 1, -1)), last(new bond(start, end, 1, -1)), MDSteps(0), AtomCount(0), BondCount(0), ElementCount(0), NoNonHydrogen(0), NoNonBonds(0), NoCyclicBonds(0), BondDistance(0.), ActiveFlag(false), IndexNr(-1), last_atom(0), InternalPointer(start), formula(this,boost::bind(&molecule::calcFormula,this)) { // init atom chain list start->father = NULL; end->father = NULL; link(start,end); // init bond chain list link(first,last); // other stuff for(int i=MAX_ELEMENTS;i--;) ElementsInMolecule[i] = 0; cell_size[0] = cell_size[2] = cell_size[5]= 20.; cell_size[1] = cell_size[3] = cell_size[4]= 0.; strcpy(name,"none"); }; /** Destructor of class molecule. * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero. */ molecule::~molecule() { CleanupMolecule(); delete(first); delete(last); delete(end); delete(start); }; // getter and setter const std::string molecule::getName(){ return std::string(name); } void molecule::setName(const std::string _name){ START_OBSERVER; strncpy(name,_name.c_str(),MAXSTRINGSIZE); FINISH_OBSERVER; } const std::string molecule::getFormula(){ return *formula; } std::string molecule::calcFormula(){ int Counts[MAX_ELEMENTS]; stringstream sstr; for (int j = 0; jnext) { Counts[Walker->type->Z]++; } for(element* Elemental = elemente->end; Elemental != elemente->start; Elemental = Elemental->previous) { if (Counts[Elemental->Z] != 0) sstr << Elemental->symbol << Counts[Elemental->Z]; } return sstr.str(); } /** Adds given atom \a *pointer from molecule list. * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount * \param *pointer allocated and set atom * \return true - succeeded, false - atom not found in list */ bool molecule::AddAtom(atom *pointer) { bool retval = false; START_OBSERVER; if (pointer != NULL) { pointer->sort = &pointer->nr; pointer->nr = last_atom++; // increase number within molecule AtomCount++; if (pointer->type != NULL) { if (ElementsInMolecule[pointer->type->Z] == 0) ElementCount++; ElementsInMolecule[pointer->type->Z]++; // increase number of elements if (pointer->type->Z != 1) NoNonHydrogen++; if (pointer->Name == NULL) { Free(&pointer->Name); pointer->Name = Malloc(6, "molecule::AddAtom: *pointer->Name"); sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1); } } retval = add(pointer, end); } FINISH_OBSERVER; return retval; }; /** Adds a copy of the given atom \a *pointer from molecule list. * Increases molecule::last_atom and gives last number to added atom. * \param *pointer allocated and set atom * \return pointer to the newly added atom */ atom * molecule::AddCopyAtom(atom *pointer) { atom *retval = NULL; START_OBSERVER; if (pointer != NULL) { atom *walker = new atom(pointer); walker->Name = Malloc(strlen(pointer->Name) + 1, "atom::atom: *Name"); strcpy (walker->Name, pointer->Name); walker->nr = last_atom++; // increase number within molecule add(walker, end); if ((pointer->type != NULL) && (pointer->type->Z != 1)) NoNonHydrogen++; AtomCount++; retval=walker; } FINISH_OBSERVER; return retval; }; /** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin. * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand * a different scheme when adding \a *replacement atom for the given one. * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector(). * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two * hydrogens forming this angle with *origin. * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin): * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2). * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}} * \f] * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above. * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that * the median lines in an isosceles triangle meet in the center point with a ratio 2:1. * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2} * \f] * as the coordination of all three atoms in the coordinate system of these three vectors: * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$. * * \param *out output stream for debugging * \param *Bond pointer to bond between \a *origin and \a *replacement * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin) * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true) * \return number of atoms added, if < bond::BondDegree then something went wrong * \todo double and triple bonds splitting (always use the tetraeder angle!) */ bool molecule::AddHydrogenReplacementAtom(bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem) { bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit START_OBSERVER; double bondlength; // bond length of the bond to be replaced/cut double bondangle; // bond angle of the bond to be replaced/cut double BondRescale; // rescale value for the hydrogen bond length bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction Vector InBondvector; // vector in direction of *Bond double *matrix = NULL; bond *Binder = NULL; // Log() << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl; // create vector in direction of bond InBondvector.CopyVector(&TopReplacement->x); InBondvector.SubtractVector(&TopOrigin->x); bondlength = InBondvector.Norm(); // is greater than typical bond distance? Then we have to correct periodically // the problem is not the H being out of the box, but InBondvector have the wrong direction // due to TopReplacement or Origin being on the wrong side! if (bondlength > BondDistance) { // Log() << Verbose(4) << "InBondvector is: "; // InBondvector.Output(out); // Log() << Verbose(0) << endl; Orthovector1.Zero(); for (int i=NDIM;i--;) { l = TopReplacement->x.x[i] - TopOrigin->x.x[i]; if (fabs(l) > BondDistance) { // is component greater than bond distance Orthovector1.x[i] = (l < 0) ? -1. : +1.; } // (signs are correct, was tested!) } matrix = ReturnFullMatrixforSymmetric(cell_size); Orthovector1.MatrixMultiplication(matrix); InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation Free(&matrix); bondlength = InBondvector.Norm(); // Log() << Verbose(4) << "Corrected InBondvector is now: "; // InBondvector.Output(out); // Log() << Verbose(0) << endl; } // periodic correction finished InBondvector.Normalize(); // get typical bond length and store as scale factor for later BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1]; if (BondRescale == -1) { eLog() << Verbose(1) << "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl; RETURN_OBSERVER(false); BondRescale = bondlength; } else { if (!IsAngstroem) BondRescale /= (1.*AtomicLengthToAngstroem); } // discern single, double and triple bonds switch(TopBond->BondDegree) { case 1: FirstOtherAtom = new atom(); // new atom FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity FirstOtherAtom->FixedIon = TopReplacement->FixedIon; if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen FirstOtherAtom->father = TopReplacement; BondRescale = bondlength; } else { FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father } InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ... FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); // Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: "; // FirstOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; break; case 2: // determine two other bonds (warning if there are more than two other) plus valence sanity check for (BondList::const_iterator Runner = TopOrigin->ListOfBonds.begin(); Runner != TopOrigin->ListOfBonds.end(); (++Runner)) { if ((*Runner) != TopBond) { if (FirstBond == NULL) { FirstBond = (*Runner); FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin); } else if (SecondBond == NULL) { SecondBond = (*Runner); SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin); } else { eLog() << Verbose(2) << "Detected more than four bonds for atom " << TopOrigin->Name; } } } if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond) SecondBond = TopBond; SecondOtherAtom = TopReplacement; } if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all // Log() << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl; // determine the plane of these two with the *origin AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x); } else { Orthovector1.GetOneNormalVector(&InBondvector); } //Log() << Verbose(3)<< "Orthovector1: "; //Orthovector1.Output(out); //Log() << Verbose(0) << endl; // orthogonal vector and bond vector between origin and replacement form the new plane Orthovector1.MakeNormalVector(&InBondvector); Orthovector1.Normalize(); //Log() << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl; // create the two Hydrogens ... FirstOtherAtom = new atom(); SecondOtherAtom = new atom(); FirstOtherAtom->type = elemente->FindElement(1); SecondOtherAtom->type = elemente->FindElement(1); FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity FirstOtherAtom->FixedIon = TopReplacement->FixedIon; SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity SecondOtherAtom->FixedIon = TopReplacement->FixedIon; FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father bondangle = TopOrigin->type->HBondAngle[1]; if (bondangle == -1) { eLog() << Verbose(1) << "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl; RETURN_OBSERVER(false); bondangle = 0; } bondangle *= M_PI/180./2.; // Log() << Verbose(3) << "ReScaleCheck: InBondvector "; // InBondvector.Output(out); // Log() << Verbose(0) << endl; // Log() << Verbose(3) << "ReScaleCheck: Orthovector "; // Orthovector1.Output(out); // Log() << Verbose(0) << endl; // Log() << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl; FirstOtherAtom->x.Zero(); SecondOtherAtom->x.Zero(); for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction) FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle)); SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle)); } FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance SecondOtherAtom->x.Scale(&BondRescale); //Log() << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl; for(int i=NDIM;i--;) { // and make relative to origin atom FirstOtherAtom->x.x[i] += TopOrigin->x.x[i]; SecondOtherAtom->x.x[i] += TopOrigin->x.x[i]; } // ... and add to molecule AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); AllWentWell = AllWentWell && AddAtom(SecondOtherAtom); // Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: "; // FirstOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; // Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: "; // SecondOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; Binder = AddBond(BottomOrigin, SecondOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; break; case 3: // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid) FirstOtherAtom = new atom(); SecondOtherAtom = new atom(); ThirdOtherAtom = new atom(); FirstOtherAtom->type = elemente->FindElement(1); SecondOtherAtom->type = elemente->FindElement(1); ThirdOtherAtom->type = elemente->FindElement(1); FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity FirstOtherAtom->FixedIon = TopReplacement->FixedIon; SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity SecondOtherAtom->FixedIon = TopReplacement->FixedIon; ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity ThirdOtherAtom->FixedIon = TopReplacement->FixedIon; FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father // we need to vectors orthonormal the InBondvector AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector); // Log() << Verbose(3) << "Orthovector1: "; // Orthovector1.Output(out); // Log() << Verbose(0) << endl; AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1); // Log() << Verbose(3) << "Orthovector2: "; // Orthovector2.Output(out); // Log() << Verbose(0) << endl; // create correct coordination for the three atoms alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database l = BondRescale; // desired bond length b = 2.*l*sin(alpha); // base length of isosceles triangle d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector f = b/sqrt(3.); // length for Orthvector1 g = b/2.; // length for Orthvector2 // Log() << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl; // Log() << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl; factors[0] = d; factors[1] = f; factors[2] = 0.; FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors); factors[1] = -0.5*f; factors[2] = g; SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors); factors[2] = -g; ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors); // rescale each to correct BondDistance // FirstOtherAtom->x.Scale(&BondRescale); // SecondOtherAtom->x.Scale(&BondRescale); // ThirdOtherAtom->x.Scale(&BondRescale); // and relative to *origin atom FirstOtherAtom->x.AddVector(&TopOrigin->x); SecondOtherAtom->x.AddVector(&TopOrigin->x); ThirdOtherAtom->x.AddVector(&TopOrigin->x); // ... and add to molecule AllWentWell = AllWentWell && AddAtom(FirstOtherAtom); AllWentWell = AllWentWell && AddAtom(SecondOtherAtom); AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom); // Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: "; // FirstOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; // Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: "; // SecondOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; // Log() << Verbose(4) << "Added " << *ThirdOtherAtom << " at: "; // ThirdOtherAtom->x.Output(out); // Log() << Verbose(0) << endl; Binder = AddBond(BottomOrigin, FirstOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; Binder = AddBond(BottomOrigin, SecondOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1); Binder->Cyclic = false; Binder->Type = TreeEdge; break; default: eLog() << Verbose(1) << "BondDegree does not state single, double or triple bond!" << endl; AllWentWell = false; break; } Free(&matrix); FINISH_OBSERVER; // Log() << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl; return AllWentWell; }; /** Adds given atom \a *pointer from molecule list. * Increases molecule::last_atom and gives last number to added atom. * \param filename name and path of xyz file * \return true - succeeded, false - file not found */ bool molecule::AddXYZFile(string filename) { istringstream *input = NULL; int NumberOfAtoms = 0; // atom number in xyz read int i, j; // loop variables atom *Walker = NULL; // pointer to added atom char shorthand[3]; // shorthand for atom name ifstream xyzfile; // xyz file string line; // currently parsed line double x[3]; // atom coordinates xyzfile.open(filename.c_str()); if (!xyzfile) return false; START_OBSERVER; getline(xyzfile,line,'\n'); // Read numer of atoms in file input = new istringstream(line); *input >> NumberOfAtoms; Log() << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl; getline(xyzfile,line,'\n'); // Read comment Log() << Verbose(1) << "Comment: " << line << endl; if (MDSteps == 0) // no atoms yet present MDSteps++; for(i=0;i> shorthand; *item >> x[0]; *item >> x[1]; *item >> x[2]; Walker->type = elemente->FindElement(shorthand); if (Walker->type == NULL) { eLog() << Verbose(1) << "Could not parse the element at line: '" << line << "', setting to H."; Walker->type = elemente->FindElement(1); } if (Walker->Trajectory.R.size() <= (unsigned int)MDSteps) { Walker->Trajectory.R.resize(MDSteps+10); Walker->Trajectory.U.resize(MDSteps+10); Walker->Trajectory.F.resize(MDSteps+10); } for(j=NDIM;j--;) { Walker->x.x[j] = x[j]; Walker->Trajectory.R.at(MDSteps-1).x[j] = x[j]; Walker->Trajectory.U.at(MDSteps-1).x[j] = 0; Walker->Trajectory.F.at(MDSteps-1).x[j] = 0; } AddAtom(Walker); // add to molecule delete(item); } xyzfile.close(); delete(input); FINISH_OBSERVER; return true; }; /** Creates a copy of this molecule. * \return copy of molecule */ molecule *molecule::CopyMolecule() { molecule *copy = new molecule(elemente); atom *LeftAtom = NULL, *RightAtom = NULL; // copy all atoms ActOnCopyWithEachAtom ( &molecule::AddCopyAtom, copy ); // copy all bonds bond *Binder = first; bond *NewBond = NULL; while(Binder->next != last) { Binder = Binder->next; // get the pendant atoms of current bond in the copy molecule copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->leftatom, (const atom **)&LeftAtom ); copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->rightatom, (const atom **)&RightAtom ); NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree); NewBond->Cyclic = Binder->Cyclic; if (Binder->Cyclic) copy->NoCyclicBonds++; NewBond->Type = Binder->Type; } // correct fathers ActOnAllAtoms( &atom::CorrectFather ); // copy values copy->CountAtoms(); copy->CountElements(); if (first->next != last) { // if adjaceny list is present copy->BondDistance = BondDistance; } return copy; }; /** * Copies all atoms of a molecule which are within the defined parallelepiped. * * @param offest for the origin of the parallelepiped * @param three vectors forming the matrix that defines the shape of the parallelpiped */ molecule* molecule::CopyMoleculeFromSubRegion(const Vector offset, const double *parallelepiped) const { molecule *copy = new molecule(elemente); ActOnCopyWithEachAtomIfTrue ( &molecule::AddCopyAtom, copy, &atom::IsInParallelepiped, offset, parallelepiped ); //TODO: copy->BuildInducedSubgraph(this); return copy; } /** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second. * Also updates molecule::BondCount and molecule::NoNonBonds. * \param *first first atom in bond * \param *second atom in bond * \return pointer to bond or NULL on failure */ bond * molecule::AddBond(atom *atom1, atom *atom2, int degree) { bond *Binder = NULL; if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) { Binder = new bond(atom1, atom2, degree, BondCount++); atom1->RegisterBond(Binder); atom2->RegisterBond(Binder); if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1)) NoNonBonds++; add(Binder, last); } else { eLog() << Verbose(1) << "Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl; } return Binder; }; /** Remove bond from bond chain list and from the both atom::ListOfBonds. * \todo Function not implemented yet * \param *pointer bond pointer * \return true - bound found and removed, false - bond not found/removed */ bool molecule::RemoveBond(bond *pointer) { //eLog() << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl; pointer->leftatom->RegisterBond(pointer); pointer->rightatom->RegisterBond(pointer); removewithoutcheck(pointer); return true; }; /** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of. * \todo Function not implemented yet * \param *BondPartner atom to be removed * \return true - bounds found and removed, false - bonds not found/removed */ bool molecule::RemoveBonds(atom *BondPartner) { //eLog() << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl; BondList::const_iterator ForeRunner; while (!BondPartner->ListOfBonds.empty()) { ForeRunner = BondPartner->ListOfBonds.begin(); RemoveBond(*ForeRunner); } return false; }; /** Set molecule::name from the basename without suffix in the given \a *filename. * \param *filename filename */ void molecule::SetNameFromFilename(const char *filename) { int length = 0; const char *molname = strrchr(filename, '/'); if (molname != NULL) molname += sizeof(char); // search for filename without dirs else molname = filename; // contains no slashes const char *endname = strchr(molname, '.'); if ((endname == NULL) || (endname < molname)) length = strlen(molname); else length = strlen(molname) - strlen(endname); strncpy(name, molname, length); name[length]='\0'; }; /** Sets the molecule::cell_size to the components of \a *dim (rectangular box) * \param *dim vector class */ void molecule::SetBoxDimension(Vector *dim) { cell_size[0] = dim->x[0]; cell_size[1] = 0.; cell_size[2] = dim->x[1]; cell_size[3] = 0.; cell_size[4] = 0.; cell_size[5] = dim->x[2]; }; /** Removes atom from molecule list and deletes it. * \param *pointer atom to be removed * \return true - succeeded, false - atom not found in list */ bool molecule::RemoveAtom(atom *pointer) { if (ElementsInMolecule[pointer->type->Z] != 0) { // this would indicate an error ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element AtomCount--; } else eLog() << Verbose(1) << "Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl; if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element? ElementCount--; RemoveBonds(pointer); return remove(pointer, start, end); }; /** Removes atom from molecule list, but does not delete it. * \param *pointer atom to be removed * \return true - succeeded, false - atom not found in list */ bool molecule::UnlinkAtom(atom *pointer) { if (pointer == NULL) return false; if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element else eLog() << Verbose(1) << "Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl; if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element? ElementCount--; unlink(pointer); return true; }; /** Removes every atom from molecule list. * \return true - succeeded, false - atom not found in list */ bool molecule::CleanupMolecule() { return (cleanup(first,last) && cleanup(start,end)); }; /** Finds an atom specified by its continuous number. * \param Nr number of atom withim molecule * \return pointer to atom or NULL */ atom * molecule::FindAtom(int Nr) const{ atom * walker = find(&Nr, start,end); if (walker != NULL) { //Log() << Verbose(0) << "Found Atom Nr. " << walker->nr << endl; return walker; } else { Log() << Verbose(0) << "Atom not found in list." << endl; return NULL; } }; /** Asks for atom number, and checks whether in list. * \param *text question before entering */ atom * molecule::AskAtom(string text) { int No; atom *ion = NULL; do { //Log() << Verbose(0) << "============Atom list==========================" << endl; //mol->Output((ofstream *)&cout); //Log() << Verbose(0) << "===============================================" << endl; Log() << Verbose(0) << text; cin >> No; ion = this->FindAtom(No); } while (ion == NULL); return ion; }; /** Checks if given coordinates are within cell volume. * \param *x array of coordinates * \return true - is within, false - out of cell */ bool molecule::CheckBounds(const Vector *x) const { bool result = true; int j =-1; for (int i=0;ix[i] >= 0) && (x->x[i] < cell_size[j])); } //return result; return true; /// probably not gonna use the check no more }; /** Prints molecule to *out. * \param *out output stream */ bool molecule::Output(ofstream * const output) { int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS]; CountElements(); for (int i=0;iCheckout(output, ElementsInMolecule); }; /** Prints molecule with all its trajectories to *out as xyz file. * \param *out output stream */ bool molecule::OutputTrajectoriesXYZ(ofstream * const output) { time_t now; if (output != NULL) { now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time' for (int step=0;stepnext != end) { Walker = Walker->next; i++; } if ((AtomCount == 0) || (i != AtomCount)) { Log() << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl; AtomCount = i; // count NonHydrogen atoms and give each atom a unique name if (AtomCount != 0) { i=0; NoNonHydrogen = 0; Walker = start; while (Walker->next != end) { Walker = Walker->next; Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron) if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it NoNonHydrogen++; Free(&Walker->Name); Walker->Name = Malloc(6, "molecule::CountAtoms: *walker->Name"); sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1); Log() << Verbose(3) << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl; i++; } } else Log() << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl; } }; /** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date. */ void molecule::CountElements() { for(int i=MAX_ELEMENTS;i--;) ElementsInMolecule[i] = 0; ElementCount = 0; SetIndexedArrayForEachAtomTo ( ElementsInMolecule, &element::Z, &Increment, 1); for(int i=MAX_ELEMENTS;i--;) ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0); }; /** Counts necessary number of valence electrons and returns number and SpinType. * \param configuration containing everything */ void molecule::CalculateOrbitals(class config &configuration) { configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0; for(int i=MAX_ELEMENTS;i--;) { if (ElementsInMolecule[i] != 0) { //Log() << Verbose(0) << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl; configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence); } } configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2); configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2; configuration.MaxPsiDouble /= 2; configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1; if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) { configuration.ProcPEGamma /= 2; configuration.ProcPEPsi *= 2; } else { configuration.ProcPEGamma *= configuration.ProcPEPsi; configuration.ProcPEPsi = 1; } configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble; }; /** Determines whether two molecules actually contain the same atoms and coordination. * \param *out output stream for debugging * \param *OtherMolecule the molecule to compare this one to * \param threshold upper limit of difference when comparing the coordination. * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which) */ int * molecule::IsEqualToWithinThreshold(molecule *OtherMolecule, double threshold) { int flag; double *Distances = NULL, *OtherDistances = NULL; Vector CenterOfGravity, OtherCenterOfGravity; size_t *PermMap = NULL, *OtherPermMap = NULL; int *PermutationMap = NULL; bool result = true; // status of comparison Log() << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl; /// first count both their atoms and elements and update lists thereby ... //Log() << Verbose(0) << "Counting atoms, updating list" << endl; CountAtoms(); OtherMolecule->CountAtoms(); CountElements(); OtherMolecule->CountElements(); /// ... and compare: /// -# AtomCount if (result) { if (AtomCount != OtherMolecule->AtomCount) { Log() << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl; result = false; } else Log() << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl; } /// -# ElementCount if (result) { if (ElementCount != OtherMolecule->ElementCount) { Log() << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl; result = false; } else Log() << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl; } /// -# ElementsInMolecule if (result) { for (flag=MAX_ELEMENTS;flag--;) { //Log() << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl; if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag]) break; } if (flag < MAX_ELEMENTS) { Log() << Verbose(4) << "ElementsInMolecule don't match." << endl; result = false; } else Log() << Verbose(4) << "ElementsInMolecule match." << endl; } /// then determine and compare center of gravity for each molecule ... if (result) { Log() << Verbose(5) << "Calculating Centers of Gravity" << endl; DeterminePeriodicCenter(CenterOfGravity); OtherMolecule->DeterminePeriodicCenter(OtherCenterOfGravity); Log() << Verbose(5) << "Center of Gravity: "; CenterOfGravity.Output(); Log() << Verbose(0) << endl << Verbose(5) << "Other Center of Gravity: "; OtherCenterOfGravity.Output(); Log() << Verbose(0) << endl; if (CenterOfGravity.DistanceSquared(&OtherCenterOfGravity) > threshold*threshold) { Log() << Verbose(4) << "Centers of gravity don't match." << endl; result = false; } } /// ... then make a list with the euclidian distance to this center for each atom of both molecules if (result) { Log() << Verbose(5) << "Calculating distances" << endl; Distances = Calloc(AtomCount, "molecule::IsEqualToWithinThreshold: Distances"); OtherDistances = Calloc(AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances"); SetIndexedArrayForEachAtomTo ( Distances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity); SetIndexedArrayForEachAtomTo ( OtherDistances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity); /// ... sort each list (using heapsort (o(N log N)) from GSL) Log() << Verbose(5) << "Sorting distances" << endl; PermMap = Calloc(AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap"); OtherPermMap = Calloc(AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap"); gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles); gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles); PermutationMap = Calloc(AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap"); Log() << Verbose(5) << "Combining Permutation Maps" << endl; for(int i=AtomCount;i--;) PermutationMap[PermMap[i]] = (int) OtherPermMap[i]; /// ... and compare them step by step, whether the difference is individually(!) below \a threshold for all Log() << Verbose(4) << "Comparing distances" << endl; flag = 0; for (int i=0;i threshold*threshold) flag = 1; } // free memory Free(&PermMap); Free(&OtherPermMap); Free(&Distances); Free(&OtherDistances); if (flag) { // if not equal Free(&PermutationMap); result = false; } } /// return pointer to map if all distances were below \a threshold Log() << Verbose(3) << "End of IsEqualToWithinThreshold." << endl; if (result) { Log() << Verbose(3) << "Result: Equal." << endl; return PermutationMap; } else { Log() << Verbose(3) << "Result: Not equal." << endl; return NULL; } }; /** Returns an index map for two father-son-molecules. * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers. * \param *out output stream for debugging * \param *OtherMolecule corresponding molecule with fathers * \return allocated map of size molecule::AtomCount with map * \todo make this with a good sort O(n), not O(n^2) */ int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule) { atom *Walker = NULL, *OtherWalker = NULL; Log() << Verbose(3) << "Begin of GetFatherAtomicMap." << endl; int *AtomicMap = Malloc(AtomCount, "molecule::GetAtomicMap: *AtomicMap"); for (int i=AtomCount;i--;) AtomicMap[i] = -1; if (OtherMolecule == this) { // same molecule for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence AtomicMap[i] = i; Log() << Verbose(4) << "Map is trivial." << endl; } else { Log() << Verbose(4) << "Map is "; Walker = start; while (Walker->next != end) { Walker = Walker->next; if (Walker->father == NULL) { AtomicMap[Walker->nr] = -2; } else { OtherWalker = OtherMolecule->start; while (OtherWalker->next != OtherMolecule->end) { OtherWalker = OtherWalker->next; //for (int i=0;iAtomCount;j++) { //Log() << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl; if (Walker->father == OtherWalker) AtomicMap[Walker->nr] = OtherWalker->nr; } } Log() << Verbose(0) << AtomicMap[Walker->nr] << "\t"; } Log() << Verbose(0) << endl; } Log() << Verbose(3) << "End of GetFatherAtomicMap." << endl; return AtomicMap; }; /** Stores the temperature evaluated from velocities in molecule::Trajectories. * We simply use the formula equivaleting temperature and kinetic energy: * \f$k_B T = \sum_i m_i v_i^2\f$ * \param *output output stream of temperature file * \param startstep first MD step in molecule::Trajectories * \param endstep last plus one MD step in molecule::Trajectories * \return file written (true), failure on writing file (false) */ bool molecule::OutputTemperatureFromTrajectories(ofstream * const output, int startstep, int endstep) { double temperature; // test stream if (output == NULL) return false; else *output << "# Step Temperature [K] Temperature [a.u.]" << endl; for (int step=startstep;step < endstep; step++) { // loop over all time steps temperature = 0.; ActOnAllAtoms( &TrajectoryParticle::AddKineticToTemperature, &temperature, step); *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl; } return true; }; void molecule::SetIndexedArrayForEachAtomTo ( atom **array, int ParticleInfo::*index) const { atom *Walker = start; while (Walker->next != end) { Walker = Walker->next; array[(Walker->*index)] = Walker; } }; void molecule::flipActiveFlag(){ ActiveFlag = !ActiveFlag; }