1 | /** \file linkedcell.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class LinkedCell.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "atom.hpp"
|
---|
9 | #include "helpers.hpp"
|
---|
10 | #include "linkedcell.hpp"
|
---|
11 | #include "molecule.hpp"
|
---|
12 | #include "tesselation.hpp"
|
---|
13 | #include "vector.hpp"
|
---|
14 |
|
---|
15 | // ========================================================= class LinkedCell ===========================================
|
---|
16 |
|
---|
17 |
|
---|
18 | /** Constructor for class LinkedCell.
|
---|
19 | */
|
---|
20 | LinkedCell::LinkedCell()
|
---|
21 | {
|
---|
22 | LC = NULL;
|
---|
23 | for(int i=0;i<NDIM;i++)
|
---|
24 | N[i] = 0;
|
---|
25 | index = -1;
|
---|
26 | RADIUS = 0.;
|
---|
27 | max.Zero();
|
---|
28 | min.Zero();
|
---|
29 | };
|
---|
30 |
|
---|
31 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
32 | * \param *set LCNodeSet class with all LCNode's
|
---|
33 | * \param RADIUS edge length of cells
|
---|
34 | */
|
---|
35 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
|
---|
36 | {
|
---|
37 | TesselPoint *Walker = NULL;
|
---|
38 |
|
---|
39 | RADIUS = radius;
|
---|
40 | LC = NULL;
|
---|
41 | for(int i=0;i<NDIM;i++)
|
---|
42 | N[i] = 0;
|
---|
43 | index = -1;
|
---|
44 | max.Zero();
|
---|
45 | min.Zero();
|
---|
46 | cout << Verbose(1) << "Begin of LinkedCell" << endl;
|
---|
47 | if (set->IsEmpty()) {
|
---|
48 | cerr << "ERROR: set contains no linked cell nodes!" << endl;
|
---|
49 | return;
|
---|
50 | }
|
---|
51 | // 1. find max and min per axis of atoms
|
---|
52 | set->GoToFirst();
|
---|
53 | Walker = set->GetPoint();
|
---|
54 | for (int i=0;i<NDIM;i++) {
|
---|
55 | max.x[i] = Walker->node->x[i];
|
---|
56 | min.x[i] = Walker->node->x[i];
|
---|
57 | }
|
---|
58 | set->GoToFirst();
|
---|
59 | while (!set->IsEnd()) {
|
---|
60 | Walker = set->GetPoint();
|
---|
61 | for (int i=0;i<NDIM;i++) {
|
---|
62 | if (max.x[i] < Walker->node->x[i])
|
---|
63 | max.x[i] = Walker->node->x[i];
|
---|
64 | if (min.x[i] > Walker->node->x[i])
|
---|
65 | min.x[i] = Walker->node->x[i];
|
---|
66 | }
|
---|
67 | set->GoToNext();
|
---|
68 | }
|
---|
69 | cout << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
|
---|
70 |
|
---|
71 | // 2. find then number of cells per axis
|
---|
72 | for (int i=0;i<NDIM;i++) {
|
---|
73 | N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
|
---|
74 | }
|
---|
75 | cout << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
|
---|
76 |
|
---|
77 | // 3. allocate the lists
|
---|
78 | cout << Verbose(2) << "Allocating cells ... ";
|
---|
79 | if (LC != NULL) {
|
---|
80 | cout << Verbose(1) << "ERROR: Linked Cell list is already allocated, I do nothing." << endl;
|
---|
81 | return;
|
---|
82 | }
|
---|
83 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
84 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
85 | LC [index].clear();
|
---|
86 | }
|
---|
87 | cout << "done." << endl;
|
---|
88 |
|
---|
89 | // 4. put each atom into its respective cell
|
---|
90 | cout << Verbose(2) << "Filling cells ... ";
|
---|
91 | set->GoToFirst();
|
---|
92 | while (!set->IsEnd()) {
|
---|
93 | Walker = set->GetPoint();
|
---|
94 | for (int i=0;i<NDIM;i++) {
|
---|
95 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
96 | }
|
---|
97 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
98 | LC[index].push_back(Walker);
|
---|
99 | //cout << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
100 | set->GoToNext();
|
---|
101 | }
|
---|
102 | cout << "done." << endl;
|
---|
103 | cout << Verbose(1) << "End of LinkedCell" << endl;
|
---|
104 | };
|
---|
105 |
|
---|
106 |
|
---|
107 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
108 | * \param *set LCNodeSet class with all LCNode's
|
---|
109 | * \param RADIUS edge length of cells
|
---|
110 | */
|
---|
111 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
|
---|
112 | {
|
---|
113 | class TesselPoint *Walker = NULL;
|
---|
114 | RADIUS = radius;
|
---|
115 | LC = NULL;
|
---|
116 | for(int i=0;i<NDIM;i++)
|
---|
117 | N[i] = 0;
|
---|
118 | index = -1;
|
---|
119 | max.Zero();
|
---|
120 | min.Zero();
|
---|
121 | cout << Verbose(1) << "Begin of LinkedCell" << endl;
|
---|
122 | if (set->empty()) {
|
---|
123 | cerr << "ERROR: set contains no linked cell nodes!" << endl;
|
---|
124 | return;
|
---|
125 | }
|
---|
126 | // 1. find max and min per axis of atoms
|
---|
127 | LinkedNodes::iterator Runner = set->begin();
|
---|
128 | for (int i=0;i<NDIM;i++) {
|
---|
129 | max.x[i] = (*Runner)->node->x[i];
|
---|
130 | min.x[i] = (*Runner)->node->x[i];
|
---|
131 | }
|
---|
132 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
133 | Walker = *Runner;
|
---|
134 | for (int i=0;i<NDIM;i++) {
|
---|
135 | if (max.x[i] < Walker->node->x[i])
|
---|
136 | max.x[i] = Walker->node->x[i];
|
---|
137 | if (min.x[i] > Walker->node->x[i])
|
---|
138 | min.x[i] = Walker->node->x[i];
|
---|
139 | }
|
---|
140 | }
|
---|
141 | cout << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
|
---|
142 |
|
---|
143 | // 2. find then number of cells per axis
|
---|
144 | for (int i=0;i<NDIM;i++) {
|
---|
145 | N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
|
---|
146 | }
|
---|
147 | cout << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
|
---|
148 |
|
---|
149 | // 3. allocate the lists
|
---|
150 | cout << Verbose(2) << "Allocating cells ... ";
|
---|
151 | if (LC != NULL) {
|
---|
152 | cout << Verbose(1) << "ERROR: Linked Cell list is already allocated, I do nothing." << endl;
|
---|
153 | return;
|
---|
154 | }
|
---|
155 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
156 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
157 | LC [index].clear();
|
---|
158 | }
|
---|
159 | cout << "done." << endl;
|
---|
160 |
|
---|
161 | // 4. put each atom into its respective cell
|
---|
162 | cout << Verbose(2) << "Filling cells ... ";
|
---|
163 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
164 | Walker = *Runner;
|
---|
165 | for (int i=0;i<NDIM;i++) {
|
---|
166 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
167 | }
|
---|
168 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
169 | LC[index].push_back(Walker);
|
---|
170 | //cout << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
171 | }
|
---|
172 | cout << "done." << endl;
|
---|
173 | cout << Verbose(1) << "End of LinkedCell" << endl;
|
---|
174 | };
|
---|
175 |
|
---|
176 | /** Destructor for class LinkedCell.
|
---|
177 | */
|
---|
178 | LinkedCell::~LinkedCell()
|
---|
179 | {
|
---|
180 | if (LC != NULL)
|
---|
181 | for (index=0;index<N[0]*N[1]*N[2];index++)
|
---|
182 | LC[index].clear();
|
---|
183 | delete[](LC);
|
---|
184 | for(int i=0;i<NDIM;i++)
|
---|
185 | N[i] = 0;
|
---|
186 | index = -1;
|
---|
187 | max.Zero();
|
---|
188 | min.Zero();
|
---|
189 | };
|
---|
190 |
|
---|
191 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
|
---|
192 | * \return if all in intervals - true, else -false
|
---|
193 | */
|
---|
194 | bool LinkedCell::CheckBounds() const
|
---|
195 | {
|
---|
196 | bool status = true;
|
---|
197 | for(int i=0;i<NDIM;i++)
|
---|
198 | status = status && ((n[i] >=0) && (n[i] < N[i]));
|
---|
199 | if (!status)
|
---|
200 | cerr << "ERROR: indices are out of bounds!" << endl;
|
---|
201 | return status;
|
---|
202 | };
|
---|
203 |
|
---|
204 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
|
---|
205 | * Note that for this check we don't admonish if out of bounds.
|
---|
206 | * \param relative[NDIM] relative offset to current cell
|
---|
207 | * \return if all in intervals - true, else -false
|
---|
208 | */
|
---|
209 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
|
---|
210 | {
|
---|
211 | bool status = true;
|
---|
212 | for(int i=0;i<NDIM;i++)
|
---|
213 | status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
|
---|
214 | return status;
|
---|
215 | };
|
---|
216 |
|
---|
217 |
|
---|
218 | /** Returns a pointer to the current cell.
|
---|
219 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
|
---|
220 | */
|
---|
221 | const LinkedNodes* LinkedCell::GetCurrentCell() const
|
---|
222 | {
|
---|
223 | if (CheckBounds()) {
|
---|
224 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
225 | return (&(LC[index]));
|
---|
226 | } else {
|
---|
227 | return NULL;
|
---|
228 | }
|
---|
229 | };
|
---|
230 |
|
---|
231 | /** Returns a pointer to the current cell.
|
---|
232 | * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
|
---|
233 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
|
---|
234 | */
|
---|
235 | const LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
|
---|
236 | {
|
---|
237 | if (CheckBounds(relative)) {
|
---|
238 | index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
|
---|
239 | return (&(LC[index]));
|
---|
240 | } else {
|
---|
241 | return NULL;
|
---|
242 | }
|
---|
243 | };
|
---|
244 |
|
---|
245 | /** Calculates the index for a given LCNode *Walker.
|
---|
246 | * \param *Walker LCNode to set index tos
|
---|
247 | * \return if the atom is also found in this cell - true, else - false
|
---|
248 | */
|
---|
249 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
|
---|
250 | {
|
---|
251 | bool status = false;
|
---|
252 | for (int i=0;i<NDIM;i++) {
|
---|
253 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
254 | }
|
---|
255 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
256 | if (CheckBounds()) {
|
---|
257 | for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
|
---|
258 | status = status || ((*Runner) == Walker);
|
---|
259 | return status;
|
---|
260 | } else {
|
---|
261 | cerr << Verbose(1) << "ERROR: Node at " << *Walker << " is out of bounds." << endl;
|
---|
262 | return false;
|
---|
263 | }
|
---|
264 | };
|
---|
265 |
|
---|
266 | /** Calculates the interval bounds of the linked cell grid.
|
---|
267 | * \param *lower lower bounds
|
---|
268 | * \param *upper upper bounds
|
---|
269 | */
|
---|
270 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM]) const
|
---|
271 | {
|
---|
272 | for (int i=0;i<NDIM;i++) {
|
---|
273 | lower[i] = ((n[i]-1) >= 0) ? n[i]-1 : 0;
|
---|
274 | upper[i] = ((n[i]+1) < N[i]) ? n[i]+1 : N[i]-1;
|
---|
275 | //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
276 | // check for this axis whether the point is outside of our grid
|
---|
277 | if (n[i] < 0)
|
---|
278 | upper[i] = lower[i];
|
---|
279 | if (n[i] > N[i])
|
---|
280 | lower[i] = upper[i];
|
---|
281 |
|
---|
282 | //cout << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
|
---|
283 | }
|
---|
284 | };
|
---|
285 |
|
---|
286 | /** Calculates the index for a given Vector *x.
|
---|
287 | * \param *x Vector with coordinates
|
---|
288 | * \return Vector is inside bounding box - true, else - false
|
---|
289 | */
|
---|
290 | bool LinkedCell::SetIndexToVector(const Vector * const x) const
|
---|
291 | {
|
---|
292 | bool status = true;
|
---|
293 | for (int i=0;i<NDIM;i++) {
|
---|
294 | n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
|
---|
295 | if (max.x[i] < x->x[i])
|
---|
296 | status = false;
|
---|
297 | if (min.x[i] > x->x[i])
|
---|
298 | status = false;
|
---|
299 | }
|
---|
300 | return status;
|
---|
301 | };
|
---|
302 |
|
---|