/** \file linkedcell.cpp * * Function implementations for the class LinkedCell. * */ #include "Helpers/MemDebug.hpp" #include "atom.hpp" #include "helpers.hpp" #include "linkedcell.hpp" #include "verbose.hpp" #include "log.hpp" #include "molecule.hpp" #include "tesselation.hpp" #include "vector.hpp" // ========================================================= class LinkedCell =========================================== /** Constructor for class LinkedCell. */ LinkedCell::LinkedCell() { LC = NULL; for(int i=0;iIsEmpty())) { DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl); return; } // 1. find max and min per axis of atoms set->GoToFirst(); Walker = set->GetPoint(); for (int i=0;inode->at(i); min[i] = Walker->node->at(i); } set->GoToFirst(); while (!set->IsEnd()) { Walker = set->GetPoint(); for (int i=0;inode->at(i)) max[i] = Walker->node->at(i); if (min[i] > Walker->node->at(i)) min[i] = Walker->node->at(i); } set->GoToNext(); } DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl); // 2. find then number of cells per axis for (int i=0;i(floor((max[i] - min[i])/RADIUS)+1); } DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl); // 3. allocate the lists DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... "); if (LC != NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl); return; } LC = new LinkedNodes[N[0]*N[1]*N[2]]; for (index=0;indexGoToFirst(); while (!set->IsEnd()) { Walker = set->GetPoint(); for (int i=0;i(floor((Walker->node->at(i) - min[i])/RADIUS)); } index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2]; LC[index].push_back(Walker); //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl; set->GoToNext(); } DoLog(0) && (Log() << Verbose(0) << "done." << endl); DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl); }; /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS * \param *set LCNodeSet class with all LCNode's * \param RADIUS edge length of cells */ LinkedCell::LinkedCell(LinkedNodes *set, const double radius) { class TesselPoint *Walker = NULL; RADIUS = radius; LC = NULL; for(int i=0;iempty()) { DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl); return; } // 1. find max and min per axis of atoms LinkedNodes::iterator Runner = set->begin(); for (int i=0;inode->at(i); min[i] = (*Runner)->node->at(i); } for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) { Walker = *Runner; for (int i=0;inode->at(i)) max[i] = Walker->node->at(i); if (min[i] > Walker->node->at(i)) min[i] = Walker->node->at(i); } } DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl); // 2. find then number of cells per axis for (int i=0;i(floor((max[i] - min[i])/RADIUS)+1); } DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl); // 3. allocate the lists DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... "); if (LC != NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl); return; } LC = new LinkedNodes[N[0]*N[1]*N[2]]; for (index=0;indexbegin(); Runner != set->end(); Runner++) { Walker = *Runner; for (int i=0;i(floor((Walker->node->at(i) - min[i])/RADIUS)); } index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2]; LC[index].push_back(Walker); //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl; } DoLog(0) && (Log() << Verbose(0) << "done." << endl); DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl); }; /** Destructor for class LinkedCell. */ LinkedCell::~LinkedCell() { if (LC != NULL) for (index=0;index=0) && (n[i] < N[i])); if (!status) DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl); return status; }; /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]]. * Note that for this check we don't admonish if out of bounds. * \param relative[NDIM] relative offset to current cell * \return if all in intervals - true, else -false */ bool LinkedCell::CheckBounds(const int relative[NDIM]) const { bool status = true; for(int i=0;i=0) && (n[i]+relative[i] < N[i])); return status; }; /** Returns a pointer to the current cell. * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds. */ const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const { if (CheckBounds()) { index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2]; return (&(LC[index])); } else { return NULL; } }; /** Returns a pointer to the current cell. * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM] * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds. */ const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const { if (CheckBounds(relative)) { index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]); return (&(LC[index])); } else { return NULL; } }; /** Set the index to the cell containing a given Vector *x. * \param *x Vector with coordinates * \return Vector is inside bounding box - true, else - false */ bool LinkedCell::SetIndexToVector(const Vector * const x) const { for (int i=0;iat(i) - min[i])/RADIUS); return CheckBounds(); }; /** Calculates the index for a given LCNode *Walker. * \param *Walker LCNode to set index tos * \return if the atom is also found in this cell - true, else - false */ bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const { bool status = false; for (int i=0;i(floor((Walker->node->at(i) - min[i])/RADIUS)); } index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2]; if (CheckBounds()) { for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++) status = status || ((*Runner) == Walker); return status; } else { DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl); return false; } }; /** Calculates the interval bounds of the linked cell grid. * \param *lower lower bounds * \param *upper upper bounds * \param step how deep to check the neighbouring cells (i.e. number of layers to check) */ void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const { for (int i=0;i0;--s) if ((n[i]-s) >= 0) { lower[i] = n[i]-s; break; } upper[i] = n[i]; for (int s=step; s>0;--s) if ((n[i]+s) < N[i]) { upper[i] = n[i]+s; break; } //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl; } }; /** Returns a list with all neighbours from the current LinkedCell::index. * \param distance (if no distance, then adjacent cells are taken) * \return list of tesselpoints */ LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const { int Nlower[NDIM], Nupper[NDIM]; TesselPoint *Walker = NULL; LinkedNodes *TesselList = new LinkedNodes; // then go through the current and all neighbouring cells and check the contained points for possible candidates const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.); GetNeighbourBounds(Nlower, Nupper, step); //Log() << Verbose(0) << endl; for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++) for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++) for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) { const LinkedNodes *List = GetCurrentCell(); //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl; if (List != NULL) { for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { Walker = *Runner; TesselList->push_back(Walker); } } } return TesselList; }; /** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain * Note that as we have to check distance from every corner of the closest cell, this function is faw more * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used. * \param *x Vector with coordinates * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0) */ double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const { for (int i=0;iat(i) - min[i])/RADIUS); if (n[i] < 0) n[i] = 0; if (n[i] >= N[i]) n[i] = N[i]-1; } // calculate distance of cell to vector double distanceSquared = 0.; bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell Vector corner; // current corner of closest cell Vector tester; // Vector pointing from corner to center of closest cell Vector Distance; // Vector from corner of closest cell to x Vector center; // center of the closest cell for (int i=0;i 2.*radius) { DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl); return TesselList; } else DoLog(1) && (Log() << Verbose(1) << "Distance of closest cell to center of sphere with radius " << radius << " is " << dist << "." << endl); // gather all neighbours first, then look who fulfills distance criteria NeighbourList = GetallNeighbours(2.*radius-dist); //Log() << Verbose(1) << "I found " << NeighbourList->size() << " neighbours to check." << endl; if (NeighbourList != NULL) { for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) { Walker = *Runner; //Log() << Verbose(1) << "Current neighbour is at " << *Walker->node << "." << endl; if ((center->DistanceSquared(*Walker->node) - radiusSquared) < MYEPSILON) { TesselList->push_back(Walker); } } delete(NeighbourList); } else DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl); return TesselList; };