[edb93c] | 1 | /** \file linkedcell.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class LinkedCell.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
| 7 |
|
---|
[f66195] | 8 | #include "atom.hpp"
|
---|
| 9 | #include "helpers.hpp"
|
---|
[e1bc68] | 10 | #include "linkedcell.hpp"
|
---|
[e138de] | 11 | #include "log.hpp"
|
---|
[cee0b57] | 12 | #include "molecule.hpp"
|
---|
[357fba] | 13 | #include "tesselation.hpp"
|
---|
[f66195] | 14 | #include "vector.hpp"
|
---|
[357fba] | 15 |
|
---|
| 16 | // ========================================================= class LinkedCell ===========================================
|
---|
| 17 |
|
---|
[e1bc68] | 18 |
|
---|
| 19 | /** Constructor for class LinkedCell.
|
---|
| 20 | */
|
---|
| 21 | LinkedCell::LinkedCell()
|
---|
| 22 | {
|
---|
[042f82] | 23 | LC = NULL;
|
---|
| 24 | for(int i=0;i<NDIM;i++)
|
---|
| 25 | N[i] = 0;
|
---|
| 26 | index = -1;
|
---|
| 27 | RADIUS = 0.;
|
---|
| 28 | max.Zero();
|
---|
| 29 | min.Zero();
|
---|
[e1bc68] | 30 | };
|
---|
| 31 |
|
---|
| 32 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
[357fba] | 33 | * \param *set LCNodeSet class with all LCNode's
|
---|
[e1bc68] | 34 | * \param RADIUS edge length of cells
|
---|
| 35 | */
|
---|
[776b64] | 36 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
|
---|
[e1bc68] | 37 | {
|
---|
[357fba] | 38 | TesselPoint *Walker = NULL;
|
---|
[e1bc68] | 39 |
|
---|
[042f82] | 40 | RADIUS = radius;
|
---|
| 41 | LC = NULL;
|
---|
| 42 | for(int i=0;i<NDIM;i++)
|
---|
| 43 | N[i] = 0;
|
---|
| 44 | index = -1;
|
---|
| 45 | max.Zero();
|
---|
| 46 | min.Zero();
|
---|
[e138de] | 47 | Log() << Verbose(1) << "Begin of LinkedCell" << endl;
|
---|
[caf4ba] | 48 | if ((set == NULL) || (set->IsEmpty())) {
|
---|
[58ed4a] | 49 | DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
|
---|
[042f82] | 50 | return;
|
---|
| 51 | }
|
---|
| 52 | // 1. find max and min per axis of atoms
|
---|
[357fba] | 53 | set->GoToFirst();
|
---|
| 54 | Walker = set->GetPoint();
|
---|
[042f82] | 55 | for (int i=0;i<NDIM;i++) {
|
---|
[357fba] | 56 | max.x[i] = Walker->node->x[i];
|
---|
| 57 | min.x[i] = Walker->node->x[i];
|
---|
[042f82] | 58 | }
|
---|
[357fba] | 59 | set->GoToFirst();
|
---|
[1999d8] | 60 | while (!set->IsEnd()) {
|
---|
[357fba] | 61 | Walker = set->GetPoint();
|
---|
[042f82] | 62 | for (int i=0;i<NDIM;i++) {
|
---|
[357fba] | 63 | if (max.x[i] < Walker->node->x[i])
|
---|
| 64 | max.x[i] = Walker->node->x[i];
|
---|
| 65 | if (min.x[i] > Walker->node->x[i])
|
---|
| 66 | min.x[i] = Walker->node->x[i];
|
---|
[042f82] | 67 | }
|
---|
[357fba] | 68 | set->GoToNext();
|
---|
[042f82] | 69 | }
|
---|
[e138de] | 70 | Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
|
---|
[6ac7ee] | 71 |
|
---|
[357fba] | 72 | // 2. find then number of cells per axis
|
---|
[042f82] | 73 | for (int i=0;i<NDIM;i++) {
|
---|
| 74 | N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
|
---|
| 75 | }
|
---|
[e138de] | 76 | Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
|
---|
[6ac7ee] | 77 |
|
---|
[042f82] | 78 | // 3. allocate the lists
|
---|
[e138de] | 79 | Log() << Verbose(2) << "Allocating cells ... ";
|
---|
[042f82] | 80 | if (LC != NULL) {
|
---|
[58ed4a] | 81 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[042f82] | 82 | return;
|
---|
| 83 | }
|
---|
[357fba] | 84 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
[042f82] | 85 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 86 | LC [index].clear();
|
---|
| 87 | }
|
---|
[e138de] | 88 | Log() << Verbose(0) << "done." << endl;
|
---|
[6ac7ee] | 89 |
|
---|
[042f82] | 90 | // 4. put each atom into its respective cell
|
---|
[e138de] | 91 | Log() << Verbose(2) << "Filling cells ... ";
|
---|
[357fba] | 92 | set->GoToFirst();
|
---|
[1999d8] | 93 | while (!set->IsEnd()) {
|
---|
[357fba] | 94 | Walker = set->GetPoint();
|
---|
[042f82] | 95 | for (int i=0;i<NDIM;i++) {
|
---|
[357fba] | 96 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
[042f82] | 97 | }
|
---|
| 98 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 99 | LC[index].push_back(Walker);
|
---|
[e138de] | 100 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[357fba] | 101 | set->GoToNext();
|
---|
[042f82] | 102 | }
|
---|
[e138de] | 103 | Log() << Verbose(0) << "done." << endl;
|
---|
| 104 | Log() << Verbose(1) << "End of LinkedCell" << endl;
|
---|
[e1bc68] | 105 | };
|
---|
| 106 |
|
---|
[8cd903] | 107 |
|
---|
| 108 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
| 109 | * \param *set LCNodeSet class with all LCNode's
|
---|
| 110 | * \param RADIUS edge length of cells
|
---|
| 111 | */
|
---|
[776b64] | 112 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
|
---|
[8cd903] | 113 | {
|
---|
| 114 | class TesselPoint *Walker = NULL;
|
---|
| 115 | RADIUS = radius;
|
---|
| 116 | LC = NULL;
|
---|
| 117 | for(int i=0;i<NDIM;i++)
|
---|
| 118 | N[i] = 0;
|
---|
| 119 | index = -1;
|
---|
| 120 | max.Zero();
|
---|
| 121 | min.Zero();
|
---|
[e138de] | 122 | Log() << Verbose(1) << "Begin of LinkedCell" << endl;
|
---|
[8cd903] | 123 | if (set->empty()) {
|
---|
[58ed4a] | 124 | DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
|
---|
[8cd903] | 125 | return;
|
---|
| 126 | }
|
---|
| 127 | // 1. find max and min per axis of atoms
|
---|
| 128 | LinkedNodes::iterator Runner = set->begin();
|
---|
| 129 | for (int i=0;i<NDIM;i++) {
|
---|
| 130 | max.x[i] = (*Runner)->node->x[i];
|
---|
| 131 | min.x[i] = (*Runner)->node->x[i];
|
---|
| 132 | }
|
---|
| 133 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 134 | Walker = *Runner;
|
---|
| 135 | for (int i=0;i<NDIM;i++) {
|
---|
| 136 | if (max.x[i] < Walker->node->x[i])
|
---|
| 137 | max.x[i] = Walker->node->x[i];
|
---|
| 138 | if (min.x[i] > Walker->node->x[i])
|
---|
| 139 | min.x[i] = Walker->node->x[i];
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
[e138de] | 142 | Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl;
|
---|
[8cd903] | 143 |
|
---|
| 144 | // 2. find then number of cells per axis
|
---|
| 145 | for (int i=0;i<NDIM;i++) {
|
---|
| 146 | N[i] = (int)floor((max.x[i] - min.x[i])/RADIUS)+1;
|
---|
| 147 | }
|
---|
[e138de] | 148 | Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl;
|
---|
[8cd903] | 149 |
|
---|
| 150 | // 3. allocate the lists
|
---|
[e138de] | 151 | Log() << Verbose(2) << "Allocating cells ... ";
|
---|
[8cd903] | 152 | if (LC != NULL) {
|
---|
[58ed4a] | 153 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[8cd903] | 154 | return;
|
---|
| 155 | }
|
---|
| 156 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
| 157 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 158 | LC [index].clear();
|
---|
| 159 | }
|
---|
[e138de] | 160 | Log() << Verbose(0) << "done." << endl;
|
---|
[8cd903] | 161 |
|
---|
| 162 | // 4. put each atom into its respective cell
|
---|
[e138de] | 163 | Log() << Verbose(2) << "Filling cells ... ";
|
---|
[8cd903] | 164 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 165 | Walker = *Runner;
|
---|
| 166 | for (int i=0;i<NDIM;i++) {
|
---|
| 167 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
| 168 | }
|
---|
| 169 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 170 | LC[index].push_back(Walker);
|
---|
[e138de] | 171 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[8cd903] | 172 | }
|
---|
[e138de] | 173 | Log() << Verbose(0) << "done." << endl;
|
---|
| 174 | Log() << Verbose(1) << "End of LinkedCell" << endl;
|
---|
[8cd903] | 175 | };
|
---|
| 176 |
|
---|
[e1bc68] | 177 | /** Destructor for class LinkedCell.
|
---|
| 178 | */
|
---|
| 179 | LinkedCell::~LinkedCell()
|
---|
| 180 | {
|
---|
[042f82] | 181 | if (LC != NULL)
|
---|
| 182 | for (index=0;index<N[0]*N[1]*N[2];index++)
|
---|
| 183 | LC[index].clear();
|
---|
| 184 | delete[](LC);
|
---|
| 185 | for(int i=0;i<NDIM;i++)
|
---|
| 186 | N[i] = 0;
|
---|
| 187 | index = -1;
|
---|
| 188 | max.Zero();
|
---|
| 189 | min.Zero();
|
---|
[e1bc68] | 190 | };
|
---|
| 191 |
|
---|
| 192 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
|
---|
| 193 | * \return if all in intervals - true, else -false
|
---|
| 194 | */
|
---|
[776b64] | 195 | bool LinkedCell::CheckBounds() const
|
---|
[e1bc68] | 196 | {
|
---|
[042f82] | 197 | bool status = true;
|
---|
| 198 | for(int i=0;i<NDIM;i++)
|
---|
| 199 | status = status && ((n[i] >=0) && (n[i] < N[i]));
|
---|
| 200 | if (!status)
|
---|
[58ed4a] | 201 | DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
|
---|
[042f82] | 202 | return status;
|
---|
[e1bc68] | 203 | };
|
---|
| 204 |
|
---|
[07051c] | 205 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
|
---|
[266237] | 206 | * Note that for this check we don't admonish if out of bounds.
|
---|
[07051c] | 207 | * \param relative[NDIM] relative offset to current cell
|
---|
| 208 | * \return if all in intervals - true, else -false
|
---|
| 209 | */
|
---|
[776b64] | 210 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
|
---|
[07051c] | 211 | {
|
---|
| 212 | bool status = true;
|
---|
| 213 | for(int i=0;i<NDIM;i++)
|
---|
| 214 | status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
|
---|
| 215 | return status;
|
---|
| 216 | };
|
---|
| 217 |
|
---|
[e1bc68] | 218 |
|
---|
| 219 | /** Returns a pointer to the current cell.
|
---|
| 220 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
|
---|
| 221 | */
|
---|
[734816] | 222 | const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
|
---|
[e1bc68] | 223 | {
|
---|
[042f82] | 224 | if (CheckBounds()) {
|
---|
| 225 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 226 | return (&(LC[index]));
|
---|
| 227 | } else {
|
---|
| 228 | return NULL;
|
---|
| 229 | }
|
---|
[e1bc68] | 230 | };
|
---|
| 231 |
|
---|
[07051c] | 232 | /** Returns a pointer to the current cell.
|
---|
| 233 | * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
|
---|
| 234 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
|
---|
| 235 | */
|
---|
[734816] | 236 | const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
|
---|
[07051c] | 237 | {
|
---|
| 238 | if (CheckBounds(relative)) {
|
---|
| 239 | index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
|
---|
| 240 | return (&(LC[index]));
|
---|
| 241 | } else {
|
---|
| 242 | return NULL;
|
---|
| 243 | }
|
---|
| 244 | };
|
---|
| 245 |
|
---|
[893bea] | 246 | /** Set the index to the cell containing a given Vector *x.
|
---|
| 247 | * \param *x Vector with coordinates
|
---|
| 248 | * \return Vector is inside bounding box - true, else - false
|
---|
| 249 | */
|
---|
| 250 | bool LinkedCell::SetIndexToVector(const Vector * const x) const
|
---|
| 251 | {
|
---|
| 252 | for (int i=0;i<NDIM;i++)
|
---|
| 253 | n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
|
---|
| 254 |
|
---|
| 255 | return CheckBounds();
|
---|
| 256 | };
|
---|
| 257 |
|
---|
[357fba] | 258 | /** Calculates the index for a given LCNode *Walker.
|
---|
| 259 | * \param *Walker LCNode to set index tos
|
---|
[e1bc68] | 260 | * \return if the atom is also found in this cell - true, else - false
|
---|
| 261 | */
|
---|
[776b64] | 262 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
|
---|
[e1bc68] | 263 | {
|
---|
[042f82] | 264 | bool status = false;
|
---|
| 265 | for (int i=0;i<NDIM;i++) {
|
---|
[357fba] | 266 | n[i] = (int)floor((Walker->node->x[i] - min.x[i])/RADIUS);
|
---|
[042f82] | 267 | }
|
---|
| 268 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 269 | if (CheckBounds()) {
|
---|
[357fba] | 270 | for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
|
---|
[042f82] | 271 | status = status || ((*Runner) == Walker);
|
---|
| 272 | return status;
|
---|
| 273 | } else {
|
---|
[58ed4a] | 274 | DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
|
---|
[042f82] | 275 | return false;
|
---|
| 276 | }
|
---|
[e1bc68] | 277 | };
|
---|
| 278 |
|
---|
[0f4538] | 279 | /** Calculates the interval bounds of the linked cell grid.
|
---|
| 280 | * \param *lower lower bounds
|
---|
| 281 | * \param *upper upper bounds
|
---|
| 282 | */
|
---|
[893bea] | 283 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
|
---|
[0f4538] | 284 | {
|
---|
| 285 | for (int i=0;i<NDIM;i++) {
|
---|
[893bea] | 286 | lower[i] = 0;
|
---|
| 287 | for (int s=step; s>0;--s)
|
---|
| 288 | if ((n[i]-s) >= 0) {
|
---|
| 289 | lower[i] = n[i]-s;
|
---|
| 290 | break;
|
---|
| 291 | }
|
---|
| 292 | upper[i] = 0;
|
---|
| 293 | for (int s=step; s>0;--s)
|
---|
| 294 | if ((n[i]+s) < N[i]) {
|
---|
| 295 | upper[i] = n[i]+s;
|
---|
| 296 | break;
|
---|
| 297 | }
|
---|
| 298 | //Log() << Verbose(0) << " [" << lower[i] << "," << upper[i] << "] ";
|
---|
[0f4538] | 299 | // check for this axis whether the point is outside of our grid
|
---|
| 300 | if (n[i] < 0)
|
---|
| 301 | upper[i] = lower[i];
|
---|
| 302 | if (n[i] > N[i])
|
---|
| 303 | lower[i] = upper[i];
|
---|
| 304 |
|
---|
[e138de] | 305 | //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
|
---|
[0f4538] | 306 | }
|
---|
| 307 | };
|
---|
| 308 |
|
---|
[734816] | 309 | /** Returns a list with all neighbours from the current LinkedCell::index.
|
---|
| 310 | * \param distance (if no distance, then adjacent cells are taken)
|
---|
| 311 | * \return list of tesselpoints
|
---|
| 312 | */
|
---|
[893bea] | 313 | LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
|
---|
[734816] | 314 | {
|
---|
[893bea] | 315 | int Nlower[NDIM], Nupper[NDIM];
|
---|
[734816] | 316 | TesselPoint *Walker = NULL;
|
---|
| 317 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
| 318 |
|
---|
| 319 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
[893bea] | 320 | const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
|
---|
| 321 | GetNeighbourBounds(Nlower, Nupper, step);
|
---|
| 322 |
|
---|
[734816] | 323 | //Log() << Verbose(0) << endl;
|
---|
| 324 | for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
|
---|
| 325 | for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
|
---|
| 326 | for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
|
---|
| 327 | const LinkedNodes *List = GetCurrentCell();
|
---|
| 328 | //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
| 329 | if (List != NULL) {
|
---|
| 330 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 331 | Walker = *Runner;
|
---|
| 332 | TesselList->push_back(Walker);
|
---|
| 333 | }
|
---|
| 334 | }
|
---|
| 335 | }
|
---|
| 336 | return TesselList;
|
---|
| 337 | };
|
---|
| 338 |
|
---|
[ffe885] | 339 | /** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
|
---|
| 340 | * Note that as we have to check distance from every corner of the closest cell, this function is faw more
|
---|
| 341 | * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
|
---|
| 342 | * \param *x Vector with coordinates
|
---|
| 343 | * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
|
---|
| 344 | */
|
---|
| 345 | double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
|
---|
| 346 | {
|
---|
| 347 | for (int i=0;i<NDIM;i++) {
|
---|
| 348 | n[i] = (int)floor((x->x[i] - min.x[i])/RADIUS);
|
---|
| 349 | if (n[i] < 0)
|
---|
| 350 | n[i] = 0;
|
---|
| 351 | if (n[i] >= N[i])
|
---|
| 352 | n[i] = N[i]-1;
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | // calculate distance of cell to vector
|
---|
| 356 | double distanceSquared = 0.;
|
---|
| 357 | bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell
|
---|
| 358 | Vector corner; // current corner of closest cell
|
---|
| 359 | Vector tester; // Vector pointing from corner to center of closest cell
|
---|
| 360 | Vector Distance; // Vector from corner of closest cell to x
|
---|
| 361 |
|
---|
| 362 | Vector center; // center of the closest cell
|
---|
| 363 | for (int i=0;i<NDIM;i++)
|
---|
| 364 | center.x[i] = min.x[i]+((double)n[i]+.5)*RADIUS;
|
---|
| 365 |
|
---|
| 366 | int c[NDIM];
|
---|
| 367 | for (c[0]=0;c[0]<=1;c[0]++)
|
---|
| 368 | for (c[1]=0; c[1]<=1;c[1]++)
|
---|
| 369 | for (c[2]=0; c[2]<=1;c[2]++) {
|
---|
| 370 | // set up corner
|
---|
| 371 | for (int i=0;i<NDIM;i++)
|
---|
| 372 | corner.x[i] = min.x[i]+RADIUS*((double)n[i]+c[i]);
|
---|
| 373 | // set up distance vector
|
---|
| 374 | Distance.CopyVector(x);
|
---|
| 375 | Distance.SubtractVector(&corner);
|
---|
| 376 | const double dist = Distance.NormSquared();
|
---|
| 377 | // check whether distance is smaller
|
---|
| 378 | if (dist< distanceSquared)
|
---|
| 379 | distanceSquared = dist;
|
---|
| 380 | // check whether distance vector goes inside or outside
|
---|
| 381 | tester.CopyVector(¢er);
|
---|
| 382 | tester.SubtractVector(&corner);
|
---|
| 383 | if (tester.ScalarProduct(&Distance) < 0)
|
---|
| 384 | outside = false;
|
---|
| 385 | }
|
---|
| 386 | return (outside ? distanceSquared : 0.);
|
---|
| 387 | };
|
---|
[734816] | 388 |
|
---|
| 389 | /** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
|
---|
| 390 | * \param radius radius of sphere
|
---|
| 391 | * \param *center center of sphere
|
---|
| 392 | * \return list of all points inside sphere
|
---|
| 393 | */
|
---|
| 394 | LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
|
---|
| 395 | {
|
---|
| 396 | const double radiusSquared = radius*radius;
|
---|
| 397 | TesselPoint *Walker = NULL;
|
---|
| 398 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
[893bea] | 399 | LinkedNodes *NeighbourList = NULL;
|
---|
[734816] | 400 |
|
---|
[893bea] | 401 | // set index of LC to center of sphere
|
---|
[ffe885] | 402 | const double dist = SetClosestIndexToOutsideVector(center);
|
---|
| 403 | if (dist > radius) {
|
---|
| 404 | DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
|
---|
[734816] | 405 | return TesselList;
|
---|
| 406 | }
|
---|
[893bea] | 407 |
|
---|
| 408 | // gather all neighbours first, then look who fulfills distance criteria
|
---|
[ffe885] | 409 | NeighbourList = GetallNeighbours(radius-dist);
|
---|
[893bea] | 410 | if (NeighbourList != NULL) {
|
---|
| 411 | for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
|
---|
| 412 | Walker = *Runner;
|
---|
| 413 | if ((center->DistanceSquared(Walker->node) - radiusSquared) < MYEPSILON) {
|
---|
| 414 | TesselList->push_back(Walker);
|
---|
[734816] | 415 | }
|
---|
[893bea] | 416 | }
|
---|
| 417 | delete(NeighbourList);
|
---|
| 418 | } else
|
---|
| 419 | DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
|
---|
[734816] | 420 | return TesselList;
|
---|
| 421 | };
|
---|