[edb93c] | 1 | /** \file linkedcell.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class LinkedCell.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[112b09] | 7 | #include "Helpers/MemDebug.hpp"
|
---|
[edb93c] | 8 |
|
---|
[f66195] | 9 | #include "atom.hpp"
|
---|
| 10 | #include "helpers.hpp"
|
---|
[e1bc68] | 11 | #include "linkedcell.hpp"
|
---|
[36166d] | 12 | #include "verbose.hpp"
|
---|
[e138de] | 13 | #include "log.hpp"
|
---|
[cee0b57] | 14 | #include "molecule.hpp"
|
---|
[357fba] | 15 | #include "tesselation.hpp"
|
---|
[f66195] | 16 | #include "vector.hpp"
|
---|
[357fba] | 17 |
|
---|
| 18 | // ========================================================= class LinkedCell ===========================================
|
---|
| 19 |
|
---|
[e1bc68] | 20 |
|
---|
| 21 | /** Constructor for class LinkedCell.
|
---|
| 22 | */
|
---|
| 23 | LinkedCell::LinkedCell()
|
---|
| 24 | {
|
---|
[042f82] | 25 | LC = NULL;
|
---|
| 26 | for(int i=0;i<NDIM;i++)
|
---|
| 27 | N[i] = 0;
|
---|
| 28 | index = -1;
|
---|
| 29 | RADIUS = 0.;
|
---|
| 30 | max.Zero();
|
---|
| 31 | min.Zero();
|
---|
[e1bc68] | 32 | };
|
---|
| 33 |
|
---|
| 34 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
[357fba] | 35 | * \param *set LCNodeSet class with all LCNode's
|
---|
[e1bc68] | 36 | * \param RADIUS edge length of cells
|
---|
| 37 | */
|
---|
[776b64] | 38 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
|
---|
[e1bc68] | 39 | {
|
---|
[357fba] | 40 | TesselPoint *Walker = NULL;
|
---|
[e1bc68] | 41 |
|
---|
[042f82] | 42 | RADIUS = radius;
|
---|
| 43 | LC = NULL;
|
---|
| 44 | for(int i=0;i<NDIM;i++)
|
---|
| 45 | N[i] = 0;
|
---|
| 46 | index = -1;
|
---|
| 47 | max.Zero();
|
---|
| 48 | min.Zero();
|
---|
[a67d19] | 49 | DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
|
---|
[caf4ba] | 50 | if ((set == NULL) || (set->IsEmpty())) {
|
---|
[58ed4a] | 51 | DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
|
---|
[042f82] | 52 | return;
|
---|
| 53 | }
|
---|
| 54 | // 1. find max and min per axis of atoms
|
---|
[357fba] | 55 | set->GoToFirst();
|
---|
| 56 | Walker = set->GetPoint();
|
---|
[042f82] | 57 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 58 | max[i] = Walker->node->at(i);
|
---|
| 59 | min[i] = Walker->node->at(i);
|
---|
[042f82] | 60 | }
|
---|
[357fba] | 61 | set->GoToFirst();
|
---|
[1999d8] | 62 | while (!set->IsEnd()) {
|
---|
[357fba] | 63 | Walker = set->GetPoint();
|
---|
[042f82] | 64 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 65 | if (max[i] < Walker->node->at(i))
|
---|
| 66 | max[i] = Walker->node->at(i);
|
---|
| 67 | if (min[i] > Walker->node->at(i))
|
---|
| 68 | min[i] = Walker->node->at(i);
|
---|
[042f82] | 69 | }
|
---|
[357fba] | 70 | set->GoToNext();
|
---|
[042f82] | 71 | }
|
---|
[a67d19] | 72 | DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
|
---|
[6ac7ee] | 73 |
|
---|
[357fba] | 74 | // 2. find then number of cells per axis
|
---|
[042f82] | 75 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 76 | N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
|
---|
[042f82] | 77 | }
|
---|
[a67d19] | 78 | DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
|
---|
[6ac7ee] | 79 |
|
---|
[042f82] | 80 | // 3. allocate the lists
|
---|
[a67d19] | 81 | DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
|
---|
[042f82] | 82 | if (LC != NULL) {
|
---|
[58ed4a] | 83 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[042f82] | 84 | return;
|
---|
| 85 | }
|
---|
[357fba] | 86 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
[042f82] | 87 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 88 | LC [index].clear();
|
---|
| 89 | }
|
---|
[a67d19] | 90 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
[6ac7ee] | 91 |
|
---|
[042f82] | 92 | // 4. put each atom into its respective cell
|
---|
[a67d19] | 93 | DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
|
---|
[357fba] | 94 | set->GoToFirst();
|
---|
[1999d8] | 95 | while (!set->IsEnd()) {
|
---|
[357fba] | 96 | Walker = set->GetPoint();
|
---|
[042f82] | 97 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 98 | n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
|
---|
[042f82] | 99 | }
|
---|
| 100 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 101 | LC[index].push_back(Walker);
|
---|
[e138de] | 102 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[357fba] | 103 | set->GoToNext();
|
---|
[042f82] | 104 | }
|
---|
[a67d19] | 105 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
| 106 | DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
|
---|
[e1bc68] | 107 | };
|
---|
| 108 |
|
---|
[8cd903] | 109 |
|
---|
| 110 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
| 111 | * \param *set LCNodeSet class with all LCNode's
|
---|
| 112 | * \param RADIUS edge length of cells
|
---|
| 113 | */
|
---|
[776b64] | 114 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
|
---|
[8cd903] | 115 | {
|
---|
| 116 | class TesselPoint *Walker = NULL;
|
---|
| 117 | RADIUS = radius;
|
---|
| 118 | LC = NULL;
|
---|
| 119 | for(int i=0;i<NDIM;i++)
|
---|
| 120 | N[i] = 0;
|
---|
| 121 | index = -1;
|
---|
| 122 | max.Zero();
|
---|
| 123 | min.Zero();
|
---|
[a67d19] | 124 | DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
|
---|
[8cd903] | 125 | if (set->empty()) {
|
---|
[58ed4a] | 126 | DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
|
---|
[8cd903] | 127 | return;
|
---|
| 128 | }
|
---|
| 129 | // 1. find max and min per axis of atoms
|
---|
| 130 | LinkedNodes::iterator Runner = set->begin();
|
---|
| 131 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 132 | max[i] = (*Runner)->node->at(i);
|
---|
| 133 | min[i] = (*Runner)->node->at(i);
|
---|
[8cd903] | 134 | }
|
---|
| 135 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 136 | Walker = *Runner;
|
---|
| 137 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 138 | if (max[i] < Walker->node->at(i))
|
---|
| 139 | max[i] = Walker->node->at(i);
|
---|
| 140 | if (min[i] > Walker->node->at(i))
|
---|
| 141 | min[i] = Walker->node->at(i);
|
---|
[8cd903] | 142 | }
|
---|
| 143 | }
|
---|
[a67d19] | 144 | DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
|
---|
[8cd903] | 145 |
|
---|
| 146 | // 2. find then number of cells per axis
|
---|
| 147 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 148 | N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
|
---|
[8cd903] | 149 | }
|
---|
[a67d19] | 150 | DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
|
---|
[8cd903] | 151 |
|
---|
| 152 | // 3. allocate the lists
|
---|
[a67d19] | 153 | DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
|
---|
[8cd903] | 154 | if (LC != NULL) {
|
---|
[58ed4a] | 155 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[8cd903] | 156 | return;
|
---|
| 157 | }
|
---|
| 158 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
| 159 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 160 | LC [index].clear();
|
---|
| 161 | }
|
---|
[a67d19] | 162 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
[8cd903] | 163 |
|
---|
| 164 | // 4. put each atom into its respective cell
|
---|
[a67d19] | 165 | DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
|
---|
[8cd903] | 166 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 167 | Walker = *Runner;
|
---|
| 168 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 169 | n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
|
---|
[8cd903] | 170 | }
|
---|
| 171 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 172 | LC[index].push_back(Walker);
|
---|
[e138de] | 173 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[8cd903] | 174 | }
|
---|
[a67d19] | 175 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
| 176 | DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
|
---|
[8cd903] | 177 | };
|
---|
| 178 |
|
---|
[e1bc68] | 179 | /** Destructor for class LinkedCell.
|
---|
| 180 | */
|
---|
| 181 | LinkedCell::~LinkedCell()
|
---|
| 182 | {
|
---|
[042f82] | 183 | if (LC != NULL)
|
---|
| 184 | for (index=0;index<N[0]*N[1]*N[2];index++)
|
---|
| 185 | LC[index].clear();
|
---|
| 186 | delete[](LC);
|
---|
| 187 | for(int i=0;i<NDIM;i++)
|
---|
| 188 | N[i] = 0;
|
---|
| 189 | index = -1;
|
---|
| 190 | max.Zero();
|
---|
| 191 | min.Zero();
|
---|
[e1bc68] | 192 | };
|
---|
| 193 |
|
---|
| 194 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
|
---|
| 195 | * \return if all in intervals - true, else -false
|
---|
| 196 | */
|
---|
[776b64] | 197 | bool LinkedCell::CheckBounds() const
|
---|
[e1bc68] | 198 | {
|
---|
[042f82] | 199 | bool status = true;
|
---|
| 200 | for(int i=0;i<NDIM;i++)
|
---|
| 201 | status = status && ((n[i] >=0) && (n[i] < N[i]));
|
---|
| 202 | if (!status)
|
---|
[58ed4a] | 203 | DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
|
---|
[042f82] | 204 | return status;
|
---|
[e1bc68] | 205 | };
|
---|
| 206 |
|
---|
[07051c] | 207 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
|
---|
[266237] | 208 | * Note that for this check we don't admonish if out of bounds.
|
---|
[07051c] | 209 | * \param relative[NDIM] relative offset to current cell
|
---|
| 210 | * \return if all in intervals - true, else -false
|
---|
| 211 | */
|
---|
[776b64] | 212 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
|
---|
[07051c] | 213 | {
|
---|
| 214 | bool status = true;
|
---|
| 215 | for(int i=0;i<NDIM;i++)
|
---|
| 216 | status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
|
---|
| 217 | return status;
|
---|
| 218 | };
|
---|
| 219 |
|
---|
[e1bc68] | 220 |
|
---|
| 221 | /** Returns a pointer to the current cell.
|
---|
| 222 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
|
---|
| 223 | */
|
---|
[734816] | 224 | const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
|
---|
[e1bc68] | 225 | {
|
---|
[042f82] | 226 | if (CheckBounds()) {
|
---|
| 227 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 228 | return (&(LC[index]));
|
---|
| 229 | } else {
|
---|
| 230 | return NULL;
|
---|
| 231 | }
|
---|
[e1bc68] | 232 | };
|
---|
| 233 |
|
---|
[07051c] | 234 | /** Returns a pointer to the current cell.
|
---|
| 235 | * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
|
---|
| 236 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
|
---|
| 237 | */
|
---|
[734816] | 238 | const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
|
---|
[07051c] | 239 | {
|
---|
| 240 | if (CheckBounds(relative)) {
|
---|
| 241 | index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
|
---|
| 242 | return (&(LC[index]));
|
---|
| 243 | } else {
|
---|
| 244 | return NULL;
|
---|
| 245 | }
|
---|
| 246 | };
|
---|
| 247 |
|
---|
[893bea] | 248 | /** Set the index to the cell containing a given Vector *x.
|
---|
| 249 | * \param *x Vector with coordinates
|
---|
| 250 | * \return Vector is inside bounding box - true, else - false
|
---|
| 251 | */
|
---|
| 252 | bool LinkedCell::SetIndexToVector(const Vector * const x) const
|
---|
| 253 | {
|
---|
| 254 | for (int i=0;i<NDIM;i++)
|
---|
[8cbb97] | 255 | n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
|
---|
[893bea] | 256 |
|
---|
| 257 | return CheckBounds();
|
---|
| 258 | };
|
---|
| 259 |
|
---|
[357fba] | 260 | /** Calculates the index for a given LCNode *Walker.
|
---|
| 261 | * \param *Walker LCNode to set index tos
|
---|
[e1bc68] | 262 | * \return if the atom is also found in this cell - true, else - false
|
---|
| 263 | */
|
---|
[776b64] | 264 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
|
---|
[e1bc68] | 265 | {
|
---|
[042f82] | 266 | bool status = false;
|
---|
| 267 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 268 | n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
|
---|
[042f82] | 269 | }
|
---|
| 270 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 271 | if (CheckBounds()) {
|
---|
[357fba] | 272 | for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
|
---|
[042f82] | 273 | status = status || ((*Runner) == Walker);
|
---|
| 274 | return status;
|
---|
| 275 | } else {
|
---|
[58ed4a] | 276 | DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
|
---|
[042f82] | 277 | return false;
|
---|
| 278 | }
|
---|
[e1bc68] | 279 | };
|
---|
| 280 |
|
---|
[0f4538] | 281 | /** Calculates the interval bounds of the linked cell grid.
|
---|
| 282 | * \param *lower lower bounds
|
---|
| 283 | * \param *upper upper bounds
|
---|
[061b06] | 284 | * \param step how deep to check the neighbouring cells (i.e. number of layers to check)
|
---|
[0f4538] | 285 | */
|
---|
[893bea] | 286 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
|
---|
[0f4538] | 287 | {
|
---|
| 288 | for (int i=0;i<NDIM;i++) {
|
---|
[061b06] | 289 | lower[i] = n[i];
|
---|
[893bea] | 290 | for (int s=step; s>0;--s)
|
---|
| 291 | if ((n[i]-s) >= 0) {
|
---|
| 292 | lower[i] = n[i]-s;
|
---|
| 293 | break;
|
---|
| 294 | }
|
---|
[061b06] | 295 | upper[i] = n[i];
|
---|
[893bea] | 296 | for (int s=step; s>0;--s)
|
---|
| 297 | if ((n[i]+s) < N[i]) {
|
---|
| 298 | upper[i] = n[i]+s;
|
---|
| 299 | break;
|
---|
| 300 | }
|
---|
[e138de] | 301 | //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
|
---|
[0f4538] | 302 | }
|
---|
| 303 | };
|
---|
| 304 |
|
---|
[734816] | 305 | /** Returns a list with all neighbours from the current LinkedCell::index.
|
---|
| 306 | * \param distance (if no distance, then adjacent cells are taken)
|
---|
| 307 | * \return list of tesselpoints
|
---|
| 308 | */
|
---|
[893bea] | 309 | LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
|
---|
[734816] | 310 | {
|
---|
[893bea] | 311 | int Nlower[NDIM], Nupper[NDIM];
|
---|
[734816] | 312 | TesselPoint *Walker = NULL;
|
---|
| 313 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
| 314 |
|
---|
| 315 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
[893bea] | 316 | const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
|
---|
| 317 | GetNeighbourBounds(Nlower, Nupper, step);
|
---|
| 318 |
|
---|
[734816] | 319 | //Log() << Verbose(0) << endl;
|
---|
| 320 | for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
|
---|
| 321 | for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
|
---|
| 322 | for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
|
---|
| 323 | const LinkedNodes *List = GetCurrentCell();
|
---|
| 324 | //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
| 325 | if (List != NULL) {
|
---|
| 326 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 327 | Walker = *Runner;
|
---|
| 328 | TesselList->push_back(Walker);
|
---|
| 329 | }
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 | return TesselList;
|
---|
| 333 | };
|
---|
| 334 |
|
---|
[ffe885] | 335 | /** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
|
---|
| 336 | * Note that as we have to check distance from every corner of the closest cell, this function is faw more
|
---|
| 337 | * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
|
---|
| 338 | * \param *x Vector with coordinates
|
---|
| 339 | * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
|
---|
| 340 | */
|
---|
| 341 | double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
|
---|
| 342 | {
|
---|
| 343 | for (int i=0;i<NDIM;i++) {
|
---|
[8cbb97] | 344 | n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
|
---|
[ffe885] | 345 | if (n[i] < 0)
|
---|
| 346 | n[i] = 0;
|
---|
| 347 | if (n[i] >= N[i])
|
---|
| 348 | n[i] = N[i]-1;
|
---|
| 349 | }
|
---|
| 350 |
|
---|
| 351 | // calculate distance of cell to vector
|
---|
| 352 | double distanceSquared = 0.;
|
---|
| 353 | bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell
|
---|
| 354 | Vector corner; // current corner of closest cell
|
---|
| 355 | Vector tester; // Vector pointing from corner to center of closest cell
|
---|
| 356 | Vector Distance; // Vector from corner of closest cell to x
|
---|
| 357 |
|
---|
| 358 | Vector center; // center of the closest cell
|
---|
| 359 | for (int i=0;i<NDIM;i++)
|
---|
[8cbb97] | 360 | center[i] = min[i]+((double)n[i]+.5)*RADIUS;
|
---|
[ffe885] | 361 |
|
---|
| 362 | int c[NDIM];
|
---|
| 363 | for (c[0]=0;c[0]<=1;c[0]++)
|
---|
| 364 | for (c[1]=0; c[1]<=1;c[1]++)
|
---|
| 365 | for (c[2]=0; c[2]<=1;c[2]++) {
|
---|
| 366 | // set up corner
|
---|
| 367 | for (int i=0;i<NDIM;i++)
|
---|
[8cbb97] | 368 | corner[i] = min[i]+RADIUS*((double)n[i]+c[i]);
|
---|
[ffe885] | 369 | // set up distance vector
|
---|
[8cbb97] | 370 | Distance = (*x) - corner;
|
---|
[ffe885] | 371 | const double dist = Distance.NormSquared();
|
---|
| 372 | // check whether distance is smaller
|
---|
| 373 | if (dist< distanceSquared)
|
---|
| 374 | distanceSquared = dist;
|
---|
| 375 | // check whether distance vector goes inside or outside
|
---|
[8cbb97] | 376 | tester = center -corner;
|
---|
| 377 | if (tester.ScalarProduct(Distance) < 0)
|
---|
[ffe885] | 378 | outside = false;
|
---|
| 379 | }
|
---|
| 380 | return (outside ? distanceSquared : 0.);
|
---|
| 381 | };
|
---|
[734816] | 382 |
|
---|
| 383 | /** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
|
---|
| 384 | * \param radius radius of sphere
|
---|
| 385 | * \param *center center of sphere
|
---|
| 386 | * \return list of all points inside sphere
|
---|
| 387 | */
|
---|
| 388 | LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
|
---|
| 389 | {
|
---|
| 390 | const double radiusSquared = radius*radius;
|
---|
| 391 | TesselPoint *Walker = NULL;
|
---|
| 392 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
[893bea] | 393 | LinkedNodes *NeighbourList = NULL;
|
---|
[734816] | 394 |
|
---|
[893bea] | 395 | // set index of LC to center of sphere
|
---|
[ffe885] | 396 | const double dist = SetClosestIndexToOutsideVector(center);
|
---|
[061b06] | 397 | if (dist > 2.*radius) {
|
---|
[ffe885] | 398 | DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
|
---|
[734816] | 399 | return TesselList;
|
---|
[061b06] | 400 | } else
|
---|
[a67d19] | 401 | DoLog(1) && (Log() << Verbose(1) << "Distance of closest cell to center of sphere with radius " << radius << " is " << dist << "." << endl);
|
---|
[893bea] | 402 |
|
---|
| 403 | // gather all neighbours first, then look who fulfills distance criteria
|
---|
[061b06] | 404 | NeighbourList = GetallNeighbours(2.*radius-dist);
|
---|
| 405 | //Log() << Verbose(1) << "I found " << NeighbourList->size() << " neighbours to check." << endl;
|
---|
[893bea] | 406 | if (NeighbourList != NULL) {
|
---|
| 407 | for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
|
---|
| 408 | Walker = *Runner;
|
---|
[061b06] | 409 | //Log() << Verbose(1) << "Current neighbour is at " << *Walker->node << "." << endl;
|
---|
[8cbb97] | 410 | if ((center->DistanceSquared(*Walker->node) - radiusSquared) < MYEPSILON) {
|
---|
[893bea] | 411 | TesselList->push_back(Walker);
|
---|
[734816] | 412 | }
|
---|
[893bea] | 413 | }
|
---|
| 414 | delete(NeighbourList);
|
---|
| 415 | } else
|
---|
| 416 | DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
|
---|
[734816] | 417 | return TesselList;
|
---|
| 418 | };
|
---|