[fc3b67] | 1 | /*
|
---|
| 2 | * gslmatrix.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Jan 8, 2010
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | using namespace std;
|
---|
| 9 |
|
---|
| 10 | #include "gslmatrix.hpp"
|
---|
| 11 | #include "helpers.hpp"
|
---|
| 12 |
|
---|
| 13 | #include <cassert>
|
---|
| 14 | #include <gsl/gsl_linalg.h>
|
---|
| 15 |
|
---|
| 16 | /** Constructor of class GSLMatrix.
|
---|
| 17 | * Allocates GSL structures
|
---|
| 18 | * \param m dimension of matrix
|
---|
| 19 | */
|
---|
| 20 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n)
|
---|
| 21 | {
|
---|
| 22 | matrix = gsl_matrix_calloc(rows, columns);
|
---|
| 23 | };
|
---|
| 24 |
|
---|
| 25 | /** Copy constructor of class GSLMatrix.
|
---|
| 26 | * Allocates GSL structures and copies components from \a *src.
|
---|
| 27 | * \param *src source matrix
|
---|
| 28 | */
|
---|
| 29 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns)
|
---|
| 30 | {
|
---|
| 31 | matrix = gsl_matrix_alloc(rows, columns);
|
---|
| 32 | gsl_matrix_memcpy (matrix, src->matrix);
|
---|
| 33 | };
|
---|
| 34 |
|
---|
| 35 | /** Destructor of class GSLMatrix.
|
---|
| 36 | * Frees GSL structures
|
---|
| 37 | */
|
---|
| 38 | GSLMatrix::~GSLMatrix()
|
---|
| 39 | {
|
---|
| 40 | gsl_matrix_free(matrix);
|
---|
| 41 | rows = 0;
|
---|
| 42 | columns = 0;
|
---|
| 43 | };
|
---|
| 44 |
|
---|
| 45 | /** Assignment operator.
|
---|
| 46 | * \param &rhs right hand side
|
---|
| 47 | * \return object itself
|
---|
| 48 | */
|
---|
| 49 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs)
|
---|
| 50 | {
|
---|
| 51 | if (this == &rhs) // not necessary here, but identity assignment check is generally a good idea
|
---|
| 52 | return *this;
|
---|
| 53 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!");
|
---|
| 54 |
|
---|
| 55 | gsl_matrix_memcpy (matrix, rhs.matrix);
|
---|
| 56 |
|
---|
| 57 | return *this;
|
---|
| 58 | };
|
---|
| 59 |
|
---|
| 60 | /* ============================ Accessing =============================== */
|
---|
| 61 | /** This function sets the matrix from a double array.
|
---|
| 62 | * Creates a matrix view of the array and performs a memcopy.
|
---|
| 63 | * \param *x array of values (no dimension check is performed)
|
---|
| 64 | */
|
---|
| 65 | void GSLMatrix::SetFromDoubleArray(double * x)
|
---|
| 66 | {
|
---|
| 67 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
| 68 | gsl_matrix_memcpy (matrix, &m.matrix);
|
---|
| 69 | };
|
---|
| 70 |
|
---|
| 71 | /** This function returns the i-th element of a matrix.
|
---|
| 72 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned.
|
---|
| 73 | * \param m row index
|
---|
| 74 | * \param n colum index
|
---|
| 75 | * \return (m,n)-th element of matrix
|
---|
| 76 | */
|
---|
| 77 | double GSLMatrix::Get(size_t m, size_t n)
|
---|
| 78 | {
|
---|
| 79 | return gsl_matrix_get (matrix, m, n);
|
---|
| 80 | };
|
---|
| 81 |
|
---|
| 82 | /** This function sets the value of the \a m -th element of a matrix to \a x.
|
---|
| 83 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked.
|
---|
| 84 | * \param m row index
|
---|
| 85 | * \param m column index
|
---|
| 86 | * \param x value to set element (m,n) to
|
---|
| 87 | */
|
---|
| 88 | void GSLMatrix::Set(size_t m, size_t n, double x)
|
---|
| 89 | {
|
---|
| 90 | gsl_matrix_set (matrix, m, n, x);
|
---|
| 91 | };
|
---|
| 92 |
|
---|
| 93 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
| 94 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
| 95 | * \param m index
|
---|
| 96 | * \return pointer to \a m-th element
|
---|
| 97 | */
|
---|
| 98 | double *GSLMatrix::Pointer(size_t m, size_t n)
|
---|
| 99 | {
|
---|
| 100 | return gsl_matrix_ptr (matrix, m, n);
|
---|
| 101 | };
|
---|
| 102 |
|
---|
| 103 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
| 104 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
| 105 | * \param m index
|
---|
| 106 | * \return const pointer to \a m-th element
|
---|
| 107 | */
|
---|
| 108 | const double *GSLMatrix::const_Pointer(size_t m, size_t n)
|
---|
| 109 | {
|
---|
| 110 | return gsl_matrix_const_ptr (matrix, m, n);
|
---|
| 111 | };
|
---|
| 112 |
|
---|
| 113 | /* ========================== Initializing =============================== */
|
---|
| 114 | /** This function sets all the elements of the matrix to the value \a x.
|
---|
| 115 | * \param *x
|
---|
| 116 | */
|
---|
| 117 | void GSLMatrix::SetAll(double x)
|
---|
| 118 | {
|
---|
| 119 | gsl_matrix_set_all (matrix, x);
|
---|
| 120 | };
|
---|
| 121 |
|
---|
| 122 | /** This function sets all the elements of the matrix to zero.
|
---|
| 123 | */
|
---|
| 124 | void GSLMatrix::SetZero()
|
---|
| 125 | {
|
---|
| 126 | gsl_matrix_set_zero (matrix);
|
---|
| 127 | };
|
---|
| 128 |
|
---|
| 129 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero.
|
---|
| 130 | * This applies to both square and rectangular matrices.
|
---|
| 131 | */
|
---|
| 132 | void GSLMatrix::SetIdentity()
|
---|
| 133 | {
|
---|
| 134 | gsl_matrix_set_identity (matrix);
|
---|
| 135 | };
|
---|
| 136 |
|
---|
| 137 | /* ====================== Exchanging elements ============================ */
|
---|
| 138 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
| 139 | * \param i i-th row to swap with ...
|
---|
| 140 | * \param j ... j-th row to swap against
|
---|
| 141 | */
|
---|
| 142 | bool GSLMatrix::SwapRows(size_t i, size_t j)
|
---|
| 143 | {
|
---|
| 144 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS);
|
---|
| 145 | };
|
---|
| 146 |
|
---|
| 147 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
| 148 | * \param i i-th column to swap with ...
|
---|
| 149 | * \param j ... j-th column to swap against
|
---|
| 150 | */
|
---|
| 151 | bool GSLMatrix::SwapColumns(size_t i, size_t j)
|
---|
| 152 | {
|
---|
| 153 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS);
|
---|
| 154 | };
|
---|
| 155 |
|
---|
| 156 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
| 157 | * The matrix must be square for this operation to be possible.
|
---|
| 158 | * \param i i-th row to swap with ...
|
---|
| 159 | * \param j ... j-th column to swap against
|
---|
| 160 | */
|
---|
| 161 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j)
|
---|
| 162 | {
|
---|
| 163 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
| 164 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS);
|
---|
| 165 | };
|
---|
| 166 |
|
---|
| 167 | /** This function transposes the matrix.
|
---|
| 168 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied.
|
---|
| 169 | */
|
---|
| 170 | bool GSLMatrix::Transpose()
|
---|
| 171 | {
|
---|
| 172 | if (rows == columns)// if square, use GSL
|
---|
| 173 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS);
|
---|
| 174 | else { // otherwise we have to copy a bit
|
---|
| 175 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows);
|
---|
| 176 | for (size_t i=0;i<rows; i++)
|
---|
| 177 | for (size_t j=0;j<columns;j++) {
|
---|
| 178 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) );
|
---|
| 179 | }
|
---|
[93c8ed] | 180 | gsl_matrix_free(matrix);
|
---|
[fc3b67] | 181 | matrix = dest;
|
---|
| 182 | flip(rows, columns);
|
---|
| 183 | return true;
|
---|
| 184 | }
|
---|
| 185 | };
|
---|
| 186 |
|
---|
| 187 | /* ============================ Properties ============================== */
|
---|
| 188 | /** Checks whether matrix' elements are strictly null.
|
---|
| 189 | * \return true - is null, false - else
|
---|
| 190 | */
|
---|
| 191 | bool GSLMatrix::IsNull()
|
---|
| 192 | {
|
---|
| 193 | return gsl_matrix_isnull (matrix);
|
---|
| 194 | };
|
---|
| 195 |
|
---|
| 196 | /** Checks whether matrix' elements are strictly positive.
|
---|
| 197 | * \return true - is positive, false - else
|
---|
| 198 | */
|
---|
| 199 | bool GSLMatrix::IsPositive()
|
---|
| 200 | {
|
---|
| 201 | return gsl_matrix_ispos (matrix);
|
---|
| 202 | };
|
---|
| 203 |
|
---|
| 204 | /** Checks whether matrix' elements are strictly negative.
|
---|
| 205 | * \return true - is negative, false - else
|
---|
| 206 | */
|
---|
| 207 | bool GSLMatrix::IsNegative()
|
---|
| 208 | {
|
---|
| 209 | return gsl_matrix_isneg (matrix);
|
---|
| 210 | };
|
---|
| 211 |
|
---|
| 212 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
| 213 | * \return true - is non-negative, false - else
|
---|
| 214 | */
|
---|
| 215 | bool GSLMatrix::IsNonNegative()
|
---|
| 216 | {
|
---|
| 217 | return gsl_matrix_isnonneg (matrix);
|
---|
| 218 | };
|
---|
| 219 |
|
---|
| 220 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
| 221 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
| 222 | * \return true - matrix is positive-definite, false - else
|
---|
| 223 | */
|
---|
| 224 | bool GSLMatrix::IsPositiveDefinite()
|
---|
| 225 | {
|
---|
| 226 | if (rows != columns) // only possible for square matrices.
|
---|
| 227 | return false;
|
---|
| 228 | else
|
---|
| 229 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM);
|
---|
| 230 | };
|
---|
[865272f] | 231 |
|
---|
| 232 |
|
---|
| 233 | /** Calculates the determinant of the matrix.
|
---|
| 234 | * if matrix is square, uses LU decomposition.
|
---|
| 235 | */
|
---|
| 236 | double GSLMatrix::Determinant()
|
---|
| 237 | {
|
---|
| 238 | int signum = 0;
|
---|
| 239 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
| 240 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
| 241 | gsl_linalg_LU_decomp(matrix, p, &signum);
|
---|
| 242 | gsl_permutation_free(p);
|
---|
| 243 | return gsl_linalg_LU_det(matrix, signum);
|
---|
| 244 | };
|
---|
| 245 |
|
---|