/* * ellipsoid.cpp * * Created on: Jan 20, 2009 * Author: heber */ #include #include #include #include #include "boundary.hpp" #include "ellipsoid.hpp" #include "linkedcell.hpp" #include "log.hpp" #include "tesselation.hpp" #include "vector.hpp" #include "verbose.hpp" /** Determines squared distance for a given point \a x to surface of ellipsoid. * \param x given point * \param EllipsoidCenter center of ellipsoid * \param EllipsoidLength[3] three lengths of half axis of ellipsoid * \param EllipsoidAngle[3] three rotation angles of ellipsoid * \return squared distance from point to surface */ double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle) { Vector helper, RefPoint; double distance = -1.; double Matrix[NDIM*NDIM]; double InverseLength[3]; double psi,theta,phi; // euler angles in ZX'Z'' convention //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl; for(int i=0;i<3;i++) InverseLength[i] = 1./EllipsoidLength[i]; // 1. translate coordinate system so that ellipsoid center is in origin helper.CopyVector(&x); helper.SubtractVector(&EllipsoidCenter); RefPoint.CopyVector(&helper); //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl; // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix psi = EllipsoidAngle[0]; theta = EllipsoidAngle[1]; phi = EllipsoidAngle[2]; Matrix[0] = cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi); Matrix[1] = -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi); Matrix[2] = sin(psi)*sin(theta); Matrix[3] = sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi); Matrix[4] = cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi); Matrix[5] = -cos(psi)*sin(theta); Matrix[6] = sin(theta)*sin(phi); Matrix[7] = sin(theta)*cos(phi); Matrix[8] = cos(theta); helper.MatrixMultiplication(Matrix); helper.Scale(InverseLength); //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl; // 3. construct intersection point with unit sphere and ray between origin and x helper.Normalize(); // is simply normalizes vector in distance direction //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl; // 4. transform back the constructed intersection point psi = -EllipsoidAngle[0]; theta = -EllipsoidAngle[1]; phi = -EllipsoidAngle[2]; helper.Scale(EllipsoidLength); Matrix[0] = cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi); Matrix[1] = -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi); Matrix[2] = sin(psi)*sin(theta); Matrix[3] = sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi); Matrix[4] = cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi); Matrix[5] = -cos(psi)*sin(theta); Matrix[6] = sin(theta)*sin(phi); Matrix[7] = sin(theta)*cos(phi); Matrix[8] = cos(theta); helper.MatrixMultiplication(Matrix); //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl; // 5. determine distance between backtransformed point and x distance = RefPoint.DistanceSquared(&helper); //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl; return distance; //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl; }; /** structure for ellipsoid minimisation containing points to fit to. */ struct EllipsoidMinimisation { int N; //!< dimension of vector set Vector *x; //!< array of vectors }; /** Sum of squared distance to ellipsoid to be minimised. * \param *x parameters for the ellipsoid * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension * \return sum of squared distance, \sa SquaredDistanceToEllipsoid() */ double SumSquaredDistance (const gsl_vector * x, void * params) { Vector *set= ((struct EllipsoidMinimisation *)params)->x; int N = ((struct EllipsoidMinimisation *)params)->N; double SumDistance = 0.; double distance; Vector Center; double EllipsoidLength[3], EllipsoidAngle[3]; // put parameters into suitable ellipsoid form for (int i=0;i<3;i++) { Center.x[i] = gsl_vector_get(x, i+0); EllipsoidLength[i] = gsl_vector_get(x, i+3); EllipsoidAngle[i] = gsl_vector_get(x, i+6); } // go through all points and sum distance for (int i=0;i= 3) { // check that enough points are given (9 d.o.f.) struct EllipsoidMinimisation par; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0; double size; /* Starting point */ x = gsl_vector_alloc (9); for (int i=0;i<3;i++) { gsl_vector_set (x, i+0, EllipsoidCenter->x[i]); gsl_vector_set (x, i+3, EllipsoidLength[i]); gsl_vector_set (x, i+6, EllipsoidAngle[i]); } par.x = set; par.N = N; /* Set initial step sizes */ ss = gsl_vector_alloc (9); for (int i=0;i<3;i++) { gsl_vector_set (ss, i+0, 0.1); gsl_vector_set (ss, i+3, 1.0); gsl_vector_set (ss, i+6, M_PI/20.); } /* Initialize method and iterate */ minex_func.n = 9; minex_func.f = &SumSquaredDistance; minex_func.params = (void *)∥ s = gsl_multimin_fminimizer_alloc (T, 9); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { for (int i=0;i<3;i++) { EllipsoidCenter->x[i] = gsl_vector_get (s->x,i+0); EllipsoidLength[i] = gsl_vector_get (s->x, i+3); EllipsoidAngle[i] = gsl_vector_get (s->x, i+6); } Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl; } } while (status == GSL_CONTINUE && iter < 1000); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); } else { Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl; return false; } Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl; if (status == GSL_SUCCESS) return true; else return false; }; /** Picks a number of random points from a LC neighbourhood as a fitting set. * \param *out output stream for debugging * \param *T Tesselation containing boundary points * \param *LC linked cell list of all atoms * \param *&x random point set on return (not allocated!) * \param PointsToPick number of points in set to pick */ void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick) { size_t PointsLeft = 0; size_t PointsPicked = 0; int Nlower[NDIM], Nupper[NDIM]; set PickedAtomNrs; // ordered list of picked atoms set::iterator current; int index; TesselPoint *Candidate = NULL; Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl; // allocate array if (x == NULL) { x = new Vector[PointsToPick]; } else { eLog() << Verbose(2) << "Given pointer to vector array seems already allocated." << endl; } do { for(int i=0;in[i] = (rand() % LC->N[i]); Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... "; // get random cell const LinkedNodes *List = LC->GetCurrentCell(); if (List == NULL) { // set index to it continue; } Log() << Verbose(2) << "with No. " << LC->index << "." << endl; Log() << Verbose(2) << "LC Intervals:"; for (int i=0;in[i]-1) >= 0) ? LC->n[i]-1 : 0; Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1; Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] "; } Log() << Verbose(0) << endl; // count whether there are sufficient atoms in this cell+neighbors PointsLeft=0; for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { const LinkedNodes *List = LC->GetCurrentCell(); PointsLeft += List->size(); } Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl; if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all. continue; } // pre-pick a fixed number of atoms PickedAtomNrs.clear(); do { index = (rand() % PointsLeft); current = PickedAtomNrs.find(index); // not present? if (current == PickedAtomNrs.end()) { //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl; PickedAtomNrs.insert(index); } } while (PickedAtomNrs.size() < PointsToPick); index = 0; // now go through all and pick those whose from PickedAtomsNr PointsPicked=0; current = PickedAtomNrs.begin(); for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { const LinkedNodes *List = LC->GetCurrentCell(); // Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl; if (List != NULL) { // if (List->begin() != List->end()) // Log() << Verbose(2) << "Going through candidates ... " << endl; // else // Log() << Verbose(2) << "Cell is empty ... " << endl; for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { if ((current != PickedAtomNrs.end()) && (*current == index)) { Candidate = (*Runner); Log() << Verbose(2) << "Current picked node is " << **Runner << " with index " << index << "." << endl; x[PointsPicked++].CopyVector(Candidate->node); // we have one more atom picked current++; // next pre-picked atom } index++; // next atom nr. } // } else { // Log() << Verbose(2) << "List for this index not allocated!" << endl; } } Log() << Verbose(2) << "The following points were picked: " << endl; for (size_t i=0;iPointsOnBoundaryCount; size_t PointsPicked = 0; double value, threshold; PointMap *List = &T->PointsOnBoundary; Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl; // allocate array if (x == NULL) { x = new Vector[PointsToPick]; } else { eLog() << Verbose(2) << "Given pointer to vector array seems already allocated." << endl; } if (List != NULL) for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) { threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft; value = (double)rand()/(double)RAND_MAX; //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": "; if (value > threshold) { x[PointsPicked].CopyVector(Runner->second->node->node); PointsPicked++; //Log() << Verbose(0) << "IN." << endl; } else { //Log() << Verbose(0) << "OUT." << endl; } PointsLeft--; } Log() << Verbose(2) << "The following points were picked: " << endl; for (size_t i=0;iPointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++) Center.AddVector(Runner->second->node->node); Center.Scale(1./T->PointsOnBoundaryCount); Log() << Verbose(1) << "Center is at " << Center << "." << endl; // Output header output.open(filename, ios::trunc); output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl; // loop over desired number of parameter sets for (;number >0;number--) { Log() << Verbose(1) << "Determining data set " << number << " ... " << endl; // pick the point set x = NULL; //PickRandomPointSet(T, LCList, x, N); PickRandomNeighbouredPointSet(T, LCList, x, N); // calculate some sensible starting values for parameter fit MaxDistance = 0.; MinDistance = x[0].ScalarProduct(&x[0]); for (int i=0;i MaxDistance) MaxDistance = distance; if (distance < MinDistance) MinDistance = distance; } //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl; EllipsoidCenter.CopyVector(&Center); // use Center of Gravity as initial center of ellipsoid for (int i=0;i<3;i++) EllipsoidAngle[i] = 0.; EllipsoidLength[0] = sqrt(MaxDistance); EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.); EllipsoidLength[2] = sqrt(MinDistance); // fit the parameters if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) { Log() << Verbose(1) << "Picking succeeded!" << endl; // output obtained parameter set output << number << "\t"; for (int i=0;i<3;i++) output << setprecision(9) << EllipsoidCenter.x[i] << "\t"; for (int i=0;i<3;i++) output << setprecision(9) << EllipsoidLength[i] << "\t"; for (int i=0;i<3;i++) output << setprecision(9) << EllipsoidAngle[i] << "\t"; output << endl; } else { // increase N to pick one more Log() << Verbose(1) << "Picking failed!" << endl; number++; } delete[](x); // free allocated memory for point set } // close output and finish output.close(); Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl; };