source: src/ellipsoid.cpp@ 36166d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 36166d was 5108e1, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Removed MatrixMultiplication() method from Vector class

  • Property mode set to 100644
File size: 17.0 KB
Line 
1/*
2 * ellipsoid.cpp
3 *
4 * Created on: Jan 20, 2009
5 * Author: heber
6 */
7
8#include "Helpers/MemDebug.hpp"
9
10#include <gsl/gsl_multimin.h>
11#include <gsl/gsl_vector.h>
12
13#include <iomanip>
14
15#include <set>
16
17#include "boundary.hpp"
18#include "ellipsoid.hpp"
19#include "linkedcell.hpp"
20#include "log.hpp"
21#include "tesselation.hpp"
22#include "vector.hpp"
23#include "Matrix.hpp"
24#include "verbose.hpp"
25
26/** Determines squared distance for a given point \a x to surface of ellipsoid.
27 * \param x given point
28 * \param EllipsoidCenter center of ellipsoid
29 * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
30 * \param EllipsoidAngle[3] three rotation angles of ellipsoid
31 * \return squared distance from point to surface
32 */
33double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
34{
35 Vector helper, RefPoint;
36 double distance = -1.;
37 Matrix Matrix;
38 double InverseLength[3];
39 double psi,theta,phi; // euler angles in ZX'Z'' convention
40
41 //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
42
43 for(int i=0;i<3;i++)
44 InverseLength[i] = 1./EllipsoidLength[i];
45
46 // 1. translate coordinate system so that ellipsoid center is in origin
47 RefPoint = helper = x - EllipsoidCenter;
48 //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
49
50 // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
51 psi = EllipsoidAngle[0];
52 theta = EllipsoidAngle[1];
53 phi = EllipsoidAngle[2];
54 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
55 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
56 Matrix.set(2,0, sin(psi)*sin(theta));
57 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
58 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
59 Matrix.set(2,1, -cos(psi)*sin(theta));
60 Matrix.set(0,2, sin(theta)*sin(phi));
61 Matrix.set(1,2, sin(theta)*cos(phi));
62 Matrix.set(2,2, cos(theta));
63 helper *= Matrix;
64 helper.ScaleAll(InverseLength);
65 //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
66
67 // 3. construct intersection point with unit sphere and ray between origin and x
68 helper.Normalize(); // is simply normalizes vector in distance direction
69 //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
70
71 // 4. transform back the constructed intersection point
72 psi = -EllipsoidAngle[0];
73 theta = -EllipsoidAngle[1];
74 phi = -EllipsoidAngle[2];
75 helper.ScaleAll(EllipsoidLength);
76 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
77 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
78 Matrix.set(2,0, sin(psi)*sin(theta));
79 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
80 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
81 Matrix.set(2,1, -cos(psi)*sin(theta));
82 Matrix.set(0,2, sin(theta)*sin(phi));
83 Matrix.set(1,2, sin(theta)*cos(phi));
84 Matrix.set(2,2, cos(theta));
85 helper *= Matrix;
86 //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
87
88 // 5. determine distance between backtransformed point and x
89 distance = RefPoint.DistanceSquared(helper);
90 //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
91
92 return distance;
93 //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
94};
95
96/** structure for ellipsoid minimisation containing points to fit to.
97 */
98struct EllipsoidMinimisation {
99 int N; //!< dimension of vector set
100 Vector *x; //!< array of vectors
101};
102
103/** Sum of squared distance to ellipsoid to be minimised.
104 * \param *x parameters for the ellipsoid
105 * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
106 * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
107 */
108double SumSquaredDistance (const gsl_vector * x, void * params)
109{
110 Vector *set= ((struct EllipsoidMinimisation *)params)->x;
111 int N = ((struct EllipsoidMinimisation *)params)->N;
112 double SumDistance = 0.;
113 double distance;
114 Vector Center;
115 double EllipsoidLength[3], EllipsoidAngle[3];
116
117 // put parameters into suitable ellipsoid form
118 for (int i=0;i<3;i++) {
119 Center[i] = gsl_vector_get(x, i+0);
120 EllipsoidLength[i] = gsl_vector_get(x, i+3);
121 EllipsoidAngle[i] = gsl_vector_get(x, i+6);
122 }
123
124 // go through all points and sum distance
125 for (int i=0;i<N;i++) {
126 distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
127 if (!isnan(distance)) {
128 SumDistance += distance;
129 } else {
130 SumDistance = GSL_NAN;
131 break;
132 }
133 }
134
135 //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
136 return SumDistance;
137};
138
139/** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
140 * \param *out output stream for debugging
141 * \param *set given point set
142 * \param N number of points in set
143 * \param EllipsoidParamter[3] three parameters in ellipsoid equation
144 * \return true - fit successful, false - fit impossible
145 */
146bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
147{
148 int status = GSL_SUCCESS;
149 DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
150 if (N >= 3) { // check that enough points are given (9 d.o.f.)
151 struct EllipsoidMinimisation par;
152 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
153 gsl_multimin_fminimizer *s = NULL;
154 gsl_vector *ss, *x;
155 gsl_multimin_function minex_func;
156
157 size_t iter = 0;
158 double size;
159
160 /* Starting point */
161 x = gsl_vector_alloc (9);
162 for (int i=0;i<3;i++) {
163 gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
164 gsl_vector_set (x, i+3, EllipsoidLength[i]);
165 gsl_vector_set (x, i+6, EllipsoidAngle[i]);
166 }
167 par.x = set;
168 par.N = N;
169
170 /* Set initial step sizes */
171 ss = gsl_vector_alloc (9);
172 for (int i=0;i<3;i++) {
173 gsl_vector_set (ss, i+0, 0.1);
174 gsl_vector_set (ss, i+3, 1.0);
175 gsl_vector_set (ss, i+6, M_PI/20.);
176 }
177
178 /* Initialize method and iterate */
179 minex_func.n = 9;
180 minex_func.f = &SumSquaredDistance;
181 minex_func.params = (void *)&par;
182
183 s = gsl_multimin_fminimizer_alloc (T, 9);
184 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
185
186 do {
187 iter++;
188 status = gsl_multimin_fminimizer_iterate(s);
189
190 if (status)
191 break;
192
193 size = gsl_multimin_fminimizer_size (s);
194 status = gsl_multimin_test_size (size, 1e-2);
195
196 if (status == GSL_SUCCESS) {
197 for (int i=0;i<3;i++) {
198 EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
199 EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
200 EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
201 }
202 DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
203 }
204
205 } while (status == GSL_CONTINUE && iter < 1000);
206
207 gsl_vector_free(x);
208 gsl_vector_free(ss);
209 gsl_multimin_fminimizer_free (s);
210
211 } else {
212 DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
213 return false;
214 }
215 DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
216 if (status == GSL_SUCCESS)
217 return true;
218 else
219 return false;
220};
221
222/** Picks a number of random points from a LC neighbourhood as a fitting set.
223 * \param *out output stream for debugging
224 * \param *T Tesselation containing boundary points
225 * \param *LC linked cell list of all atoms
226 * \param *&x random point set on return (not allocated!)
227 * \param PointsToPick number of points in set to pick
228 */
229void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
230{
231 size_t PointsLeft = 0;
232 size_t PointsPicked = 0;
233 int Nlower[NDIM], Nupper[NDIM];
234 set<int> PickedAtomNrs; // ordered list of picked atoms
235 set<int>::iterator current;
236 int index;
237 TesselPoint *Candidate = NULL;
238 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
239
240 // allocate array
241 if (x == NULL) {
242 x = new Vector[PointsToPick];
243 } else {
244 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
245 }
246
247 do {
248 for(int i=0;i<NDIM;i++) // pick three random indices
249 LC->n[i] = (rand() % LC->N[i]);
250 DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
251 // get random cell
252 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
253 if (List == NULL) { // set index to it
254 continue;
255 }
256 DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
257
258 DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
259 for (int i=0;i<NDIM;i++) {
260 Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
261 Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
262 DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
263 }
264 DoLog(0) && (Log() << Verbose(0) << endl);
265
266 // count whether there are sufficient atoms in this cell+neighbors
267 PointsLeft=0;
268 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
269 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
270 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
271 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
272 PointsLeft += List->size();
273 }
274 DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
275 if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
276 continue;
277 }
278
279 // pre-pick a fixed number of atoms
280 PickedAtomNrs.clear();
281 do {
282 index = (rand() % PointsLeft);
283 current = PickedAtomNrs.find(index); // not present?
284 if (current == PickedAtomNrs.end()) {
285 //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl;
286 PickedAtomNrs.insert(index);
287 }
288 } while (PickedAtomNrs.size() < PointsToPick);
289
290 index = 0; // now go through all and pick those whose from PickedAtomsNr
291 PointsPicked=0;
292 current = PickedAtomNrs.begin();
293 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
294 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
295 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
296 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
297// Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
298 if (List != NULL) {
299// if (List->begin() != List->end())
300// Log() << Verbose(2) << "Going through candidates ... " << endl;
301// else
302// Log() << Verbose(2) << "Cell is empty ... " << endl;
303 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
304 if ((current != PickedAtomNrs.end()) && (*current == index)) {
305 Candidate = (*Runner);
306 DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << **Runner << " with index " << index << "." << endl);
307 x[PointsPicked++] = *Candidate->node; // we have one more atom picked
308 current++; // next pre-picked atom
309 }
310 index++; // next atom nr.
311 }
312// } else {
313// Log() << Verbose(2) << "List for this index not allocated!" << endl;
314 }
315 }
316 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
317 for (size_t i=0;i<PointsPicked;i++)
318 DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
319 if (PointsPicked == PointsToPick) // break out of loop if we have all
320 break;
321 } while(1);
322
323 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
324};
325
326/** Picks a number of random points from a set of boundary points as a fitting set.
327 * \param *out output stream for debugging
328 * \param *T Tesselation containing boundary points
329 * \param *&x random point set on return (not allocated!)
330 * \param PointsToPick number of points in set to pick
331 */
332void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
333{
334 size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
335 size_t PointsPicked = 0;
336 double value, threshold;
337 PointMap *List = &T->PointsOnBoundary;
338 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
339
340 // allocate array
341 if (x == NULL) {
342 x = new Vector[PointsToPick];
343 } else {
344 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
345 }
346
347 if (List != NULL)
348 for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
349 threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
350 value = (double)rand()/(double)RAND_MAX;
351 //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
352 if (value > threshold) {
353 x[PointsPicked] = (*Runner->second->node->node);
354 PointsPicked++;
355 //Log() << Verbose(0) << "IN." << endl;
356 } else {
357 //Log() << Verbose(0) << "OUT." << endl;
358 }
359 PointsLeft--;
360 }
361 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
362 for (size_t i=0;i<PointsPicked;i++)
363 DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
364
365 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
366};
367
368/** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
369 * \param *out output stream for debugging
370 * \param *T Tesselation containing boundary points
371 * \param *LCList linked cell list of all atoms
372 * \param N number of unique points in ellipsoid fit, must be greater equal 6
373 * \param number of fits (i.e. parameter sets in output file)
374 * \param *filename name for output file
375 */
376void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
377{
378 ofstream output;
379 Vector *x = NULL;
380 Vector Center;
381 Vector EllipsoidCenter;
382 double EllipsoidLength[3];
383 double EllipsoidAngle[3];
384 double distance, MaxDistance, MinDistance;
385 DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
386
387 // construct center of gravity of boundary point set for initial ellipsoid center
388 Center.Zero();
389 for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
390 Center += (*Runner->second->node->node);
391 Center.Scale(1./T->PointsOnBoundaryCount);
392 DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
393
394 // Output header
395 output.open(filename, ios::trunc);
396 output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
397
398 // loop over desired number of parameter sets
399 for (;number >0;number--) {
400 DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
401 // pick the point set
402 x = NULL;
403 //PickRandomPointSet(T, LCList, x, N);
404 PickRandomNeighbouredPointSet(T, LCList, x, N);
405
406 // calculate some sensible starting values for parameter fit
407 MaxDistance = 0.;
408 MinDistance = x[0].ScalarProduct(x[0]);
409 for (int i=0;i<N;i++) {
410 distance = x[i].ScalarProduct(x[i]);
411 if (distance > MaxDistance)
412 MaxDistance = distance;
413 if (distance < MinDistance)
414 MinDistance = distance;
415 }
416 //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
417 EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
418 for (int i=0;i<3;i++)
419 EllipsoidAngle[i] = 0.;
420 EllipsoidLength[0] = sqrt(MaxDistance);
421 EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
422 EllipsoidLength[2] = sqrt(MinDistance);
423
424 // fit the parameters
425 if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
426 DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
427 // output obtained parameter set
428 output << number << "\t";
429 for (int i=0;i<3;i++)
430 output << setprecision(9) << EllipsoidCenter[i] << "\t";
431 for (int i=0;i<3;i++)
432 output << setprecision(9) << EllipsoidLength[i] << "\t";
433 for (int i=0;i<3;i++)
434 output << setprecision(9) << EllipsoidAngle[i] << "\t";
435 output << endl;
436 } else { // increase N to pick one more
437 DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
438 number++;
439 }
440 delete[](x); // free allocated memory for point set
441 }
442 // close output and finish
443 output.close();
444
445 DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
446};
Note: See TracBrowser for help on using the repository browser.