[bcf653] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[6ac7ee] | 8 | /*
|
---|
| 9 | * ellipsoid.cpp
|
---|
| 10 | *
|
---|
[042f82] | 11 | * Created on: Jan 20, 2009
|
---|
| 12 | * Author: heber
|
---|
[6ac7ee] | 13 | */
|
---|
| 14 |
|
---|
[bf3817] | 15 | // include config.h
|
---|
| 16 | #ifdef HAVE_CONFIG_H
|
---|
| 17 | #include <config.h>
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
[ad011c] | 20 | #include "CodePatterns/MemDebug.hpp"
|
---|
[112b09] | 21 |
|
---|
[357fba] | 22 | #include <gsl/gsl_multimin.h>
|
---|
| 23 | #include <gsl/gsl_vector.h>
|
---|
| 24 |
|
---|
[f66195] | 25 | #include <iomanip>
|
---|
| 26 |
|
---|
| 27 | #include <set>
|
---|
| 28 |
|
---|
[d74077] | 29 | #include "BoundaryPointSet.hpp"
|
---|
[357fba] | 30 | #include "boundary.hpp"
|
---|
[6ac7ee] | 31 | #include "ellipsoid.hpp"
|
---|
[f66195] | 32 | #include "linkedcell.hpp"
|
---|
[ad011c] | 33 | #include "CodePatterns/Log.hpp"
|
---|
[f66195] | 34 | #include "tesselation.hpp"
|
---|
[57f243] | 35 | #include "LinearAlgebra/Vector.hpp"
|
---|
[cca9ef] | 36 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
[ad011c] | 37 | #include "CodePatterns/Verbose.hpp"
|
---|
[6ac7ee] | 38 |
|
---|
[a5028f] | 39 | #include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
|
---|
| 40 | #include "RandomNumbers/RandomNumberGenerator.hpp"
|
---|
| 41 |
|
---|
[6ac7ee] | 42 | /** Determines squared distance for a given point \a x to surface of ellipsoid.
|
---|
| 43 | * \param x given point
|
---|
| 44 | * \param EllipsoidCenter center of ellipsoid
|
---|
| 45 | * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
|
---|
| 46 | * \param EllipsoidAngle[3] three rotation angles of ellipsoid
|
---|
| 47 | * \return squared distance from point to surface
|
---|
| 48 | */
|
---|
| 49 | double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
| 50 | {
|
---|
[042f82] | 51 | Vector helper, RefPoint;
|
---|
| 52 | double distance = -1.;
|
---|
[cca9ef] | 53 | RealSpaceMatrix Matrix;
|
---|
[042f82] | 54 | double InverseLength[3];
|
---|
| 55 | double psi,theta,phi; // euler angles in ZX'Z'' convention
|
---|
| 56 |
|
---|
[e138de] | 57 | //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
|
---|
[042f82] | 58 |
|
---|
| 59 | for(int i=0;i<3;i++)
|
---|
| 60 | InverseLength[i] = 1./EllipsoidLength[i];
|
---|
| 61 |
|
---|
| 62 | // 1. translate coordinate system so that ellipsoid center is in origin
|
---|
[273382] | 63 | RefPoint = helper = x - EllipsoidCenter;
|
---|
[e138de] | 64 | //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
|
---|
[042f82] | 65 |
|
---|
| 66 | // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
|
---|
| 67 | psi = EllipsoidAngle[0];
|
---|
| 68 | theta = EllipsoidAngle[1];
|
---|
| 69 | phi = EllipsoidAngle[2];
|
---|
[a679d1] | 70 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 71 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 72 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 73 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 74 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 75 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 76 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 77 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 78 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 79 | helper *= Matrix;
|
---|
[1bd79e] | 80 | helper.ScaleAll(InverseLength);
|
---|
[e138de] | 81 | //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
|
---|
[042f82] | 82 |
|
---|
| 83 | // 3. construct intersection point with unit sphere and ray between origin and x
|
---|
| 84 | helper.Normalize(); // is simply normalizes vector in distance direction
|
---|
[e138de] | 85 | //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
|
---|
[042f82] | 86 |
|
---|
| 87 | // 4. transform back the constructed intersection point
|
---|
| 88 | psi = -EllipsoidAngle[0];
|
---|
| 89 | theta = -EllipsoidAngle[1];
|
---|
| 90 | phi = -EllipsoidAngle[2];
|
---|
[1bd79e] | 91 | helper.ScaleAll(EllipsoidLength);
|
---|
[a679d1] | 92 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 93 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 94 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 95 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 96 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 97 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 98 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 99 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 100 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 101 | helper *= Matrix;
|
---|
[e138de] | 102 | //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
|
---|
[042f82] | 103 |
|
---|
| 104 | // 5. determine distance between backtransformed point and x
|
---|
[273382] | 105 | distance = RefPoint.DistanceSquared(helper);
|
---|
[e138de] | 106 | //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
|
---|
[042f82] | 107 |
|
---|
| 108 | return distance;
|
---|
[e138de] | 109 | //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
|
---|
[6ac7ee] | 110 | };
|
---|
| 111 |
|
---|
| 112 | /** structure for ellipsoid minimisation containing points to fit to.
|
---|
| 113 | */
|
---|
| 114 | struct EllipsoidMinimisation {
|
---|
[042f82] | 115 | int N; //!< dimension of vector set
|
---|
| 116 | Vector *x; //!< array of vectors
|
---|
[6ac7ee] | 117 | };
|
---|
| 118 |
|
---|
| 119 | /** Sum of squared distance to ellipsoid to be minimised.
|
---|
| 120 | * \param *x parameters for the ellipsoid
|
---|
| 121 | * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
|
---|
| 122 | * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
|
---|
| 123 | */
|
---|
| 124 | double SumSquaredDistance (const gsl_vector * x, void * params)
|
---|
| 125 | {
|
---|
[042f82] | 126 | Vector *set= ((struct EllipsoidMinimisation *)params)->x;
|
---|
| 127 | int N = ((struct EllipsoidMinimisation *)params)->N;
|
---|
| 128 | double SumDistance = 0.;
|
---|
| 129 | double distance;
|
---|
| 130 | Vector Center;
|
---|
| 131 | double EllipsoidLength[3], EllipsoidAngle[3];
|
---|
| 132 |
|
---|
| 133 | // put parameters into suitable ellipsoid form
|
---|
| 134 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 135 | Center[i] = gsl_vector_get(x, i+0);
|
---|
[042f82] | 136 | EllipsoidLength[i] = gsl_vector_get(x, i+3);
|
---|
| 137 | EllipsoidAngle[i] = gsl_vector_get(x, i+6);
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | // go through all points and sum distance
|
---|
| 141 | for (int i=0;i<N;i++) {
|
---|
| 142 | distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
|
---|
| 143 | if (!isnan(distance)) {
|
---|
| 144 | SumDistance += distance;
|
---|
| 145 | } else {
|
---|
| 146 | SumDistance = GSL_NAN;
|
---|
| 147 | break;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 |
|
---|
[e138de] | 151 | //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
|
---|
[042f82] | 152 | return SumDistance;
|
---|
[6ac7ee] | 153 | };
|
---|
| 154 |
|
---|
| 155 | /** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
|
---|
| 156 | * \param *out output stream for debugging
|
---|
| 157 | * \param *set given point set
|
---|
| 158 | * \param N number of points in set
|
---|
| 159 | * \param EllipsoidParamter[3] three parameters in ellipsoid equation
|
---|
| 160 | * \return true - fit successful, false - fit impossible
|
---|
| 161 | */
|
---|
[e138de] | 162 | bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
[6ac7ee] | 163 | {
|
---|
[042f82] | 164 | int status = GSL_SUCCESS;
|
---|
[a67d19] | 165 | DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
|
---|
[042f82] | 166 | if (N >= 3) { // check that enough points are given (9 d.o.f.)
|
---|
| 167 | struct EllipsoidMinimisation par;
|
---|
| 168 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 169 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 170 | gsl_vector *ss, *x;
|
---|
| 171 | gsl_multimin_function minex_func;
|
---|
| 172 |
|
---|
| 173 | size_t iter = 0;
|
---|
| 174 | double size;
|
---|
| 175 |
|
---|
| 176 | /* Starting point */
|
---|
| 177 | x = gsl_vector_alloc (9);
|
---|
| 178 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 179 | gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
|
---|
[042f82] | 180 | gsl_vector_set (x, i+3, EllipsoidLength[i]);
|
---|
| 181 | gsl_vector_set (x, i+6, EllipsoidAngle[i]);
|
---|
| 182 | }
|
---|
| 183 | par.x = set;
|
---|
| 184 | par.N = N;
|
---|
| 185 |
|
---|
| 186 | /* Set initial step sizes */
|
---|
| 187 | ss = gsl_vector_alloc (9);
|
---|
| 188 | for (int i=0;i<3;i++) {
|
---|
| 189 | gsl_vector_set (ss, i+0, 0.1);
|
---|
| 190 | gsl_vector_set (ss, i+3, 1.0);
|
---|
| 191 | gsl_vector_set (ss, i+6, M_PI/20.);
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | /* Initialize method and iterate */
|
---|
| 195 | minex_func.n = 9;
|
---|
| 196 | minex_func.f = &SumSquaredDistance;
|
---|
| 197 | minex_func.params = (void *)∥
|
---|
| 198 |
|
---|
| 199 | s = gsl_multimin_fminimizer_alloc (T, 9);
|
---|
| 200 | gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
|
---|
| 201 |
|
---|
| 202 | do {
|
---|
| 203 | iter++;
|
---|
| 204 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 205 |
|
---|
| 206 | if (status)
|
---|
| 207 | break;
|
---|
| 208 |
|
---|
| 209 | size = gsl_multimin_fminimizer_size (s);
|
---|
| 210 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
| 211 |
|
---|
| 212 | if (status == GSL_SUCCESS) {
|
---|
| 213 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 214 | EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
|
---|
[042f82] | 215 | EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
|
---|
| 216 | EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
|
---|
| 217 | }
|
---|
[a67d19] | 218 | DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
|
---|
[042f82] | 219 | }
|
---|
| 220 |
|
---|
| 221 | } while (status == GSL_CONTINUE && iter < 1000);
|
---|
| 222 |
|
---|
| 223 | gsl_vector_free(x);
|
---|
| 224 | gsl_vector_free(ss);
|
---|
| 225 | gsl_multimin_fminimizer_free (s);
|
---|
| 226 |
|
---|
| 227 | } else {
|
---|
[a67d19] | 228 | DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
|
---|
[042f82] | 229 | return false;
|
---|
| 230 | }
|
---|
[a67d19] | 231 | DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
|
---|
[042f82] | 232 | if (status == GSL_SUCCESS)
|
---|
| 233 | return true;
|
---|
| 234 | else
|
---|
| 235 | return false;
|
---|
[6ac7ee] | 236 | };
|
---|
| 237 |
|
---|
| 238 | /** Picks a number of random points from a LC neighbourhood as a fitting set.
|
---|
| 239 | * \param *out output stream for debugging
|
---|
| 240 | * \param *T Tesselation containing boundary points
|
---|
| 241 | * \param *LC linked cell list of all atoms
|
---|
| 242 | * \param *&x random point set on return (not allocated!)
|
---|
| 243 | * \param PointsToPick number of points in set to pick
|
---|
| 244 | */
|
---|
[e138de] | 245 | void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 246 | {
|
---|
[70c333f] | 247 | size_t PointsLeft = 0;
|
---|
| 248 | size_t PointsPicked = 0;
|
---|
[042f82] | 249 | int Nlower[NDIM], Nupper[NDIM];
|
---|
| 250 | set<int> PickedAtomNrs; // ordered list of picked atoms
|
---|
| 251 | set<int>::iterator current;
|
---|
| 252 | int index;
|
---|
[357fba] | 253 | TesselPoint *Candidate = NULL;
|
---|
[a67d19] | 254 | DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
|
---|
[042f82] | 255 |
|
---|
| 256 | // allocate array
|
---|
| 257 | if (x == NULL) {
|
---|
| 258 | x = new Vector[PointsToPick];
|
---|
| 259 | } else {
|
---|
[58ed4a] | 260 | DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
|
---|
[042f82] | 261 | }
|
---|
| 262 |
|
---|
[a5028f] | 263 | RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
|
---|
| 264 | // check that random number generator's bounds are ok
|
---|
| 265 | ASSERT(random.min() == 0,
|
---|
| 266 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's min "
|
---|
| 267 | +toString(random.min())+" is not 0!");
|
---|
| 268 | ASSERT(random.max() >= LC->N[0],
|
---|
| 269 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 270 | +toString(random.max())+" is too small"+toString(LC->N[0])
|
---|
| 271 | +" for axis 0!");
|
---|
| 272 | ASSERT(random.max() >= LC->N[1],
|
---|
| 273 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 274 | +toString(random.max())+" is too small"+toString(LC->N[1])
|
---|
| 275 | +" for axis 1!");
|
---|
| 276 | ASSERT(random.max() >= LC->N[2],
|
---|
| 277 | "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
|
---|
| 278 | +toString(random.max())+" is too small"+toString(LC->N[2])
|
---|
| 279 | +" for axis 2!");
|
---|
| 280 |
|
---|
[042f82] | 281 | do {
|
---|
| 282 | for(int i=0;i<NDIM;i++) // pick three random indices
|
---|
[a5028f] | 283 | LC->n[i] = ((int)random() % LC->N[i]);
|
---|
[a67d19] | 284 | DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
|
---|
[042f82] | 285 | // get random cell
|
---|
[34c43a] | 286 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[042f82] | 287 | if (List == NULL) { // set index to it
|
---|
| 288 | continue;
|
---|
| 289 | }
|
---|
[a67d19] | 290 | DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
|
---|
[042f82] | 291 |
|
---|
[a67d19] | 292 | DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
|
---|
[042f82] | 293 | for (int i=0;i<NDIM;i++) {
|
---|
| 294 | Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
|
---|
| 295 | Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
|
---|
[a67d19] | 296 | DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
|
---|
[042f82] | 297 | }
|
---|
[a67d19] | 298 | DoLog(0) && (Log() << Verbose(0) << endl);
|
---|
[042f82] | 299 |
|
---|
| 300 | // count whether there are sufficient atoms in this cell+neighbors
|
---|
| 301 | PointsLeft=0;
|
---|
| 302 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 303 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 304 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 305 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[042f82] | 306 | PointsLeft += List->size();
|
---|
| 307 | }
|
---|
[a67d19] | 308 | DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
|
---|
[042f82] | 309 | if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
|
---|
| 310 | continue;
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | // pre-pick a fixed number of atoms
|
---|
| 314 | PickedAtomNrs.clear();
|
---|
| 315 | do {
|
---|
[a5028f] | 316 | index = (((int)random()) % PointsLeft);
|
---|
[042f82] | 317 | current = PickedAtomNrs.find(index); // not present?
|
---|
| 318 | if (current == PickedAtomNrs.end()) {
|
---|
[5309ba] | 319 | //Log() << Verbose(2) << "Picking atom Nr. " << index << "." << endl;
|
---|
[042f82] | 320 | PickedAtomNrs.insert(index);
|
---|
| 321 | }
|
---|
| 322 | } while (PickedAtomNrs.size() < PointsToPick);
|
---|
| 323 |
|
---|
| 324 | index = 0; // now go through all and pick those whose from PickedAtomsNr
|
---|
| 325 | PointsPicked=0;
|
---|
| 326 | current = PickedAtomNrs.begin();
|
---|
| 327 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 328 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 329 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[34c43a] | 330 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
[e138de] | 331 | // Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
|
---|
[042f82] | 332 | if (List != NULL) {
|
---|
| 333 | // if (List->begin() != List->end())
|
---|
[e138de] | 334 | // Log() << Verbose(2) << "Going through candidates ... " << endl;
|
---|
[042f82] | 335 | // else
|
---|
[e138de] | 336 | // Log() << Verbose(2) << "Cell is empty ... " << endl;
|
---|
[34c43a] | 337 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[042f82] | 338 | if ((current != PickedAtomNrs.end()) && (*current == index)) {
|
---|
| 339 | Candidate = (*Runner);
|
---|
[d74077] | 340 | DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << (*Runner)->getName() << " with index " << index << "." << endl);
|
---|
| 341 | x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
|
---|
[042f82] | 342 | current++; // next pre-picked atom
|
---|
| 343 | }
|
---|
[5309ba] | 344 | index++; // next atom Nr.
|
---|
[042f82] | 345 | }
|
---|
| 346 | // } else {
|
---|
[e138de] | 347 | // Log() << Verbose(2) << "List for this index not allocated!" << endl;
|
---|
[042f82] | 348 | }
|
---|
| 349 | }
|
---|
[a67d19] | 350 | DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
|
---|
[042f82] | 351 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[a67d19] | 352 | DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
|
---|
[042f82] | 353 | if (PointsPicked == PointsToPick) // break out of loop if we have all
|
---|
| 354 | break;
|
---|
| 355 | } while(1);
|
---|
| 356 |
|
---|
[a67d19] | 357 | DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
|
---|
[6ac7ee] | 358 | };
|
---|
| 359 |
|
---|
| 360 | /** Picks a number of random points from a set of boundary points as a fitting set.
|
---|
| 361 | * \param *out output stream for debugging
|
---|
| 362 | * \param *T Tesselation containing boundary points
|
---|
| 363 | * \param *&x random point set on return (not allocated!)
|
---|
| 364 | * \param PointsToPick number of points in set to pick
|
---|
| 365 | */
|
---|
[e138de] | 366 | void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 367 | {
|
---|
[70c333f] | 368 | size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
|
---|
| 369 | size_t PointsPicked = 0;
|
---|
[042f82] | 370 | double value, threshold;
|
---|
| 371 | PointMap *List = &T->PointsOnBoundary;
|
---|
[a67d19] | 372 | DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
|
---|
[042f82] | 373 |
|
---|
| 374 | // allocate array
|
---|
| 375 | if (x == NULL) {
|
---|
| 376 | x = new Vector[PointsToPick];
|
---|
| 377 | } else {
|
---|
[58ed4a] | 378 | DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
|
---|
[042f82] | 379 | }
|
---|
| 380 |
|
---|
[a5028f] | 381 | RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
|
---|
| 382 | const double rng_min = random.min();
|
---|
| 383 | const double rng_max = random.max();
|
---|
[042f82] | 384 | if (List != NULL)
|
---|
| 385 | for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 386 | threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
|
---|
[a5028f] | 387 | value = (double)random()/(double)(rng_max-rng_min);
|
---|
[e138de] | 388 | //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
|
---|
[042f82] | 389 | if (value > threshold) {
|
---|
[d74077] | 390 | x[PointsPicked] = (Runner->second->node->getPosition());
|
---|
[042f82] | 391 | PointsPicked++;
|
---|
[e138de] | 392 | //Log() << Verbose(0) << "IN." << endl;
|
---|
[042f82] | 393 | } else {
|
---|
[e138de] | 394 | //Log() << Verbose(0) << "OUT." << endl;
|
---|
[042f82] | 395 | }
|
---|
| 396 | PointsLeft--;
|
---|
| 397 | }
|
---|
[a67d19] | 398 | DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
|
---|
[042f82] | 399 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[a67d19] | 400 | DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
|
---|
[042f82] | 401 |
|
---|
[a67d19] | 402 | DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
|
---|
[6ac7ee] | 403 | };
|
---|
| 404 |
|
---|
| 405 | /** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
|
---|
| 406 | * \param *out output stream for debugging
|
---|
| 407 | * \param *T Tesselation containing boundary points
|
---|
| 408 | * \param *LCList linked cell list of all atoms
|
---|
| 409 | * \param N number of unique points in ellipsoid fit, must be greater equal 6
|
---|
| 410 | * \param number of fits (i.e. parameter sets in output file)
|
---|
| 411 | * \param *filename name for output file
|
---|
| 412 | */
|
---|
[e138de] | 413 | void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
|
---|
[6ac7ee] | 414 | {
|
---|
[042f82] | 415 | ofstream output;
|
---|
| 416 | Vector *x = NULL;
|
---|
| 417 | Vector Center;
|
---|
| 418 | Vector EllipsoidCenter;
|
---|
| 419 | double EllipsoidLength[3];
|
---|
| 420 | double EllipsoidAngle[3];
|
---|
| 421 | double distance, MaxDistance, MinDistance;
|
---|
[a67d19] | 422 | DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
|
---|
[042f82] | 423 |
|
---|
| 424 | // construct center of gravity of boundary point set for initial ellipsoid center
|
---|
| 425 | Center.Zero();
|
---|
| 426 | for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
|
---|
[d74077] | 427 | Center += (Runner->second->node->getPosition());
|
---|
[042f82] | 428 | Center.Scale(1./T->PointsOnBoundaryCount);
|
---|
[a67d19] | 429 | DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
|
---|
[042f82] | 430 |
|
---|
| 431 | // Output header
|
---|
| 432 | output.open(filename, ios::trunc);
|
---|
| 433 | output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
|
---|
| 434 |
|
---|
| 435 | // loop over desired number of parameter sets
|
---|
| 436 | for (;number >0;number--) {
|
---|
[a67d19] | 437 | DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
|
---|
[042f82] | 438 | // pick the point set
|
---|
| 439 | x = NULL;
|
---|
[e138de] | 440 | //PickRandomPointSet(T, LCList, x, N);
|
---|
| 441 | PickRandomNeighbouredPointSet(T, LCList, x, N);
|
---|
[042f82] | 442 |
|
---|
| 443 | // calculate some sensible starting values for parameter fit
|
---|
| 444 | MaxDistance = 0.;
|
---|
[273382] | 445 | MinDistance = x[0].ScalarProduct(x[0]);
|
---|
[042f82] | 446 | for (int i=0;i<N;i++) {
|
---|
[273382] | 447 | distance = x[i].ScalarProduct(x[i]);
|
---|
[042f82] | 448 | if (distance > MaxDistance)
|
---|
| 449 | MaxDistance = distance;
|
---|
| 450 | if (distance < MinDistance)
|
---|
| 451 | MinDistance = distance;
|
---|
| 452 | }
|
---|
[e138de] | 453 | //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
|
---|
[273382] | 454 | EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
|
---|
[042f82] | 455 | for (int i=0;i<3;i++)
|
---|
| 456 | EllipsoidAngle[i] = 0.;
|
---|
| 457 | EllipsoidLength[0] = sqrt(MaxDistance);
|
---|
| 458 | EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
|
---|
| 459 | EllipsoidLength[2] = sqrt(MinDistance);
|
---|
| 460 |
|
---|
| 461 | // fit the parameters
|
---|
[e138de] | 462 | if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
|
---|
[a67d19] | 463 | DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
|
---|
[042f82] | 464 | // output obtained parameter set
|
---|
| 465 | output << number << "\t";
|
---|
| 466 | for (int i=0;i<3;i++)
|
---|
[0a4f7f] | 467 | output << setprecision(9) << EllipsoidCenter[i] << "\t";
|
---|
[042f82] | 468 | for (int i=0;i<3;i++)
|
---|
| 469 | output << setprecision(9) << EllipsoidLength[i] << "\t";
|
---|
| 470 | for (int i=0;i<3;i++)
|
---|
| 471 | output << setprecision(9) << EllipsoidAngle[i] << "\t";
|
---|
| 472 | output << endl;
|
---|
| 473 | } else { // increase N to pick one more
|
---|
[a67d19] | 474 | DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
|
---|
[042f82] | 475 | number++;
|
---|
| 476 | }
|
---|
| 477 | delete[](x); // free allocated memory for point set
|
---|
| 478 | }
|
---|
| 479 | // close output and finish
|
---|
| 480 | output.close();
|
---|
| 481 |
|
---|
[a67d19] | 482 | DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
|
---|
[6ac7ee] | 483 | };
|
---|