| [6ac7ee] | 1 | /*
 | 
|---|
 | 2 |  * ellipsoid.cpp
 | 
|---|
 | 3 |  *
 | 
|---|
| [042f82] | 4 |  *  Created on: Jan 20, 2009
 | 
|---|
 | 5 |  *      Author: heber
 | 
|---|
| [6ac7ee] | 6 |  */
 | 
|---|
 | 7 | 
 | 
|---|
| [357fba] | 8 | #include <gsl/gsl_multimin.h>
 | 
|---|
 | 9 | #include <gsl/gsl_vector.h>
 | 
|---|
 | 10 | 
 | 
|---|
 | 11 | #include "boundary.hpp"
 | 
|---|
| [6ac7ee] | 12 | #include "ellipsoid.hpp"
 | 
|---|
 | 13 | 
 | 
|---|
 | 14 | /** Determines squared distance for a given point \a x to surface of ellipsoid.
 | 
|---|
 | 15 |  * \param x given point
 | 
|---|
 | 16 |  * \param EllipsoidCenter center of ellipsoid
 | 
|---|
 | 17 |  * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
 | 
|---|
 | 18 |  * \param EllipsoidAngle[3] three rotation angles of ellipsoid
 | 
|---|
 | 19 |  * \return squared distance from point to surface
 | 
|---|
 | 20 |  */
 | 
|---|
 | 21 | double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
 | 
|---|
 | 22 | {
 | 
|---|
| [042f82] | 23 |   Vector helper, RefPoint;
 | 
|---|
 | 24 |   double distance = -1.;
 | 
|---|
 | 25 |   double Matrix[NDIM*NDIM];
 | 
|---|
 | 26 |   double InverseLength[3];
 | 
|---|
 | 27 |   double psi,theta,phi; // euler angles in ZX'Z'' convention
 | 
|---|
 | 28 | 
 | 
|---|
 | 29 |   //cout << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
 | 
|---|
 | 30 | 
 | 
|---|
 | 31 |   for(int i=0;i<3;i++)
 | 
|---|
 | 32 |     InverseLength[i] = 1./EllipsoidLength[i];
 | 
|---|
 | 33 | 
 | 
|---|
 | 34 |   // 1. translate coordinate system so that ellipsoid center is in origin
 | 
|---|
 | 35 |   helper.CopyVector(&x);
 | 
|---|
 | 36 |   helper.SubtractVector(&EllipsoidCenter);
 | 
|---|
 | 37 |   RefPoint.CopyVector(&helper);
 | 
|---|
 | 38 |   //cout << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
 | 
|---|
 | 39 | 
 | 
|---|
 | 40 |   // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
 | 
|---|
 | 41 |   psi = EllipsoidAngle[0];
 | 
|---|
 | 42 |   theta = EllipsoidAngle[1];
 | 
|---|
 | 43 |   phi = EllipsoidAngle[2];
 | 
|---|
 | 44 |   Matrix[0] = cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi);
 | 
|---|
 | 45 |   Matrix[1] = -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi);
 | 
|---|
 | 46 |   Matrix[2] = sin(psi)*sin(theta);
 | 
|---|
 | 47 |   Matrix[3] = sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi);
 | 
|---|
 | 48 |   Matrix[4] = cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi);
 | 
|---|
 | 49 |   Matrix[5] = -cos(psi)*sin(theta);
 | 
|---|
 | 50 |   Matrix[6] = sin(theta)*sin(phi);
 | 
|---|
 | 51 |   Matrix[7] = sin(theta)*cos(phi);
 | 
|---|
 | 52 |   Matrix[8] = cos(theta);
 | 
|---|
 | 53 |   helper.MatrixMultiplication(Matrix);
 | 
|---|
 | 54 |   helper.Scale(InverseLength);
 | 
|---|
 | 55 |   //cout << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
 | 
|---|
 | 56 | 
 | 
|---|
 | 57 |   // 3. construct intersection point with unit sphere and ray between origin and x
 | 
|---|
 | 58 |   helper.Normalize(); // is simply normalizes vector in distance direction
 | 
|---|
 | 59 |   //cout << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
 | 
|---|
 | 60 | 
 | 
|---|
 | 61 |   // 4. transform back the constructed intersection point
 | 
|---|
 | 62 |   psi = -EllipsoidAngle[0];
 | 
|---|
 | 63 |   theta = -EllipsoidAngle[1];
 | 
|---|
 | 64 |   phi = -EllipsoidAngle[2];
 | 
|---|
 | 65 |   helper.Scale(EllipsoidLength);
 | 
|---|
 | 66 |   Matrix[0] = cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi);
 | 
|---|
 | 67 |   Matrix[1] = -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi);
 | 
|---|
 | 68 |   Matrix[2] = sin(psi)*sin(theta);
 | 
|---|
 | 69 |   Matrix[3] = sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi);
 | 
|---|
 | 70 |   Matrix[4] = cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi);
 | 
|---|
 | 71 |   Matrix[5] = -cos(psi)*sin(theta);
 | 
|---|
 | 72 |   Matrix[6] = sin(theta)*sin(phi);
 | 
|---|
 | 73 |   Matrix[7] = sin(theta)*cos(phi);
 | 
|---|
 | 74 |   Matrix[8] = cos(theta);
 | 
|---|
 | 75 |   helper.MatrixMultiplication(Matrix);
 | 
|---|
 | 76 |   //cout << Verbose(4) << "Intersection is at " << helper << "." << endl;
 | 
|---|
 | 77 | 
 | 
|---|
 | 78 |   // 5. determine distance between backtransformed point and x
 | 
|---|
 | 79 |   distance = RefPoint.DistanceSquared(&helper);
 | 
|---|
 | 80 |   //cout << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
 | 
|---|
 | 81 | 
 | 
|---|
 | 82 |   return distance;
 | 
|---|
 | 83 |   //cout << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
 | 
|---|
| [6ac7ee] | 84 | };
 | 
|---|
 | 85 | 
 | 
|---|
 | 86 | /** structure for ellipsoid minimisation containing points to fit to.
 | 
|---|
 | 87 |  */
 | 
|---|
 | 88 | struct EllipsoidMinimisation {
 | 
|---|
| [042f82] | 89 |   int N;      //!< dimension of vector set
 | 
|---|
 | 90 |   Vector *x;  //!< array of vectors
 | 
|---|
| [6ac7ee] | 91 | };
 | 
|---|
 | 92 | 
 | 
|---|
 | 93 | /** Sum of squared distance to ellipsoid to be minimised.
 | 
|---|
 | 94 |  * \param *x parameters for the ellipsoid
 | 
|---|
 | 95 |  * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
 | 
|---|
 | 96 |  * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
 | 
|---|
 | 97 |  */
 | 
|---|
 | 98 | double SumSquaredDistance (const gsl_vector * x, void * params)
 | 
|---|
 | 99 | {
 | 
|---|
| [042f82] | 100 |   Vector *set= ((struct EllipsoidMinimisation *)params)->x;
 | 
|---|
 | 101 |   int N = ((struct EllipsoidMinimisation *)params)->N;
 | 
|---|
 | 102 |   double SumDistance = 0.;
 | 
|---|
 | 103 |   double distance;
 | 
|---|
 | 104 |   Vector Center;
 | 
|---|
 | 105 |   double EllipsoidLength[3], EllipsoidAngle[3];
 | 
|---|
 | 106 | 
 | 
|---|
 | 107 |   // put parameters into suitable ellipsoid form
 | 
|---|
 | 108 |   for (int i=0;i<3;i++) {
 | 
|---|
 | 109 |     Center.x[i] = gsl_vector_get(x, i+0);
 | 
|---|
 | 110 |     EllipsoidLength[i] = gsl_vector_get(x, i+3);
 | 
|---|
 | 111 |     EllipsoidAngle[i] = gsl_vector_get(x, i+6);
 | 
|---|
 | 112 |   }
 | 
|---|
 | 113 | 
 | 
|---|
 | 114 |   // go through all points and sum distance
 | 
|---|
 | 115 |   for (int i=0;i<N;i++) {
 | 
|---|
 | 116 |     distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
 | 
|---|
 | 117 |     if (!isnan(distance)) {
 | 
|---|
 | 118 |       SumDistance += distance;
 | 
|---|
 | 119 |     } else {
 | 
|---|
 | 120 |       SumDistance = GSL_NAN;
 | 
|---|
 | 121 |       break;
 | 
|---|
 | 122 |     }
 | 
|---|
 | 123 |   }
 | 
|---|
 | 124 | 
 | 
|---|
 | 125 |   //cout << "Current summed distance is " << SumDistance << "." << endl;
 | 
|---|
 | 126 |   return SumDistance;
 | 
|---|
| [6ac7ee] | 127 | };
 | 
|---|
 | 128 | 
 | 
|---|
 | 129 | /** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
 | 
|---|
 | 130 |  * \param *out output stream for debugging
 | 
|---|
 | 131 |  * \param *set given point set
 | 
|---|
 | 132 |  * \param N number of points in set
 | 
|---|
 | 133 |  * \param EllipsoidParamter[3] three parameters in ellipsoid equation
 | 
|---|
 | 134 |  * \return true - fit successful, false - fit impossible
 | 
|---|
 | 135 |  */
 | 
|---|
 | 136 | bool FitPointSetToEllipsoid(ofstream *out, Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
 | 
|---|
 | 137 | {
 | 
|---|
| [042f82] | 138 |   int status = GSL_SUCCESS;
 | 
|---|
 | 139 |   *out << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl;
 | 
|---|
 | 140 |   if (N >= 3) { // check that enough points are given (9 d.o.f.)
 | 
|---|
 | 141 |     struct EllipsoidMinimisation par;
 | 
|---|
 | 142 |     const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
 | 
|---|
 | 143 |     gsl_multimin_fminimizer *s = NULL;
 | 
|---|
 | 144 |     gsl_vector *ss, *x;
 | 
|---|
 | 145 |     gsl_multimin_function minex_func;
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 |     size_t iter = 0;
 | 
|---|
 | 148 |     double size;
 | 
|---|
 | 149 | 
 | 
|---|
 | 150 |     /* Starting point */
 | 
|---|
 | 151 |     x = gsl_vector_alloc (9);
 | 
|---|
 | 152 |     for (int i=0;i<3;i++) {
 | 
|---|
 | 153 |       gsl_vector_set (x, i+0, EllipsoidCenter->x[i]);
 | 
|---|
 | 154 |       gsl_vector_set (x, i+3, EllipsoidLength[i]);
 | 
|---|
 | 155 |       gsl_vector_set (x, i+6, EllipsoidAngle[i]);
 | 
|---|
 | 156 |     }
 | 
|---|
 | 157 |     par.x = set;
 | 
|---|
 | 158 |     par.N = N;
 | 
|---|
 | 159 | 
 | 
|---|
 | 160 |     /* Set initial step sizes */
 | 
|---|
 | 161 |     ss = gsl_vector_alloc (9);
 | 
|---|
 | 162 |     for (int i=0;i<3;i++) {
 | 
|---|
 | 163 |       gsl_vector_set (ss, i+0, 0.1);
 | 
|---|
 | 164 |       gsl_vector_set (ss, i+3, 1.0);
 | 
|---|
 | 165 |       gsl_vector_set (ss, i+6, M_PI/20.);
 | 
|---|
 | 166 |     }
 | 
|---|
 | 167 | 
 | 
|---|
 | 168 |     /* Initialize method and iterate */
 | 
|---|
 | 169 |     minex_func.n = 9;
 | 
|---|
 | 170 |     minex_func.f = &SumSquaredDistance;
 | 
|---|
 | 171 |     minex_func.params = (void *)∥
 | 
|---|
 | 172 | 
 | 
|---|
 | 173 |     s = gsl_multimin_fminimizer_alloc (T, 9);
 | 
|---|
 | 174 |     gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 |     do {
 | 
|---|
 | 177 |       iter++;
 | 
|---|
 | 178 |       status = gsl_multimin_fminimizer_iterate(s);
 | 
|---|
 | 179 | 
 | 
|---|
 | 180 |       if (status)
 | 
|---|
 | 181 |         break;
 | 
|---|
 | 182 | 
 | 
|---|
 | 183 |       size = gsl_multimin_fminimizer_size (s);
 | 
|---|
 | 184 |       status = gsl_multimin_test_size (size, 1e-2);
 | 
|---|
 | 185 | 
 | 
|---|
 | 186 |       if (status == GSL_SUCCESS) {
 | 
|---|
 | 187 |         for (int i=0;i<3;i++) {
 | 
|---|
 | 188 |           EllipsoidCenter->x[i] = gsl_vector_get (s->x,i+0);
 | 
|---|
 | 189 |           EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
 | 
|---|
 | 190 |           EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
 | 
|---|
 | 191 |         }
 | 
|---|
 | 192 |         *out << setprecision(3) << Verbose(4) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl;
 | 
|---|
 | 193 |       }
 | 
|---|
 | 194 | 
 | 
|---|
 | 195 |     } while (status == GSL_CONTINUE && iter < 1000);
 | 
|---|
 | 196 | 
 | 
|---|
 | 197 |     gsl_vector_free(x);
 | 
|---|
 | 198 |     gsl_vector_free(ss);
 | 
|---|
 | 199 |     gsl_multimin_fminimizer_free (s);
 | 
|---|
 | 200 | 
 | 
|---|
 | 201 |   } else {
 | 
|---|
 | 202 |     *out << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl;
 | 
|---|
 | 203 |     return false;
 | 
|---|
 | 204 |   }
 | 
|---|
 | 205 |   *out << Verbose(2) << "End of FitPointSetToEllipsoid" << endl;
 | 
|---|
 | 206 |   if (status == GSL_SUCCESS)
 | 
|---|
 | 207 |     return true;
 | 
|---|
 | 208 |   else
 | 
|---|
 | 209 |     return false;
 | 
|---|
| [6ac7ee] | 210 | };
 | 
|---|
 | 211 | 
 | 
|---|
 | 212 | /** Picks a number of random points from a LC neighbourhood as a fitting set.
 | 
|---|
 | 213 |  * \param *out output stream for debugging
 | 
|---|
 | 214 |  * \param *T Tesselation containing boundary points
 | 
|---|
 | 215 |  * \param *LC linked cell list of all atoms
 | 
|---|
 | 216 |  * \param *&x random point set on return (not allocated!)
 | 
|---|
 | 217 |  * \param PointsToPick number of points in set to pick
 | 
|---|
 | 218 |  */
 | 
|---|
| [70c333f] | 219 | void PickRandomNeighbouredPointSet(ofstream *out, class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
 | 
|---|
| [6ac7ee] | 220 | {
 | 
|---|
| [70c333f] | 221 |   size_t PointsLeft = 0;
 | 
|---|
 | 222 |   size_t PointsPicked = 0;
 | 
|---|
| [042f82] | 223 |   int Nlower[NDIM], Nupper[NDIM];
 | 
|---|
 | 224 |   set<int> PickedAtomNrs;   // ordered list of picked atoms
 | 
|---|
 | 225 |   set<int>::iterator current;
 | 
|---|
 | 226 |   int index;
 | 
|---|
| [357fba] | 227 |   TesselPoint *Candidate = NULL;
 | 
|---|
 | 228 |   LinkedNodes *List = NULL;
 | 
|---|
| [042f82] | 229 |   *out << Verbose(2) << "Begin of PickRandomPointSet" << endl;
 | 
|---|
 | 230 | 
 | 
|---|
 | 231 |   // allocate array
 | 
|---|
 | 232 |   if (x == NULL) {
 | 
|---|
 | 233 |     x = new Vector[PointsToPick];
 | 
|---|
 | 234 |   } else {
 | 
|---|
 | 235 |     *out << "WARNING: Given pointer to vector array seems already allocated." << endl;
 | 
|---|
 | 236 |   }
 | 
|---|
 | 237 | 
 | 
|---|
 | 238 |   do {
 | 
|---|
 | 239 |     for(int i=0;i<NDIM;i++) // pick three random indices
 | 
|---|
 | 240 |       LC->n[i] = (rand() % LC->N[i]);
 | 
|---|
 | 241 |     *out << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ";
 | 
|---|
 | 242 |     // get random cell
 | 
|---|
 | 243 |     List = LC->GetCurrentCell();
 | 
|---|
 | 244 |     if (List == NULL) {  // set index to it
 | 
|---|
 | 245 |       continue;
 | 
|---|
 | 246 |     }
 | 
|---|
 | 247 |     *out << "with No. " << LC->index << "." << endl;
 | 
|---|
 | 248 | 
 | 
|---|
 | 249 |     *out << Verbose(2) << "LC Intervals:";
 | 
|---|
 | 250 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
 | 251 |       Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
 | 
|---|
 | 252 |       Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
 | 
|---|
 | 253 |       *out << " [" << Nlower[i] << "," << Nupper[i] << "] ";
 | 
|---|
 | 254 |     }
 | 
|---|
 | 255 |     *out << endl;
 | 
|---|
 | 256 | 
 | 
|---|
 | 257 |     // count whether there are sufficient atoms in this cell+neighbors
 | 
|---|
 | 258 |     PointsLeft=0;
 | 
|---|
 | 259 |     for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
 | 
|---|
 | 260 |       for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
 | 
|---|
 | 261 |         for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
 | 
|---|
 | 262 |           List = LC->GetCurrentCell();
 | 
|---|
 | 263 |           PointsLeft += List->size();
 | 
|---|
 | 264 |         }
 | 
|---|
 | 265 |     *out << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl;
 | 
|---|
 | 266 |     if (PointsLeft < PointsToPick) {  // ensure that we can pick enough points in its neighbourhood at all.
 | 
|---|
 | 267 |       continue;
 | 
|---|
 | 268 |     }
 | 
|---|
 | 269 | 
 | 
|---|
 | 270 |     // pre-pick a fixed number of atoms
 | 
|---|
 | 271 |     PickedAtomNrs.clear();
 | 
|---|
 | 272 |     do {
 | 
|---|
 | 273 |       index = (rand() % PointsLeft);
 | 
|---|
 | 274 |       current = PickedAtomNrs.find(index);  // not present?
 | 
|---|
 | 275 |       if (current == PickedAtomNrs.end()) {
 | 
|---|
 | 276 |         //*out << Verbose(2) << "Picking atom nr. " << index << "." << endl;
 | 
|---|
 | 277 |         PickedAtomNrs.insert(index);
 | 
|---|
 | 278 |       }
 | 
|---|
 | 279 |     } while (PickedAtomNrs.size() < PointsToPick);
 | 
|---|
 | 280 | 
 | 
|---|
 | 281 |     index = 0; // now go through all and pick those whose from PickedAtomsNr
 | 
|---|
 | 282 |     PointsPicked=0;
 | 
|---|
 | 283 |     current = PickedAtomNrs.begin();
 | 
|---|
 | 284 |     for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
 | 
|---|
 | 285 |       for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
 | 
|---|
 | 286 |         for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
 | 
|---|
 | 287 |           List = LC->GetCurrentCell();
 | 
|---|
 | 288 | //          *out << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
 | 
|---|
 | 289 |           if (List != NULL) {
 | 
|---|
 | 290 | //            if (List->begin() != List->end())
 | 
|---|
 | 291 | //              *out << Verbose(2) << "Going through candidates ... " << endl;
 | 
|---|
 | 292 | //            else
 | 
|---|
 | 293 | //              *out << Verbose(2) << "Cell is empty ... " << endl;
 | 
|---|
| [357fba] | 294 |             for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
 | 
|---|
| [042f82] | 295 |               if ((current != PickedAtomNrs.end()) && (*current == index)) {
 | 
|---|
 | 296 |                 Candidate = (*Runner);
 | 
|---|
 | 297 |                 *out << Verbose(2) << "Current picked node is " << **Runner << " with index " << index << "." << endl;
 | 
|---|
| [357fba] | 298 |                 x[PointsPicked++].CopyVector(Candidate->node);    // we have one more atom picked
 | 
|---|
| [042f82] | 299 |                 current++;    // next pre-picked atom
 | 
|---|
 | 300 |               }
 | 
|---|
 | 301 |               index++;  // next atom nr.
 | 
|---|
 | 302 |             }
 | 
|---|
 | 303 | //          } else {
 | 
|---|
 | 304 | //            *out << Verbose(2) << "List for this index not allocated!" << endl;
 | 
|---|
 | 305 |           }
 | 
|---|
 | 306 |         }
 | 
|---|
 | 307 |     *out << Verbose(2) << "The following points were picked: " << endl;
 | 
|---|
 | 308 |     for (size_t i=0;i<PointsPicked;i++)
 | 
|---|
 | 309 |       *out << Verbose(2) << x[i] << endl;
 | 
|---|
 | 310 |     if (PointsPicked == PointsToPick)  // break out of loop if we have all
 | 
|---|
 | 311 |       break;
 | 
|---|
 | 312 |   } while(1);
 | 
|---|
 | 313 | 
 | 
|---|
 | 314 |   *out << Verbose(2) << "End of PickRandomPointSet" << endl;
 | 
|---|
| [6ac7ee] | 315 | };
 | 
|---|
 | 316 | 
 | 
|---|
 | 317 | /** Picks a number of random points from a set of boundary points as a fitting set.
 | 
|---|
 | 318 |  * \param *out output stream for debugging
 | 
|---|
 | 319 |  * \param *T Tesselation containing boundary points
 | 
|---|
 | 320 |  * \param *&x random point set on return (not allocated!)
 | 
|---|
 | 321 |  * \param PointsToPick number of points in set to pick
 | 
|---|
 | 322 |  */
 | 
|---|
| [70c333f] | 323 | void PickRandomPointSet(ofstream *out, class Tesselation *T, Vector *&x, size_t PointsToPick)
 | 
|---|
| [6ac7ee] | 324 | {
 | 
|---|
| [70c333f] | 325 |   size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
 | 
|---|
 | 326 |   size_t PointsPicked = 0;
 | 
|---|
| [042f82] | 327 |   double value, threshold;
 | 
|---|
 | 328 |   PointMap *List = &T->PointsOnBoundary;
 | 
|---|
 | 329 |   *out << Verbose(2) << "Begin of PickRandomPointSet" << endl;
 | 
|---|
 | 330 | 
 | 
|---|
 | 331 |   // allocate array
 | 
|---|
 | 332 |   if (x == NULL) {
 | 
|---|
 | 333 |     x = new Vector[PointsToPick];
 | 
|---|
 | 334 |   } else {
 | 
|---|
 | 335 |     *out << "WARNING: Given pointer to vector array seems already allocated." << endl;
 | 
|---|
 | 336 |   }
 | 
|---|
 | 337 | 
 | 
|---|
 | 338 |   if (List != NULL)
 | 
|---|
 | 339 |     for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
 | 
|---|
 | 340 |       threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
 | 
|---|
 | 341 |       value = (double)rand()/(double)RAND_MAX;
 | 
|---|
 | 342 |       //*out << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
 | 
|---|
 | 343 |       if (value > threshold) {
 | 
|---|
| [357fba] | 344 |         x[PointsPicked].CopyVector(Runner->second->node->node);
 | 
|---|
| [042f82] | 345 |         PointsPicked++;
 | 
|---|
 | 346 |         //*out << "IN." << endl;
 | 
|---|
 | 347 |       } else {
 | 
|---|
 | 348 |         //*out << "OUT." << endl;
 | 
|---|
 | 349 |       }
 | 
|---|
 | 350 |       PointsLeft--;
 | 
|---|
 | 351 |     }
 | 
|---|
 | 352 |   *out << Verbose(2) << "The following points were picked: " << endl;
 | 
|---|
 | 353 |   for (size_t i=0;i<PointsPicked;i++)
 | 
|---|
 | 354 |     *out << Verbose(3) << x[i] << endl;
 | 
|---|
 | 355 | 
 | 
|---|
 | 356 |   *out << Verbose(2) << "End of PickRandomPointSet" << endl;
 | 
|---|
| [6ac7ee] | 357 | };
 | 
|---|
 | 358 | 
 | 
|---|
 | 359 | /** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
 | 
|---|
 | 360 |  * \param *out output stream for debugging
 | 
|---|
 | 361 |  * \param *T Tesselation containing boundary points
 | 
|---|
 | 362 |  * \param *LCList linked cell list of all atoms
 | 
|---|
 | 363 |  * \param N number of unique points in ellipsoid fit, must be greater equal 6
 | 
|---|
 | 364 |  * \param number of fits (i.e. parameter sets in output file)
 | 
|---|
 | 365 |  * \param *filename name for output file
 | 
|---|
 | 366 |  */
 | 
|---|
 | 367 | void FindDistributionOfEllipsoids(ofstream *out, class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
 | 
|---|
 | 368 | {
 | 
|---|
| [042f82] | 369 |   ofstream output;
 | 
|---|
 | 370 |   Vector *x = NULL;
 | 
|---|
 | 371 |   Vector Center;
 | 
|---|
 | 372 |   Vector EllipsoidCenter;
 | 
|---|
 | 373 |   double EllipsoidLength[3];
 | 
|---|
 | 374 |   double EllipsoidAngle[3];
 | 
|---|
 | 375 |   double distance, MaxDistance, MinDistance;
 | 
|---|
 | 376 |   *out << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl;
 | 
|---|
 | 377 | 
 | 
|---|
 | 378 |   // construct center of gravity of boundary point set for initial ellipsoid center
 | 
|---|
 | 379 |   Center.Zero();
 | 
|---|
 | 380 |   for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
 | 
|---|
| [357fba] | 381 |     Center.AddVector(Runner->second->node->node);
 | 
|---|
| [042f82] | 382 |   Center.Scale(1./T->PointsOnBoundaryCount);
 | 
|---|
 | 383 |   *out << Verbose(1) << "Center is at " << Center << "." << endl;
 | 
|---|
 | 384 | 
 | 
|---|
 | 385 |   // Output header
 | 
|---|
 | 386 |   output.open(filename, ios::trunc);
 | 
|---|
 | 387 |   output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
 | 
|---|
 | 388 | 
 | 
|---|
 | 389 |   // loop over desired number of parameter sets
 | 
|---|
 | 390 |   for (;number >0;number--) {
 | 
|---|
 | 391 |     *out << Verbose(1) << "Determining data set " << number << " ... " << endl;
 | 
|---|
 | 392 |     // pick the point set
 | 
|---|
 | 393 |     x = NULL;
 | 
|---|
 | 394 |     //PickRandomPointSet(out, T, LCList, x, N);
 | 
|---|
 | 395 |     PickRandomNeighbouredPointSet(out, T, LCList, x, N);
 | 
|---|
 | 396 | 
 | 
|---|
 | 397 |     // calculate some sensible starting values for parameter fit
 | 
|---|
 | 398 |     MaxDistance = 0.;
 | 
|---|
 | 399 |     MinDistance = x[0].ScalarProduct(&x[0]);
 | 
|---|
 | 400 |     for (int i=0;i<N;i++) {
 | 
|---|
 | 401 |       distance = x[i].ScalarProduct(&x[i]);
 | 
|---|
 | 402 |       if (distance > MaxDistance)
 | 
|---|
 | 403 |         MaxDistance = distance;
 | 
|---|
 | 404 |       if (distance < MinDistance)
 | 
|---|
 | 405 |         MinDistance = distance;
 | 
|---|
 | 406 |     }
 | 
|---|
 | 407 |     //*out << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
 | 
|---|
 | 408 |     EllipsoidCenter.CopyVector(&Center);  // use Center of Gravity as initial center of ellipsoid
 | 
|---|
 | 409 |     for (int i=0;i<3;i++)
 | 
|---|
 | 410 |       EllipsoidAngle[i] = 0.;
 | 
|---|
 | 411 |     EllipsoidLength[0] = sqrt(MaxDistance);
 | 
|---|
 | 412 |     EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
 | 
|---|
 | 413 |     EllipsoidLength[2] = sqrt(MinDistance);
 | 
|---|
 | 414 | 
 | 
|---|
 | 415 |     // fit the parameters
 | 
|---|
 | 416 |     if (FitPointSetToEllipsoid(out, x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
 | 
|---|
 | 417 |       *out << Verbose(1) << "Picking succeeded!" << endl;
 | 
|---|
 | 418 |       // output obtained parameter set
 | 
|---|
 | 419 |       output << number << "\t";
 | 
|---|
 | 420 |       for (int i=0;i<3;i++)
 | 
|---|
 | 421 |         output << setprecision(9) << EllipsoidCenter.x[i] << "\t";
 | 
|---|
 | 422 |       for (int i=0;i<3;i++)
 | 
|---|
 | 423 |         output << setprecision(9) << EllipsoidLength[i] << "\t";
 | 
|---|
 | 424 |       for (int i=0;i<3;i++)
 | 
|---|
 | 425 |         output << setprecision(9) << EllipsoidAngle[i] << "\t";
 | 
|---|
 | 426 |       output << endl;
 | 
|---|
 | 427 |     } else { // increase N to pick one more
 | 
|---|
 | 428 |       *out << Verbose(1) << "Picking failed!" << endl;
 | 
|---|
 | 429 |       number++;
 | 
|---|
 | 430 |     }
 | 
|---|
 | 431 |     delete[](x);  // free allocated memory for point set
 | 
|---|
 | 432 |   }
 | 
|---|
 | 433 |   // close output and finish
 | 
|---|
 | 434 |   output.close();
 | 
|---|
 | 435 | 
 | 
|---|
 | 436 |   *out << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl;
 | 
|---|
| [6ac7ee] | 437 | };
 | 
|---|