/** \file config.cpp * * Function implementations for the class config. * */ #include "Helpers/MemDebug.hpp" #include #include #include "atom.hpp" #include "bond.hpp" #include "bondgraph.hpp" #include "config.hpp" #include "ConfigFileBuffer.hpp" #include "element.hpp" #include "helpers.hpp" #include "info.hpp" #include "lists.hpp" #include "log.hpp" #include "molecule.hpp" #include "memoryallocator.hpp" #include "molecule.hpp" #include "periodentafel.hpp" #include "ThermoStatContainer.hpp" #include "World.hpp" #include "Matrix.hpp" #include "Box.hpp" /************************************* Functions for class config ***************************/ /** Constructor for config file class. */ config::config() : BG(NULL), Thermostats(0), PsiType(0), MaxPsiDouble(0), PsiMaxNoUp(0), PsiMaxNoDown(0), MaxMinStopStep(1), InitMaxMinStopStep(1), ProcPEGamma(8), ProcPEPsi(1), configname(NULL), FastParsing(false), Deltat(0.01), basis(""), databasepath(NULL), DoConstrainedMD(0), MaxOuterStep(0), mainname(NULL), defaultpath(NULL), pseudopotpath(NULL), DoOutVis(0), DoOutMes(1), DoOutNICS(0), DoOutOrbitals(0), DoOutCurrent(0), DoFullCurrent(0), DoPerturbation(0), DoWannier(0), CommonWannier(0), SawtoothStart(0.01), VectorPlane(0), VectorCut(0.), UseAddGramSch(1), Seed(1), OutVisStep(10), OutSrcStep(5), MaxPsiStep(0), EpsWannier(1e-7), MaxMinStep(100), RelEpsTotalEnergy(1e-7), RelEpsKineticEnergy(1e-5), MaxMinGapStopStep(0), MaxInitMinStep(100), InitRelEpsTotalEnergy(1e-5), InitRelEpsKineticEnergy(1e-4), InitMaxMinGapStopStep(0), ECut(128.), MaxLevel(5), RiemannTensor(0), LevRFactor(0), RiemannLevel(0), Lev0Factor(2), RTActualUse(0), AddPsis(0), RCut(20.), StructOpt(0), IsAngstroem(1), RelativeCoord(0), MaxTypes(0) { mainname = new char[MAXSTRINGSIZE]; defaultpath = new char[MAXSTRINGSIZE]; pseudopotpath = new char[MAXSTRINGSIZE]; databasepath = new char[MAXSTRINGSIZE]; configname = new char[MAXSTRINGSIZE]; Thermostats = new ThermoStatContainer(); strcpy(mainname,"pcp"); strcpy(defaultpath,"not specified"); strcpy(pseudopotpath,"not specified"); configname[0]='\0'; basis = "3-21G"; }; /** Destructor for config file class. */ config::~config() { delete[](mainname); delete[](defaultpath); delete[](pseudopotpath); delete[](databasepath); delete[](configname); if (Thermostats != NULL) delete(Thermostats); if (BG != NULL) delete(BG); }; /** Displays menu for editing each entry of the config file. * Nothing fancy here, just lots of Log() << Verbose(0)s for the menu and a switch/case * for each entry of the config file structure. */ void config::Edit() { char choice; do { DoLog(0) && (Log() << Verbose(0) << "===========EDIT CONFIGURATION============================" << endl); DoLog(0) && (Log() << Verbose(0) << " A - mainname (prefix for all runtime files)" << endl); DoLog(0) && (Log() << Verbose(0) << " B - Default path (for runtime files)" << endl); DoLog(0) && (Log() << Verbose(0) << " C - Path of pseudopotential files" << endl); DoLog(0) && (Log() << Verbose(0) << " D - Number of coefficient sharing processes" << endl); DoLog(0) && (Log() << Verbose(0) << " E - Number of wave function sharing processes" << endl); DoLog(0) && (Log() << Verbose(0) << " F - 0: Don't output density for OpenDX, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " G - 0: Don't output physical data, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " H - 0: Don't output densities of each unperturbed orbital for OpenDX, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " I - 0: Don't output current density for OpenDX, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " J - 0: Don't do the full current calculation, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " K - 0: Don't do perturbation calculation to obtain susceptibility and shielding, 1: do" << endl); DoLog(0) && (Log() << Verbose(0) << " L - 0: Wannier centres as calculated, 1: common centre for all, 2: unite centres according to spread, 3: cell centre, 4: shifted to nearest grid point" << endl); DoLog(0) && (Log() << Verbose(0) << " M - Absolute begin of unphysical sawtooth transfer for position operator within cell" << endl); DoLog(0) && (Log() << Verbose(0) << " N - (0,1,2) x,y,z-plane to do two-dimensional current vector cut" << endl); DoLog(0) && (Log() << Verbose(0) << " O - Absolute position along vector cut axis for cut plane" << endl); DoLog(0) && (Log() << Verbose(0) << " P - Additional Gram-Schmidt-Orthonormalization to stabilize numerics" << endl); DoLog(0) && (Log() << Verbose(0) << " Q - Initial integer value of random number generator" << endl); DoLog(0) && (Log() << Verbose(0) << " R - for perturbation 0, for structure optimization defines upper limit of iterations" << endl); DoLog(0) && (Log() << Verbose(0) << " T - Output visual after ...th step" << endl); DoLog(0) && (Log() << Verbose(0) << " U - Output source densities of wave functions after ...th step" << endl); DoLog(0) && (Log() << Verbose(0) << " X - minimization iterations per wave function, if unsure leave at default value 0" << endl); DoLog(0) && (Log() << Verbose(0) << " Y - tolerance value for total spread in iterative Jacobi diagonalization" << endl); DoLog(0) && (Log() << Verbose(0) << " Z - Maximum number of minimization iterations" << endl); DoLog(0) && (Log() << Verbose(0) << " a - Relative change in total energy to stop min. iteration" << endl); DoLog(0) && (Log() << Verbose(0) << " b - Relative change in kinetic energy to stop min. iteration" << endl); DoLog(0) && (Log() << Verbose(0) << " c - Check stop conditions every ..th step during min. iteration" << endl); DoLog(0) && (Log() << Verbose(0) << " e - Maximum number of minimization iterations during initial level" << endl); DoLog(0) && (Log() << Verbose(0) << " f - Relative change in total energy to stop min. iteration during initial level" << endl); DoLog(0) && (Log() << Verbose(0) << " g - Relative change in kinetic energy to stop min. iteration during initial level" << endl); DoLog(0) && (Log() << Verbose(0) << " h - Check stop conditions every ..th step during min. iteration during initial level" << endl); // Log() << Verbose(0) << " j - six lower diagonal entries of matrix, defining the unit cell" << endl; DoLog(0) && (Log() << Verbose(0) << " k - Energy cutoff of plane wave basis in Hartree" << endl); DoLog(0) && (Log() << Verbose(0) << " l - Maximum number of levels in multi-level-ansatz" << endl); DoLog(0) && (Log() << Verbose(0) << " m - Factor by which grid nodes increase between standard and upper level" << endl); DoLog(0) && (Log() << Verbose(0) << " n - 0: Don't use RiemannTensor, 1: Do" << endl); DoLog(0) && (Log() << Verbose(0) << " o - Factor by which grid nodes increase between Riemann and standard(?) level" << endl); DoLog(0) && (Log() << Verbose(0) << " p - Number of Riemann levels" << endl); DoLog(0) && (Log() << Verbose(0) << " r - 0: Don't Use RiemannTensor, 1: Do" << endl); DoLog(0) && (Log() << Verbose(0) << " s - 0: Doubly occupied orbitals, 1: Up-/Down-Orbitals" << endl); DoLog(0) && (Log() << Verbose(0) << " t - Number of orbitals (depends pn SpinType)" << endl); DoLog(0) && (Log() << Verbose(0) << " u - Number of SpinUp orbitals (depends on SpinType)" << endl); DoLog(0) && (Log() << Verbose(0) << " v - Number of SpinDown orbitals (depends on SpinType)" << endl); DoLog(0) && (Log() << Verbose(0) << " w - Number of additional, unoccupied orbitals" << endl); DoLog(0) && (Log() << Verbose(0) << " x - radial cutoff for ewald summation in Bohrradii" << endl); DoLog(0) && (Log() << Verbose(0) << " y - 0: Don't do structure optimization beforehand, 1: Do" << endl); DoLog(0) && (Log() << Verbose(0) << " z - 0: Units are in Bohr radii, 1: units are in Aengstrom" << endl); DoLog(0) && (Log() << Verbose(0) << " i - 0: Coordinates given in file are absolute, 1: ... are relative to unit cell" << endl); DoLog(0) && (Log() << Verbose(0) << "=========================================================" << endl); DoLog(0) && (Log() << Verbose(0) << "INPUT: "); cin >> choice; switch (choice) { case 'A': // mainname DoLog(0) && (Log() << Verbose(0) << "Old: " << config::mainname << "\t new: "); cin >> config::mainname; break; case 'B': // defaultpath DoLog(0) && (Log() << Verbose(0) << "Old: " << config::defaultpath << "\t new: "); cin >> config::defaultpath; break; case 'C': // pseudopotpath DoLog(0) && (Log() << Verbose(0) << "Old: " << config::pseudopotpath << "\t new: "); cin >> config::pseudopotpath; break; case 'D': // ProcPEGamma DoLog(0) && (Log() << Verbose(0) << "Old: " << config::ProcPEGamma << "\t new: "); cin >> config::ProcPEGamma; break; case 'E': // ProcPEPsi DoLog(0) && (Log() << Verbose(0) << "Old: " << config::ProcPEPsi << "\t new: "); cin >> config::ProcPEPsi; break; case 'F': // DoOutVis DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoOutVis << "\t new: "); cin >> config::DoOutVis; break; case 'G': // DoOutMes DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoOutMes << "\t new: "); cin >> config::DoOutMes; break; case 'H': // DoOutOrbitals DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoOutOrbitals << "\t new: "); cin >> config::DoOutOrbitals; break; case 'I': // DoOutCurrent DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoOutCurrent << "\t new: "); cin >> config::DoOutCurrent; break; case 'J': // DoFullCurrent DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoFullCurrent << "\t new: "); cin >> config::DoFullCurrent; break; case 'K': // DoPerturbation DoLog(0) && (Log() << Verbose(0) << "Old: " << config::DoPerturbation << "\t new: "); cin >> config::DoPerturbation; break; case 'L': // CommonWannier DoLog(0) && (Log() << Verbose(0) << "Old: " << config::CommonWannier << "\t new: "); cin >> config::CommonWannier; break; case 'M': // SawtoothStart DoLog(0) && (Log() << Verbose(0) << "Old: " << config::SawtoothStart << "\t new: "); cin >> config::SawtoothStart; break; case 'N': // VectorPlane DoLog(0) && (Log() << Verbose(0) << "Old: " << config::VectorPlane << "\t new: "); cin >> config::VectorPlane; break; case 'O': // VectorCut DoLog(0) && (Log() << Verbose(0) << "Old: " << config::VectorCut << "\t new: "); cin >> config::VectorCut; break; case 'P': // UseAddGramSch DoLog(0) && (Log() << Verbose(0) << "Old: " << config::UseAddGramSch << "\t new: "); cin >> config::UseAddGramSch; break; case 'Q': // Seed DoLog(0) && (Log() << Verbose(0) << "Old: " << config::Seed << "\t new: "); cin >> config::Seed; break; case 'R': // MaxOuterStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxOuterStep << "\t new: "); cin >> config::MaxOuterStep; break; case 'T': // OutVisStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::OutVisStep << "\t new: "); cin >> config::OutVisStep; break; case 'U': // OutSrcStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::OutSrcStep << "\t new: "); cin >> config::OutSrcStep; break; case 'X': // MaxPsiStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxPsiStep << "\t new: "); cin >> config::MaxPsiStep; break; case 'Y': // EpsWannier DoLog(0) && (Log() << Verbose(0) << "Old: " << config::EpsWannier << "\t new: "); cin >> config::EpsWannier; break; case 'Z': // MaxMinStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxMinStep << "\t new: "); cin >> config::MaxMinStep; break; case 'a': // RelEpsTotalEnergy DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RelEpsTotalEnergy << "\t new: "); cin >> config::RelEpsTotalEnergy; break; case 'b': // RelEpsKineticEnergy DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RelEpsKineticEnergy << "\t new: "); cin >> config::RelEpsKineticEnergy; break; case 'c': // MaxMinStopStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxMinStopStep << "\t new: "); cin >> config::MaxMinStopStep; break; case 'e': // MaxInitMinStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxInitMinStep << "\t new: "); cin >> config::MaxInitMinStep; break; case 'f': // InitRelEpsTotalEnergy DoLog(0) && (Log() << Verbose(0) << "Old: " << config::InitRelEpsTotalEnergy << "\t new: "); cin >> config::InitRelEpsTotalEnergy; break; case 'g': // InitRelEpsKineticEnergy DoLog(0) && (Log() << Verbose(0) << "Old: " << config::InitRelEpsKineticEnergy << "\t new: "); cin >> config::InitRelEpsKineticEnergy; break; case 'h': // InitMaxMinStopStep DoLog(0) && (Log() << Verbose(0) << "Old: " << config::InitMaxMinStopStep << "\t new: "); cin >> config::InitMaxMinStopStep; break; // case 'j': // BoxLength // Log() << Verbose(0) << "enter lower triadiagonalo form of basis matrix" << endl << endl; // double * const cell_size = World::getInstance().getDomain(); // for (int i=0;i<6;i++) { // Log() << Verbose(0) << "Cell size" << i << ": "; // cin >> cell_size[i]; // } // break; case 'k': // ECut DoLog(0) && (Log() << Verbose(0) << "Old: " << config::ECut << "\t new: "); cin >> config::ECut; break; case 'l': // MaxLevel DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxLevel << "\t new: "); cin >> config::MaxLevel; break; case 'm': // RiemannTensor DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RiemannTensor << "\t new: "); cin >> config::RiemannTensor; break; case 'n': // LevRFactor DoLog(0) && (Log() << Verbose(0) << "Old: " << config::LevRFactor << "\t new: "); cin >> config::LevRFactor; break; case 'o': // RiemannLevel DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RiemannLevel << "\t new: "); cin >> config::RiemannLevel; break; case 'p': // Lev0Factor DoLog(0) && (Log() << Verbose(0) << "Old: " << config::Lev0Factor << "\t new: "); cin >> config::Lev0Factor; break; case 'r': // RTActualUse DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RTActualUse << "\t new: "); cin >> config::RTActualUse; break; case 's': // PsiType DoLog(0) && (Log() << Verbose(0) << "Old: " << config::PsiType << "\t new: "); cin >> config::PsiType; break; case 't': // MaxPsiDouble DoLog(0) && (Log() << Verbose(0) << "Old: " << config::MaxPsiDouble << "\t new: "); cin >> config::MaxPsiDouble; break; case 'u': // PsiMaxNoUp DoLog(0) && (Log() << Verbose(0) << "Old: " << config::PsiMaxNoUp << "\t new: "); cin >> config::PsiMaxNoUp; break; case 'v': // PsiMaxNoDown DoLog(0) && (Log() << Verbose(0) << "Old: " << config::PsiMaxNoDown << "\t new: "); cin >> config::PsiMaxNoDown; break; case 'w': // AddPsis DoLog(0) && (Log() << Verbose(0) << "Old: " << config::AddPsis << "\t new: "); cin >> config::AddPsis; break; case 'x': // RCut DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RCut << "\t new: "); cin >> config::RCut; break; case 'y': // StructOpt DoLog(0) && (Log() << Verbose(0) << "Old: " << config::StructOpt << "\t new: "); cin >> config::StructOpt; break; case 'z': // IsAngstroem DoLog(0) && (Log() << Verbose(0) << "Old: " << config::IsAngstroem << "\t new: "); cin >> config::IsAngstroem; break; case 'i': // RelativeCoord DoLog(0) && (Log() << Verbose(0) << "Old: " << config::RelativeCoord << "\t new: "); cin >> config::RelativeCoord; break; }; } while (choice != 'q'); }; /** Tests whether a given configuration file adhears to old or new syntax. * \param *filename filename of config file to be tested * \param *periode pointer to a periodentafel class with all elements * \return 0 - old syntax, 1 - new syntax, -1 - unknown syntax */ int config::TestSyntax(const char * const filename, const periodentafel * const periode) const { int test; ifstream file(filename); // search file for keyword: ProcPEGamma (new syntax) if (ParseForParameter(1,&file,"ProcPEGamma", 0, 1, 1, int_type, &test, 1, optional)) { file.close(); return 1; } // search file for keyword: ProcsGammaPsi (old syntax) if (ParseForParameter(1,&file,"ProcsGammaPsi", 0, 1, 1, int_type, &test, 1, optional)) { file.close(); return 0; } file.close(); return -1; } /** Returns private config::IsAngstroem. * \return IsAngstroem */ bool config::GetIsAngstroem() const { return (IsAngstroem == 1); }; /** Returns private config::*defaultpath. * \return *defaultpath */ char * config::GetDefaultPath() const { return defaultpath; }; /** Returns private config::*defaultpath. * \return *defaultpath */ void config::SetDefaultPath(const char * const path) { strcpy(defaultpath, path); }; /** Loads a molecule from a ConfigFileBuffer. * \param *mol molecule to load * \param *FileBuffer ConfigFileBuffer to use * \param *periode periodentafel for finding elements * \param FastParsing whether to parse trajectories or not */ void LoadMolecule(molecule * const &mol, struct ConfigFileBuffer * const &FileBuffer, const periodentafel * const periode, const bool FastParsing) { int MaxTypes = 0; const element *elementhash[MAX_ELEMENTS]; char name[MAX_ELEMENTS]; char keyword[MAX_ELEMENTS]; int Z = -1; int No[MAX_ELEMENTS]; int verbose = 0; double value[3]; if (mol == NULL) { DoeLog(0) && (eLog()<< Verbose(0) << "Molecule is not allocated in LoadMolecule(), exit."); performCriticalExit(); } ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical); if (MaxTypes == 0) { DoeLog(1) && (eLog()<< Verbose(1) << "There are no atoms according to MaxTypes in this config file." << endl); //performCriticalExit(); } else { // prescan number of ions per type DoLog(0) && (Log() << Verbose(0) << "Prescanning ions per type: " << endl); int NoAtoms = 0; for (int i=0; i < MaxTypes; i++) { sprintf(name,"Ion_Type%i",i+1); ParseForParameter(verbose,FileBuffer, (const char*)name, 0, 1, 1, int_type, &No[i], 1, critical); ParseForParameter(verbose,FileBuffer, name, 0, 2, 1, int_type, &Z, 1, critical); elementhash[i] = periode->FindElement(Z); DoLog(1) && (Log() << Verbose(1) << i << ". Z = " << elementhash[i]->Z << " with " << No[i] << " ions." << endl); NoAtoms += No[i]; } int repetition = 0; // which repeated keyword shall be read // sort the lines via the LineMapping sprintf(name,"Ion_Type%i",MaxTypes); if (!ParseForParameter(verbose,FileBuffer, (const char*)name, 1, 1, 1, int_type, &value[0], 1, critical)) { DoeLog(0) && (eLog()<< Verbose(0) << "There are no atoms in the config file!" << endl); performCriticalExit(); return; } FileBuffer->CurrentLine++; //Log() << Verbose(0) << FileBuffer->buffer[ FileBuffer->LineMapping[FileBuffer->CurrentLine]]; FileBuffer->MapIonTypesInBuffer(NoAtoms); //for (int i=0; i<(NoAtoms < 100 ? NoAtoms : 100 < 100 ? NoAtoms : 100);++i) { // Log() << Verbose(0) << FileBuffer->buffer[ FileBuffer->LineMapping[FileBuffer->CurrentLine+i]]; //} map AtomList[MaxTypes]; map LinearList; atom *neues = NULL; if (!FastParsing) { // parse in trajectories bool status = true; while (status) { DoLog(0) && (Log() << Verbose(0) << "Currently parsing MD step " << repetition << "." << endl); for (int i=0; i < MaxTypes; i++) { sprintf(name,"Ion_Type%i",i+1); for(int j=0;jLineMapping[FileBuffer->CurrentLine] ] = neues; neues->type = elementhash[i]; // find element type } else neues = AtomList[i][j]; status = (status && ParseForParameter(verbose,FileBuffer, keyword, 0, 1, 1, double_type, &neues->x[0], 1, (repetition == 0) ? critical : optional) && ParseForParameter(verbose,FileBuffer, keyword, 0, 2, 1, double_type, &neues->x[1], 1, (repetition == 0) ? critical : optional) && ParseForParameter(verbose,FileBuffer, keyword, 0, 3, 1, double_type, &neues->x[2], 1, (repetition == 0) ? critical : optional) && ParseForParameter(verbose,FileBuffer, keyword, 0, 4, 1, int_type, &neues->FixedIon, 1, (repetition == 0) ? critical : optional)); if (!status) break; // check size of vectors if (neues->Trajectory.R.size() <= (unsigned int)(repetition)) { //Log() << Verbose(0) << "Increasing size for trajectory array of " << keyword << " to " << (repetition+10) << "." << endl; neues->Trajectory.R.resize(repetition+10); neues->Trajectory.U.resize(repetition+10); neues->Trajectory.F.resize(repetition+10); } // put into trajectories list for (int d=0;dTrajectory.R.at(repetition)[d] = neues->x[d]; // parse velocities if present if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 5, 1, double_type, &neues->v[0], 1,optional)) neues->v[0] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 6, 1, double_type, &neues->v[1], 1,optional)) neues->v[1] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 7, 1, double_type, &neues->v[2], 1,optional)) neues->v[2] = 0.; for (int d=0;dTrajectory.U.at(repetition)[d] = neues->v[d]; // parse forces if present if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 8, 1, double_type, &value[0], 1,optional)) value[0] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 9, 1, double_type, &value[1], 1,optional)) value[1] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 1, 10, 1, double_type, &value[2], 1,optional)) value[2] = 0.; for (int d=0;dTrajectory.F.at(repetition)[d] = value[d]; // Log() << Verbose(0) << "Parsed position of step " << (repetition) << ": ("; // for (int d=0;dTrajectory.R.at(repetition).x[d] << " "; // next step // Log() << Verbose(0) << ")\t("; // for (int d=0;dTrajectory.U.at(repetition).x[d] << " "; // next step // Log() << Verbose(0) << ")\t("; // for (int d=0;dTrajectory.F.at(repetition).x[d] << " "; // next step // Log() << Verbose(0) << ")" << endl; } } repetition++; } repetition--; DoLog(0) && (Log() << Verbose(0) << "Found " << repetition << " trajectory steps." << endl); if (repetition <= 1) // if onyl one step, desactivate use of trajectories mol->MDSteps = 0; else mol->MDSteps = repetition; } else { // find the maximum number of MD steps so that we may parse last one (Ion_Type1_1 must always be present, because is the first atom) repetition = 0; while ( ParseForParameter(verbose,FileBuffer, "Ion_Type1_1", 0, 1, 1, double_type, &value[0], repetition, (repetition == 0) ? critical : optional) && ParseForParameter(verbose,FileBuffer, "Ion_Type1_1", 0, 2, 1, double_type, &value[1], repetition, (repetition == 0) ? critical : optional) && ParseForParameter(verbose,FileBuffer, "Ion_Type1_1", 0, 3, 1, double_type, &value[2], repetition, (repetition == 0) ? critical : optional)) repetition++; DoLog(0) && (Log() << Verbose(0) << "I found " << repetition << " times the keyword Ion_Type1_1." << endl); // parse in molecule coordinates for (int i=0; i < MaxTypes; i++) { sprintf(name,"Ion_Type%i",i+1); for(int j=0;jLineMapping[FileBuffer->CurrentLine] ] = neues; neues->type = elementhash[i]; // find element type } else neues = AtomList[i][j]; // then parse for each atom the coordinates as often as present ParseForParameter(verbose,FileBuffer, keyword, 0, 1, 1, double_type, &neues->x[0], repetition,critical); ParseForParameter(verbose,FileBuffer, keyword, 0, 2, 1, double_type, &neues->x[1], repetition,critical); ParseForParameter(verbose,FileBuffer, keyword, 0, 3, 1, double_type, &neues->x[2], repetition,critical); ParseForParameter(verbose,FileBuffer, keyword, 0, 4, 1, int_type, &neues->FixedIon, repetition,critical); if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 5, 1, double_type, &neues->v[0], repetition,optional)) neues->v[0] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 6, 1, double_type, &neues->v[1], repetition,optional)) neues->v[1] = 0.; if(!ParseForParameter(verbose,FileBuffer, keyword, 0, 7, 1, double_type, &neues->v[2], repetition,optional)) neues->v[2] = 0.; // here we don't care if forces are present (last in trajectories is always equal to current position) neues->type = elementhash[i]; // find element type mol->AddAtom(neues); } } } // put atoms into the molecule in their original order for(map::iterator runner = LinearList.begin(); runner != LinearList.end(); ++runner) { mol->AddAtom(runner->second); } } }; /** Initializes config file structure by loading elements from a give file. * \param *file input file stream being the opened config file * \param BondGraphFileName file name of the bond length table file, if string is left blank, no table is parsed. * \param *periode pointer to a periodentafel class with all elements * \param *&MolList pointer to MoleculeListClass, on return containing all parsed molecules in system */ void config::Load(const char * const filename, const string &BondGraphFileName, const periodentafel * const periode, MoleculeListClass * const &MolList) { molecule *mol = World::getInstance().createMolecule(); ifstream *file = new ifstream(filename); if (file == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "config file " << filename << " missing!" << endl); return; } file->close(); delete(file); // ParseParameterFile class ConfigFileBuffer *FileBuffer = new ConfigFileBuffer(filename); /* Oeffne Hauptparameterdatei */ int di = 0; double BoxLength[9]; string zeile; string dummy; int verbose = 0; //TODO: This is actually sensible?: if (MaxOuterStep > 0) ParseThermostats(FileBuffer); /* Namen einlesen */ // 1. parse in options ParseForParameter(verbose,FileBuffer, "mainname", 0, 1, 1, string_type, (config::mainname), 1, critical); ParseForParameter(verbose,FileBuffer, "defaultpath", 0, 1, 1, string_type, (config::defaultpath), 1, critical); ParseForParameter(verbose,FileBuffer, "pseudopotpath", 0, 1, 1, string_type, (config::pseudopotpath), 1, critical); ParseForParameter(verbose,FileBuffer,"ProcPEGamma", 0, 1, 1, int_type, &(config::ProcPEGamma), 1, critical); ParseForParameter(verbose,FileBuffer,"ProcPEPsi", 0, 1, 1, int_type, &(config::ProcPEPsi), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"Seed", 0, 1, 1, int_type, &(config::Seed), 1, optional)) config::Seed = 1; if(!ParseForParameter(verbose,FileBuffer,"DoOutOrbitals", 0, 1, 1, int_type, &(config::DoOutOrbitals), 1, optional)) { config::DoOutOrbitals = 0; } else { if (config::DoOutOrbitals < 0) config::DoOutOrbitals = 0; if (config::DoOutOrbitals > 1) config::DoOutOrbitals = 1; } ParseForParameter(verbose,FileBuffer,"DoOutVis", 0, 1, 1, int_type, &(config::DoOutVis), 1, critical); if (config::DoOutVis < 0) config::DoOutVis = 0; if (config::DoOutVis > 1) config::DoOutVis = 1; if (!ParseForParameter(verbose,FileBuffer,"VectorPlane", 0, 1, 1, int_type, &(config::VectorPlane), 1, optional)) config::VectorPlane = -1; if (!ParseForParameter(verbose,FileBuffer,"VectorCut", 0, 1, 1, double_type, &(config::VectorCut), 1, optional)) config::VectorCut = 0.; ParseForParameter(verbose,FileBuffer,"DoOutMes", 0, 1, 1, int_type, &(config::DoOutMes), 1, critical); if (config::DoOutMes < 0) config::DoOutMes = 0; if (config::DoOutMes > 1) config::DoOutMes = 1; if (!ParseForParameter(verbose,FileBuffer,"DoOutCurr", 0, 1, 1, int_type, &(config::DoOutCurrent), 1, optional)) config::DoOutCurrent = 0; if (config::DoOutCurrent < 0) config::DoOutCurrent = 0; if (config::DoOutCurrent > 1) config::DoOutCurrent = 1; ParseForParameter(verbose,FileBuffer,"AddGramSch", 0, 1, 1, int_type, &(config::UseAddGramSch), 1, critical); if (config::UseAddGramSch < 0) config::UseAddGramSch = 0; if (config::UseAddGramSch > 2) config::UseAddGramSch = 2; if(!ParseForParameter(verbose,FileBuffer,"DoWannier", 0, 1, 1, int_type, &(config::DoWannier), 1, optional)) { config::DoWannier = 0; } else { if (config::DoWannier < 0) config::DoWannier = 0; if (config::DoWannier > 1) config::DoWannier = 1; } if(!ParseForParameter(verbose,FileBuffer,"CommonWannier", 0, 1, 1, int_type, &(config::CommonWannier), 1, optional)) { config::CommonWannier = 0; } else { if (config::CommonWannier < 0) config::CommonWannier = 0; if (config::CommonWannier > 4) config::CommonWannier = 4; } if(!ParseForParameter(verbose,FileBuffer,"SawtoothStart", 0, 1, 1, double_type, &(config::SawtoothStart), 1, optional)) { config::SawtoothStart = 0.01; } else { if (config::SawtoothStart < 0.) config::SawtoothStart = 0.; if (config::SawtoothStart > 1.) config::SawtoothStart = 1.; } if (ParseForParameter(verbose,FileBuffer,"DoConstrainedMD", 0, 1, 1, int_type, &(config::DoConstrainedMD), 1, optional)) if (config::DoConstrainedMD < 0) config::DoConstrainedMD = 0; ParseForParameter(verbose,FileBuffer,"MaxOuterStep", 0, 1, 1, int_type, &(config::MaxOuterStep), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"Deltat", 0, 1, 1, double_type, &(config::Deltat), 1, optional)) config::Deltat = 1; ParseForParameter(verbose,FileBuffer,"OutVisStep", 0, 1, 1, int_type, &(config::OutVisStep), 1, optional); ParseForParameter(verbose,FileBuffer,"OutSrcStep", 0, 1, 1, int_type, &(config::OutSrcStep), 1, optional); ParseForParameter(verbose,FileBuffer,"TargetTemp", 0, 1, 1, double_type, &(Thermostats->TargetTemp), 1, optional); //ParseForParameter(verbose,FileBuffer,"Thermostat", 0, 1, 1, int_type, &(config::ScaleTempStep), 1, optional); if (!ParseForParameter(verbose,FileBuffer,"EpsWannier", 0, 1, 1, double_type, &(config::EpsWannier), 1, optional)) config::EpsWannier = 1e-8; // stop conditions //if (config::MaxOuterStep <= 0) config::MaxOuterStep = 1; ParseForParameter(verbose,FileBuffer,"MaxPsiStep", 0, 1, 1, int_type, &(config::MaxPsiStep), 1, critical); if (config::MaxPsiStep <= 0) config::MaxPsiStep = 3; ParseForParameter(verbose,FileBuffer,"MaxMinStep", 0, 1, 1, int_type, &(config::MaxMinStep), 1, critical); ParseForParameter(verbose,FileBuffer,"RelEpsTotalE", 0, 1, 1, double_type, &(config::RelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"RelEpsKineticE", 0, 1, 1, double_type, &(config::RelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxMinStopStep", 0, 1, 1, int_type, &(config::MaxMinStopStep), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxMinGapStopStep", 0, 1, 1, int_type, &(config::MaxMinGapStopStep), 1, critical); if (config::MaxMinStep <= 0) config::MaxMinStep = config::MaxPsiStep; if (config::MaxMinStopStep < 1) config::MaxMinStopStep = 1; if (config::MaxMinGapStopStep < 1) config::MaxMinGapStopStep = 1; ParseForParameter(verbose,FileBuffer,"MaxInitMinStep", 0, 1, 1, int_type, &(config::MaxInitMinStep), 1, critical); ParseForParameter(verbose,FileBuffer,"InitRelEpsTotalE", 0, 1, 1, double_type, &(config::InitRelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"InitRelEpsKineticE", 0, 1, 1, double_type, &(config::InitRelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,FileBuffer,"InitMaxMinStopStep", 0, 1, 1, int_type, &(config::InitMaxMinStopStep), 1, critical); ParseForParameter(verbose,FileBuffer,"InitMaxMinGapStopStep", 0, 1, 1, int_type, &(config::InitMaxMinGapStopStep), 1, critical); if (config::MaxInitMinStep <= 0) config::MaxInitMinStep = config::MaxPsiStep; if (config::InitMaxMinStopStep < 1) config::InitMaxMinStopStep = 1; if (config::InitMaxMinGapStopStep < 1) config::InitMaxMinGapStopStep = 1; // Unit cell and magnetic field ParseForParameter(verbose,FileBuffer, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */ double * cell_size = new double[6]; cell_size[0] = BoxLength[0]; cell_size[1] = BoxLength[3]; cell_size[2] = BoxLength[4]; cell_size[3] = BoxLength[6]; cell_size[4] = BoxLength[7]; cell_size[5] = BoxLength[8]; World::getInstance().setDomain(cell_size); delete cell_size; //if (1) fprintf(stderr,"\n"); ParseForParameter(verbose,FileBuffer,"DoPerturbation", 0, 1, 1, int_type, &(config::DoPerturbation), 1, optional); ParseForParameter(verbose,FileBuffer,"DoOutNICS", 0, 1, 1, int_type, &(config::DoOutNICS), 1, optional); if (!ParseForParameter(verbose,FileBuffer,"DoFullCurrent", 0, 1, 1, int_type, &(config::DoFullCurrent), 1, optional)) config::DoFullCurrent = 0; if (config::DoFullCurrent < 0) config::DoFullCurrent = 0; if (config::DoFullCurrent > 2) config::DoFullCurrent = 2; if (config::DoOutNICS < 0) config::DoOutNICS = 0; if (config::DoOutNICS > 2) config::DoOutNICS = 2; if (config::DoPerturbation == 0) { config::DoFullCurrent = 0; config::DoOutNICS = 0; } ParseForParameter(verbose,FileBuffer,"ECut", 0, 1, 1, double_type, &(config::ECut), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxLevel", 0, 1, 1, int_type, &(config::MaxLevel), 1, critical); ParseForParameter(verbose,FileBuffer,"Level0Factor", 0, 1, 1, int_type, &(config::Lev0Factor), 1, critical); if (config::Lev0Factor < 2) { config::Lev0Factor = 2; } ParseForParameter(verbose,FileBuffer,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { config::RiemannTensor = di; } else { fprintf(stderr, "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT"); exit(1); } switch (config::RiemannTensor) { case 0: //UseNoRT if (config::MaxLevel < 2) { config::MaxLevel = 2; } config::LevRFactor = 2; config::RTActualUse = 0; break; case 1: // UseRT if (config::MaxLevel < 3) { config::MaxLevel = 3; } ParseForParameter(verbose,FileBuffer,"RiemannLevel", 0, 1, 1, int_type, &(config::RiemannLevel), 1, critical); if (config::RiemannLevel < 2) { config::RiemannLevel = 2; } if (config::RiemannLevel > config::MaxLevel-1) { config::RiemannLevel = config::MaxLevel-1; } ParseForParameter(verbose,FileBuffer,"LevRFactor", 0, 1, 1, int_type, &(config::LevRFactor), 1, critical); if (config::LevRFactor < 2) { config::LevRFactor = 2; } config::Lev0Factor = 2; config::RTActualUse = 2; break; } ParseForParameter(verbose,FileBuffer,"PsiType", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { config::PsiType = di; } else { fprintf(stderr, "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown"); exit(1); } switch (config::PsiType) { case 0: // SpinDouble ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(config::MaxPsiDouble), 1, critical); ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(config::AddPsis), 1, optional); break; case 1: // SpinUpDown if (config::ProcPEGamma % 2) config::ProcPEGamma*=2; ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(config::PsiMaxNoUp), 1, critical); ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(config::PsiMaxNoDown), 1, critical); ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(config::AddPsis), 1, optional); break; } // IonsInitRead ParseForParameter(verbose,FileBuffer,"RCut", 0, 1, 1, double_type, &(config::RCut), 1, critical); ParseForParameter(verbose,FileBuffer,"IsAngstroem", 0, 1, 1, int_type, &(config::IsAngstroem), 1, critical); ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical); if (!ParseForParameter(verbose,FileBuffer,"RelativeCoord", 0, 1, 1, int_type, &(config::RelativeCoord) , 1, optional)) config::RelativeCoord = 0; if (!ParseForParameter(verbose,FileBuffer,"StructOpt", 0, 1, 1, int_type, &(config::StructOpt), 1, optional)) config::StructOpt = 0; // 2. parse the bond graph file if given if (BG == NULL) { BG = new BondGraph(IsAngstroem); if (BG->LoadBondLengthTable(BondGraphFileName)) { DoLog(0) && (Log() << Verbose(0) << "Bond length table loaded successfully." << endl); } else { DoeLog(1) && (eLog()<< Verbose(1) << "Bond length table loading failed." << endl); } } // 3. parse the molecule in LoadMolecule(mol, FileBuffer, periode, FastParsing); mol->SetNameFromFilename(filename); mol->ActiveFlag = true; MolList->insert(mol); // 4. dissect the molecule into connected subgraphs // don't do this here ... //MolList->DissectMoleculeIntoConnectedSubgraphs(mol,this); //delete(mol); delete(FileBuffer); }; /** Initializes config file structure by loading elements from a give file with old pcp syntax. * \param *file input file stream being the opened config file with old pcp syntax * \param BondGraphFileName file name of the bond length table file, if string is left blank, no table is parsed. * \param *periode pointer to a periodentafel class with all elements * \param *&MolList pointer to MoleculeListClass, on return containing all parsed molecules in system */ void config::LoadOld(const char * const filename, const string &BondGraphFileName, const periodentafel * const periode, MoleculeListClass * const &MolList) { molecule *mol = World::getInstance().createMolecule(); ifstream *file = new ifstream(filename); if (file == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "config file " << filename << " missing!" << endl); return; } // ParseParameters /* Oeffne Hauptparameterdatei */ int l = 0; int i = 0; int di = 0; double a = 0.; double b = 0.; double BoxLength[9]; string zeile; string dummy; const element *elementhash[128]; int Z = -1; int No = -1; int AtomNo = -1; int found = 0; int verbose = 0; mol->ActiveFlag = true; MolList->insert(mol); /* Namen einlesen */ ParseForParameter(verbose,file, "mainname", 0, 1, 1, string_type, (config::mainname), 1, critical); ParseForParameter(verbose,file, "defaultpath", 0, 1, 1, string_type, (config::defaultpath), 1, critical); ParseForParameter(verbose,file, "pseudopotpath", 0, 1, 1, string_type, (config::pseudopotpath), 1, critical); ParseForParameter(verbose,file, "ProcsGammaPsi", 0, 1, 1, int_type, &(config::ProcPEGamma), 1, critical); ParseForParameter(verbose,file, "ProcsGammaPsi", 0, 2, 1, int_type, &(config::ProcPEPsi), 1, critical); config::Seed = 1; config::DoOutOrbitals = 0; ParseForParameter(verbose,file,"DoOutVis", 0, 1, 1, int_type, &(config::DoOutVis), 1, critical); if (config::DoOutVis < 0) config::DoOutVis = 0; if (config::DoOutVis > 1) config::DoOutVis = 1; config::VectorPlane = -1; config::VectorCut = 0.; ParseForParameter(verbose,file,"DoOutMes", 0, 1, 1, int_type, &(config::DoOutMes), 1, critical); if (config::DoOutMes < 0) config::DoOutMes = 0; if (config::DoOutMes > 1) config::DoOutMes = 1; config::DoOutCurrent = 0; ParseForParameter(verbose,file,"AddGramSch", 0, 1, 1, int_type, &(config::UseAddGramSch), 1, critical); if (config::UseAddGramSch < 0) config::UseAddGramSch = 0; if (config::UseAddGramSch > 2) config::UseAddGramSch = 2; config::CommonWannier = 0; config::SawtoothStart = 0.01; ParseForParameter(verbose,file,"MaxOuterStep", 0, 1, 1, double_type, &(config::MaxOuterStep), 1, critical); ParseForParameter(verbose,file,"Deltat", 0, 1, 1, double_type, &(config::Deltat), 1, optional); ParseForParameter(verbose,file,"VisOuterStep", 0, 1, 1, int_type, &(config::OutVisStep), 1, optional); ParseForParameter(verbose,file,"VisSrcOuterStep", 0, 1, 1, int_type, &(config::OutSrcStep), 1, optional); ParseForParameter(verbose,file,"TargetTemp", 0, 1, 1, double_type, &(Thermostats->TargetTemp), 1, optional); ParseForParameter(verbose,file,"ScaleTempStep", 0, 1, 1, int_type, &(Thermostats->ScaleTempStep), 1, optional); config::EpsWannier = 1e-8; // stop conditions //if (config::MaxOuterStep <= 0) config::MaxOuterStep = 1; ParseForParameter(verbose,file,"MaxPsiStep", 0, 1, 1, int_type, &(config::MaxPsiStep), 1, critical); if (config::MaxPsiStep <= 0) config::MaxPsiStep = 3; ParseForParameter(verbose,file,"MaxMinStep", 0, 1, 1, int_type, &(config::MaxMinStep), 1, critical); ParseForParameter(verbose,file,"MaxMinStep", 0, 2, 1, double_type, &(config::RelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,file,"MaxMinStep", 0, 3, 1, double_type, &(config::RelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,file,"MaxMinStep", 0, 4, 1, int_type, &(config::MaxMinStopStep), 1, critical); if (config::MaxMinStep <= 0) config::MaxMinStep = config::MaxPsiStep; if (config::MaxMinStopStep < 1) config::MaxMinStopStep = 1; config::MaxMinGapStopStep = 1; ParseForParameter(verbose,file,"MaxInitMinStep", 0, 1, 1, int_type, &(config::MaxInitMinStep), 1, critical); ParseForParameter(verbose,file,"MaxInitMinStep", 0, 2, 1, double_type, &(config::InitRelEpsTotalEnergy), 1, critical); ParseForParameter(verbose,file,"MaxInitMinStep", 0, 3, 1, double_type, &(config::InitRelEpsKineticEnergy), 1, critical); ParseForParameter(verbose,file,"MaxInitMinStep", 0, 4, 1, int_type, &(config::InitMaxMinStopStep), 1, critical); if (config::MaxInitMinStep <= 0) config::MaxInitMinStep = config::MaxPsiStep; if (config::InitMaxMinStopStep < 1) config::InitMaxMinStopStep = 1; config::InitMaxMinGapStopStep = 1; ParseForParameter(verbose,file, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */ double * cell_size = new double[6]; cell_size[0] = BoxLength[0]; cell_size[1] = BoxLength[3]; cell_size[2] = BoxLength[4]; cell_size[3] = BoxLength[6]; cell_size[4] = BoxLength[7]; cell_size[5] = BoxLength[8]; World::getInstance().setDomain(cell_size); delete[] cell_size; if (1) fprintf(stderr,"\n"); config::DoPerturbation = 0; config::DoFullCurrent = 0; ParseForParameter(verbose,file,"ECut", 0, 1, 1, double_type, &(config::ECut), 1, critical); ParseForParameter(verbose,file,"MaxLevel", 0, 1, 1, int_type, &(config::MaxLevel), 1, critical); ParseForParameter(verbose,file,"Level0Factor", 0, 1, 1, int_type, &(config::Lev0Factor), 1, critical); if (config::Lev0Factor < 2) { config::Lev0Factor = 2; } ParseForParameter(verbose,file,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { config::RiemannTensor = di; } else { fprintf(stderr, "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT"); exit(1); } switch (config::RiemannTensor) { case 0: //UseNoRT if (config::MaxLevel < 2) { config::MaxLevel = 2; } config::LevRFactor = 2; config::RTActualUse = 0; break; case 1: // UseRT if (config::MaxLevel < 3) { config::MaxLevel = 3; } ParseForParameter(verbose,file,"RiemannLevel", 0, 1, 1, int_type, &(config::RiemannLevel), 1, critical); if (config::RiemannLevel < 2) { config::RiemannLevel = 2; } if (config::RiemannLevel > config::MaxLevel-1) { config::RiemannLevel = config::MaxLevel-1; } ParseForParameter(verbose,file,"LevRFactor", 0, 1, 1, int_type, &(config::LevRFactor), 1, critical); if (config::LevRFactor < 2) { config::LevRFactor = 2; } config::Lev0Factor = 2; config::RTActualUse = 2; break; } ParseForParameter(verbose,file,"PsiType", 0, 1, 1, int_type, &di, 1, critical); if (di >= 0 && di < 2) { config::PsiType = di; } else { fprintf(stderr, "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown"); exit(1); } switch (config::PsiType) { case 0: // SpinDouble ParseForParameter(verbose,file,"MaxPsiDouble", 0, 1, 1, int_type, &(config::MaxPsiDouble), 1, critical); config::AddPsis = 0; break; case 1: // SpinUpDown if (config::ProcPEGamma % 2) config::ProcPEGamma*=2; ParseForParameter(verbose,file,"MaxPsiUp", 0, 1, 1, int_type, &(config::PsiMaxNoUp), 1, critical); ParseForParameter(verbose,file,"MaxPsiDown", 0, 1, 1, int_type, &(config::PsiMaxNoDown), 1, critical); config::AddPsis = 0; break; } // IonsInitRead ParseForParameter(verbose,file,"RCut", 0, 1, 1, double_type, &(config::RCut), 1, critical); ParseForParameter(verbose,file,"IsAngstroem", 0, 1, 1, int_type, &(config::IsAngstroem), 1, critical); config::RelativeCoord = 0; config::StructOpt = 0; // 2. parse the bond graph file if given BG = new BondGraph(IsAngstroem); if (BG->LoadBondLengthTable(BondGraphFileName)) { DoLog(0) && (Log() << Verbose(0) << "Bond length table loaded successfully." << endl); } else { DoLog(0) && (Log() << Verbose(0) << "Bond length table loading failed." << endl); } // Routine from builder.cpp for (i=MAX_ELEMENTS;i--;) elementhash[i] = NULL; DoLog(0) && (Log() << Verbose(0) << "Parsing Ions ..." << endl); No=0; found = 0; while (getline(*file,zeile,'\n')) { if (zeile.find("Ions_Data") == 0) { DoLog(1) && (Log() << Verbose(1) << "found Ions_Data...begin parsing" << endl); found ++; } if (found > 0) { if (zeile.find("Ions_Data") == 0) getline(*file,zeile,'\n'); // read next line and parse this one istringstream input(zeile); input >> AtomNo; // number of atoms input >> Z; // atomic number input >> a; input >> l; input >> l; input >> b; // element mass elementhash[No] = periode->FindElement(Z); DoLog(1) && (Log() << Verbose(1) << "AtomNo: " << AtomNo << "\tZ: " << Z << "\ta:" << a << "\tl:" << l << "\b:" << b << "\tElement:" << elementhash[No] << "\t:" << endl); for(i=0;i> neues->x[0]; // x input2 >> neues->x[1]; // y input2 >> neues->x[2]; // z input2 >> l; neues->type = elementhash[No]; // find element type mol->AddAtom(neues); } No++; } } file->close(); delete(file); }; /** Stores all elements of config structure from which they can be re-read. * \param *filename name of file * \param *periode pointer to a periodentafel class with all elements * \param *mol pointer to molecule containing all atoms of the molecule */ bool config::Save(const char * const filename, const periodentafel * const periode, molecule * const mol) const { bool result = true; // bring MaxTypes up to date mol->CountElements(); const Matrix &domain = World::getInstance().getDomain().getM(); ofstream * const output = new ofstream(filename, ios::out); if (output != NULL) { *output << "# ParallelCarParinello - main configuration file - created with molecuilder" << endl; *output << endl; *output << "mainname\t" << config::mainname << "\t# programm name (for runtime files)" << endl; *output << "defaultpath\t" << config::defaultpath << "\t# where to put files during runtime" << endl; *output << "pseudopotpath\t" << config::pseudopotpath << "\t# where to find pseudopotentials" << endl; *output << endl; *output << "ProcPEGamma\t" << config::ProcPEGamma << "\t# for parallel computing: share constants" << endl; *output << "ProcPEPsi\t" << config::ProcPEPsi << "\t# for parallel computing: share wave functions" << endl; *output << "DoOutVis\t" << config::DoOutVis << "\t# Output data for OpenDX" << endl; *output << "DoOutMes\t" << config::DoOutMes << "\t# Output data for measurements" << endl; *output << "DoOutOrbitals\t" << config::DoOutOrbitals << "\t# Output all Orbitals" << endl; *output << "DoOutCurr\t" << config::DoOutCurrent << "\t# Ouput current density for OpenDx" << endl; *output << "DoOutNICS\t" << config::DoOutNICS << "\t# Output Nucleus independent current shieldings" << endl; *output << "DoPerturbation\t" << config::DoPerturbation << "\t# Do perturbation calculate and determine susceptibility and shielding" << endl; *output << "DoFullCurrent\t" << config::DoFullCurrent << "\t# Do full perturbation" << endl; *output << "DoConstrainedMD\t" << config::DoConstrainedMD << "\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD" << endl; *output << "Thermostat\t" << Thermostats->ThermostatNames[Thermostats->Thermostat] << "\t"; switch(Thermostats->Thermostat) { default: case None: break; case Woodcock: *output << Thermostats->ScaleTempStep; break; case Gaussian: *output << Thermostats->ScaleTempStep; break; case Langevin: *output << Thermostats->TempFrequency << "\t" << Thermostats->alpha; break; case Berendsen: *output << Thermostats->TempFrequency; break; case NoseHoover: *output << Thermostats->HooverMass; break; }; *output << "\t# Which Thermostat and its parameters to use in MD case." << endl; *output << "CommonWannier\t" << config::CommonWannier << "\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center" << endl; *output << "SawtoothStart\t" << config::SawtoothStart << "\t# Absolute value for smooth transition at cell border " << endl; *output << "VectorPlane\t" << config::VectorPlane << "\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot" << endl; *output << "VectorCut\t" << config::VectorCut << "\t# Cut plane axis value" << endl; *output << "AddGramSch\t" << config::UseAddGramSch << "\t# Additional GramSchmidtOrtogonalization to be safe" << endl; *output << "Seed\t\t" << config::Seed << "\t# initial value for random seed for Psi coefficients" << endl; *output << endl; *output << "MaxOuterStep\t" << config::MaxOuterStep << "\t# number of MolecularDynamics/Structure optimization steps" << endl; *output << "Deltat\t" << config::Deltat << "\t# time per MD step" << endl; *output << "OutVisStep\t" << config::OutVisStep << "\t# Output visual data every ...th step" << endl; *output << "OutSrcStep\t" << config::OutSrcStep << "\t# Output \"restart\" data every ..th step" << endl; *output << "TargetTemp\t" << Thermostats->TargetTemp << "\t# Target temperature" << endl; *output << "MaxPsiStep\t" << config::MaxPsiStep << "\t# number of Minimisation steps per state (0 - default)" << endl; *output << "EpsWannier\t" << config::EpsWannier << "\t# tolerance value for spread minimisation of orbitals" << endl; *output << endl; *output << "# Values specifying when to stop" << endl; *output << "MaxMinStep\t" << config::MaxMinStep << "\t# Maximum number of steps" << endl; *output << "RelEpsTotalE\t" << config::RelEpsTotalEnergy << "\t# relative change in total energy" << endl; *output << "RelEpsKineticE\t" << config::RelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl; *output << "MaxMinStopStep\t" << config::MaxMinStopStep << "\t# check every ..th steps" << endl; *output << "MaxMinGapStopStep\t" << config::MaxMinGapStopStep << "\t# check every ..th steps" << endl; *output << endl; *output << "# Values specifying when to stop for INIT, otherwise same as above" << endl; *output << "MaxInitMinStep\t" << config::MaxInitMinStep << "\t# Maximum number of steps" << endl; *output << "InitRelEpsTotalE\t" << config::InitRelEpsTotalEnergy << "\t# relative change in total energy" << endl; *output << "InitRelEpsKineticE\t" << config::InitRelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl; *output << "InitMaxMinStopStep\t" << config::InitMaxMinStopStep << "\t# check every ..th steps" << endl; *output << "InitMaxMinGapStopStep\t" << config::InitMaxMinGapStopStep << "\t# check every ..th steps" << endl; *output << endl; *output << "BoxLength\t\t\t# (Length of a unit cell)" << endl; *output << domain.at(0,0) << "\t" << endl; *output << domain.at(1,0) << "\t" << domain.at(1,1) << "\t" << endl; *output << domain.at(2,0) << "\t" << domain.at(2,1) << "\t" << domain.at(2,2) << "\t" << endl; // FIXME *output << endl; *output << "ECut\t\t" << config::ECut << "\t# energy cutoff for discretization in Hartrees" << endl; *output << "MaxLevel\t" << config::MaxLevel << "\t# number of different levels in the code, >=2" << endl; *output << "Level0Factor\t" << config::Lev0Factor << "\t# factor by which node number increases from S to 0 level" << endl; *output << "RiemannTensor\t" << config::RiemannTensor << "\t# (Use metric)" << endl; switch (config::RiemannTensor) { case 0: //UseNoRT break; case 1: // UseRT *output << "RiemannLevel\t" << config::RiemannLevel << "\t# Number of Riemann Levels" << endl; *output << "LevRFactor\t" << config::LevRFactor << "\t# factor by which node number increases from 0 to R level from" << endl; break; } *output << "PsiType\t\t" << config::PsiType << "\t# 0 - doubly occupied, 1 - SpinUp,SpinDown" << endl; // write out both types for easier changing afterwards // switch (PsiType) { // case 0: *output << "MaxPsiDouble\t" << config::MaxPsiDouble << "\t# here: specifying both maximum number of SpinUp- and -Down-states" << endl; // break; // case 1: *output << "PsiMaxNoUp\t" << config::PsiMaxNoUp << "\t# here: specifying maximum number of SpinUp-states" << endl; *output << "PsiMaxNoDown\t" << config::PsiMaxNoDown << "\t# here: specifying maximum number of SpinDown-states" << endl; // break; // } *output << "AddPsis\t\t" << config::AddPsis << "\t# Additional unoccupied Psis for bandgap determination" << endl; *output << endl; *output << "RCut\t\t" << config::RCut << "\t# R-cut for the ewald summation" << endl; *output << "StructOpt\t" << config::StructOpt << "\t# Do structure optimization beforehand" << endl; *output << "IsAngstroem\t" << config::IsAngstroem << "\t# 0 - Bohr, 1 - Angstroem" << endl; *output << "RelativeCoord\t" << config::RelativeCoord << "\t# whether ion coordinates are relative (1) or absolute (0)" << endl; *output << "MaxTypes\t" << mol->ElementCount << "\t# maximum number of different ion types" << endl; *output << endl; result = result && mol->Checkout(output); if (mol->MDSteps <=1 ) result = result && mol->Output(output); else result = result && mol->OutputTrajectories(output); output->close(); output->clear(); delete(output); return result; } else { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open output file:" << filename << endl); return false; } }; /** Stores all elements in a MPQC input file. * Note that this format cannot be parsed again. * \param *filename name of file (without ".in" suffix!) * \param *mol pointer to molecule containing all atoms of the molecule */ bool config::SaveMPQC(const char * const filename, const molecule * const mol) const { int AtomNo = -1; Vector *center = NULL; ofstream *output = NULL; // first without hessian { stringstream * const fname = new stringstream;; *fname << filename << ".in"; output = new ofstream(fname->str().c_str(), ios::out); if (output == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open mpqc output file:" << fname << endl); delete(fname); return false; } *output << "% Created by MoleCuilder" << endl; *output << "mpqc: (" << endl; *output << "\tsavestate = no" << endl; *output << "\tdo_gradient = yes" << endl; *output << "\tmole: (" << endl; *output << "\t\tmaxiter = 200" << endl; *output << "\t\tbasis = $:basis" << endl; *output << "\t\tmolecule = $:molecule" << endl; *output << "\t\treference: (" << endl; *output << "\t\t\tbasis = $:basis" << endl; *output << "\t\t\tmolecule = $:molecule" << endl; *output << "\t\t)" << endl; *output << "\t)" << endl; *output << ")" << endl; *output << "molecule: (" << endl; *output << "\tunit = " << (IsAngstroem ? "angstrom" : "bohr" ) << endl; *output << "\t{ atoms geometry } = {" << endl; center = mol->DetermineCenterOfAll(); // output of atoms AtomNo = 0; mol->ActOnAllAtoms( &atom::OutputMPQCLine, (ostream * const) output, (const Vector *)center, &AtomNo ); delete(center); *output << "\t}" << endl; *output << ")" << endl; *output << "basis: (" << endl; *output << "\tname = \"" << basis << "\"" << endl; *output << "\tmolecule = $:molecule" << endl; *output << ")" << endl; output->close(); delete(output); delete(fname); } // second with hessian { stringstream * const fname = new stringstream; *fname << filename << ".hess.in"; output = new ofstream(fname->str().c_str(), ios::out); if (output == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open mpqc hessian output file:" << fname << endl); delete(fname); return false; } *output << "% Created by MoleCuilder" << endl; *output << "mpqc: (" << endl; *output << "\tsavestate = no" << endl; *output << "\tdo_gradient = yes" << endl; *output << "\tmole: (" << endl; *output << "\t\tmaxiter = 200" << endl; *output << "\t\tbasis = $:basis" << endl; *output << "\t\tmolecule = $:molecule" << endl; *output << "\t)" << endl; *output << "\tfreq: (" << endl; *output << "\t\tmolecule=$:molecule" << endl; *output << "\t)" << endl; *output << ")" << endl; *output << "molecule: (" << endl; *output << "\tunit = " << (IsAngstroem ? "angstrom" : "bohr" ) << endl; *output << "\t{ atoms geometry } = {" << endl; center = mol->DetermineCenterOfAll(); // output of atoms AtomNo = 0; mol->ActOnAllAtoms( &atom::OutputMPQCLine, (ostream * const) output, (const Vector *)center, &AtomNo ); delete(center); *output << "\t}" << endl; *output << ")" << endl; *output << "basis: (" << endl; *output << "\tname = \"3-21G\"" << endl; *output << "\tmolecule = $:molecule" << endl; *output << ")" << endl; output->close(); delete(output); delete(fname); } return true; }; /** Stores all atoms from all molecules in a PDB input file. * Note that this format cannot be parsed again. * \param *filename name of file (without ".in" suffix!) * \param *MolList pointer to MoleculeListClass containing all atoms */ bool config::SavePDB(const char * const filename, const MoleculeListClass * const MolList) const { int AtomNo = -1; int MolNo = 0; FILE *f = NULL; char name[MAXSTRINGSIZE]; strncpy(name, filename, MAXSTRINGSIZE-1); strncat(name, ".pdb", MAXSTRINGSIZE-(strlen(name)+1)); f = fopen(name, "w" ); if (f == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open pdb output file:" << name << endl); return false; } fprintf(f, "# Created by MoleCuilder\n"); for (MoleculeList::const_iterator MolRunner = MolList->ListOfMolecules.begin(); MolRunner != MolList->ListOfMolecules.end(); MolRunner++) { int *elementNo = new int[MAX_ELEMENTS]; for (int i=0;ibegin(); iter != (*MolRunner)->end(); ++iter) { sprintf(name, "%2s%2d",(*iter)->type->symbol, elementNo[(*iter)->type->Z]); elementNo[(*iter)->type->Z] = (elementNo[(*iter)->type->Z]+1) % 100; // confine to two digits fprintf(f, "ATOM %6u %-4s %4s%c%4u %8.3f%8.3f%8.3f%6.2f%6.2f %4s%2s%2s\n", (*iter)->nr, /* atom serial number */ name, /* atom name */ (*MolRunner)->name, /* residue name */ 'a'+(unsigned char)(AtomNo % 26), /* letter for chain */ MolNo, /* residue sequence number */ (*iter)->node->at(0), /* position X in Angstroem */ (*iter)->node->at(1), /* position Y in Angstroem */ (*iter)->node->at(2), /* position Z in Angstroem */ (double)(*iter)->type->Valence, /* occupancy */ (double)(*iter)->type->NoValenceOrbitals, /* temperature factor */ "0", /* segment identifier */ (*iter)->type->symbol, /* element symbol */ "0"); /* charge */ AtomNo++; } delete[](elementNo); MolNo++; } fclose(f); return true; }; /** Stores all atoms in a PDB input file. * Note that this format cannot be parsed again. * \param *filename name of file (without ".in" suffix!) * \param *mol pointer to molecule */ bool config::SavePDB(const char * const filename, const molecule * const mol) const { int AtomNo = -1; FILE *f = NULL; int *elementNo = new int[MAX_ELEMENTS]; for (int i=0;ibegin(); iter != mol->end(); ++iter) { sprintf(name, "%2s%2d",(*iter)->type->symbol, elementNo[(*iter)->type->Z]); elementNo[(*iter)->type->Z] = (elementNo[(*iter)->type->Z]+1) % 100; // confine to two digits fprintf(f, "ATOM %6u %-4s %4s%c%4u %8.3f%8.3f%8.3f%6.2f%6.2f %4s%2s%2s\n", (*iter)->nr, /* atom serial number */ name, /* atom name */ mol->name, /* residue name */ 'a'+(unsigned char)(AtomNo % 26), /* letter for chain */ 0, /* residue sequence number */ (*iter)->node->at(0), /* position X in Angstroem */ (*iter)->node->at(1), /* position Y in Angstroem */ (*iter)->node->at(2), /* position Z in Angstroem */ (double)(*iter)->type->Valence, /* occupancy */ (double)(*iter)->type->NoValenceOrbitals, /* temperature factor */ "0", /* segment identifier */ (*iter)->type->symbol, /* element symbol */ "0"); /* charge */ AtomNo++; } fclose(f); delete[](elementNo); return true; }; /** Stores all atoms in a TREMOLO data input file. * Note that this format cannot be parsed again. * Note that TREMOLO does not like Id starting at 0, but at 1. Atoms with Id 0 are discarded! * \param *filename name of file (without ".in" suffix!) * \param *mol pointer to molecule */ bool config::SaveTREMOLO(const char * const filename, const molecule * const mol) const { ofstream *output = NULL; stringstream * const fname = new stringstream; *fname << filename << ".data"; output = new ofstream(fname->str().c_str(), ios::out); if (output == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open tremolo output file:" << fname << endl); delete(fname); return false; } // scan maximum number of neighbours int MaxNeighbours = 0; for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { const int count = (*iter)->ListOfBonds.size(); if (MaxNeighbours < count) MaxNeighbours = count; } *output << "# ATOMDATA Id name resName resSeq x=3 Charge type neighbors=" << MaxNeighbours << endl; for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) { *output << (*iter)->nr << "\t"; *output << (*iter)->getName() << "\t"; *output << mol->name << "\t"; *output << 0 << "\t"; *output << (*iter)->node->at(0) << "\t" << (*iter)->node->at(1) << "\t" << (*iter)->node->at(2) << "\t"; *output << static_cast((*iter)->type->Valence) << "\t"; *output << (*iter)->type->symbol << "\t"; for (BondList::iterator runner = (*iter)->ListOfBonds.begin(); runner != (*iter)->ListOfBonds.end(); runner++) *output << (*runner)->GetOtherAtom(*iter)->nr << "\t"; for(int i=(*iter)->ListOfBonds.size(); i < MaxNeighbours; i++) *output << "-\t"; *output << endl; } output->flush(); output->close(); delete(output); delete(fname); return true; }; /** Stores all atoms from all molecules in a TREMOLO data input file. * Note that this format cannot be parsed again. * Note that TREMOLO does not like Id starting at 0, but at 1. Atoms with Id 0 are discarded! * \param *filename name of file (without ".in" suffix!) * \param *MolList pointer to MoleculeListClass containing all atoms */ bool config::SaveTREMOLO(const char * const filename, const MoleculeListClass * const MolList) const { Info FunctionInfo(__func__); ofstream *output = NULL; stringstream * const fname = new stringstream; *fname << filename << ".data"; output = new ofstream(fname->str().c_str(), ios::out); if (output == NULL) { DoeLog(1) && (eLog()<< Verbose(1) << "Cannot open tremolo output file:" << fname << endl); delete(fname); return false; } // scan maximum number of neighbours int MaxNeighbours = 0; for (MoleculeList::const_iterator MolWalker = MolList->ListOfMolecules.begin(); MolWalker != MolList->ListOfMolecules.end(); MolWalker++) { for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { const int count = (*iter)->ListOfBonds.size(); if (MaxNeighbours < count) MaxNeighbours = count; } } *output << "# ATOMDATA Id name resName resSeq x=3 Charge type neighbors=" << MaxNeighbours << endl; // create global to local id map map LocalNotoGlobalNoMap; { unsigned int MolCounter = 0; int AtomNo = 1; for (MoleculeList::const_iterator MolWalker = MolList->ListOfMolecules.begin(); MolWalker != MolList->ListOfMolecules.end(); MolWalker++) { for(molecule::iterator AtomRunner = (*MolWalker)->begin(); AtomRunner != (*MolWalker)->end(); ++AtomRunner) { LocalNotoGlobalNoMap.insert( pair((*AtomRunner)->getId(), AtomNo++) ); } MolCounter++; } ASSERT(MolCounter == MolList->ListOfMolecules.size(), "SaveTREMOLO: LocalNotoGlobalNoMap[] has not been correctly initialized for each molecule"); } // write the file { int MolCounter = 0; int AtomNo = 0; for (MoleculeList::const_iterator MolWalker = MolList->ListOfMolecules.begin(); MolWalker != MolList->ListOfMolecules.end(); MolWalker++) { for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { *output << LocalNotoGlobalNoMap[ (*iter)->getId() ] << "\t"; *output << (*iter)->getName() << "\t"; *output << (*MolWalker)->name << "\t"; *output << MolCounter+1 << "\t"; *output << (*iter)->node->at(0) << "\t" << (*iter)->node->at(1) << "\t" << (*iter)->node->at(2) << "\t"; *output << (double)(*iter)->type->Valence << "\t"; *output << (*iter)->type->symbol << "\t"; for (BondList::iterator runner = (*iter)->ListOfBonds.begin(); runner != (*iter)->ListOfBonds.end(); runner++) *output << LocalNotoGlobalNoMap[ (*runner)->GetOtherAtom((*iter))->getId() ] << "\t"; for(int i=(*iter)->ListOfBonds.size(); i < MaxNeighbours; i++) *output << "-\t"; *output << endl; AtomNo++; } MolCounter++; } } // store & free output->flush(); output->close(); delete(output); delete(fname); return true; }; /** Tries given filename or standard on saving the config file. * \param *ConfigFileName name of file * \param *periode pointer to periodentafel structure with all the elements * \param *molecules list of molecules structure with all the atoms and coordinates */ void config::SaveAll(char *ConfigFileName, periodentafel *periode, MoleculeListClass *molecules) { char filename[MAXSTRINGSIZE]; ofstream output; molecule *mol = NULL; // first save as PDB data if (ConfigFileName != NULL) strcpy(filename, ConfigFileName); if (output == NULL) strcpy(filename,"main_pcp_linux"); Log() << Verbose(0) << "Saving as pdb input ... " << endl; if (SavePDB(filename, molecules)) Log() << Verbose(0) << "\t... done." << endl; else Log() << Verbose(0) << "\t... failed." << endl; // then save as tremolo data file if (ConfigFileName != NULL) strcpy(filename, ConfigFileName); if (output == NULL) strcpy(filename,"main_pcp_linux"); Log() << Verbose(0) << "Saving as tremolo data input ... " << endl; if (SaveTREMOLO(filename, molecules)) Log() << Verbose(0) << "\t... done." << endl; else Log() << Verbose(0) << "\t... failed." << endl; // translate each to its center and merge all molecules in MoleculeListClass into this molecule int N = molecules->ListOfMolecules.size(); if (N != 1) { // don't do anything in case of only one molecule (shifts mol ids otherwise) int *src = new int[N]; N=0; for (MoleculeList::iterator ListRunner = molecules->ListOfMolecules.begin(); ListRunner != molecules->ListOfMolecules.end(); ListRunner++) { src[N++] = (*ListRunner)->IndexNr; (*ListRunner)->Translate(&(*ListRunner)->Center); } mol = World::getInstance().createMolecule(); mol->SetNameFromFilename(ConfigFileName); molecules->SimpleMultiMerge(mol, src, N); mol->doCountAtoms(); mol->CountElements(); //mol->CalculateOrbitals(*this); delete[](src); } else { if (!molecules->ListOfMolecules.empty()) { mol = *(molecules->ListOfMolecules.begin()); mol->doCountAtoms(); //mol->CalculateOrbitals(*this); } else { DoeLog(1) && (eLog() << Verbose(1) << "There are no molecules to save!" << endl); } } Log() << Verbose(0) << "Storing configuration ... " << endl; // get correct valence orbitals if (ConfigFileName != NULL) { // test the file name strcpy(filename, ConfigFileName); output.open(filename, ios::trunc); } else if (strlen(configname) != 0) { strcpy(filename, configname); output.open(configname, ios::trunc); } else { strcpy(filename, DEFAULTCONFIG); output.open(DEFAULTCONFIG, ios::trunc); } output.close(); output.clear(); Log() << Verbose(0) << "Saving of config file ... " << endl; if (Save(filename, periode, mol)) Log() << Verbose(0) << "\t... successful." << endl; else Log() << Verbose(0) << "\t... failed." << endl; // and save to xyz file if (ConfigFileName != NULL) { strcpy(filename, ConfigFileName); strcat(filename, ".xyz"); output.open(filename, ios::trunc); } if (output == NULL) { strcpy(filename,"main_pcp_linux"); strcat(filename, ".xyz"); output.open(filename, ios::trunc); } Log() << Verbose(0) << "Saving of XYZ file ... " << endl; if (mol->MDSteps <= 1) { if (mol->OutputXYZ(&output)) Log() << Verbose(0) << "\t... successful." << endl; else Log() << Verbose(0) << "\t... failed." << endl; } else { if (mol->OutputTrajectoriesXYZ(&output)) Log() << Verbose(0) << "\t... successful." << endl; else Log() << Verbose(0) << "\t... failed." << endl; } output.close(); output.clear(); // and save as MPQC configuration if (ConfigFileName != NULL) strcpy(filename, ConfigFileName); if (output == NULL) strcpy(filename,"main_pcp_linux"); Log() << Verbose(0) << "Saving as mpqc input .. " << endl; if (SaveMPQC(filename, mol)) Log() << Verbose(0) << "\t... done." << endl; else Log() << Verbose(0) << "\t... failed." << endl; // don't destroy molecule as it contains all our atoms //World::getInstance().destroyMolecule(mol); }; /** Reads parameter from a parsed file. * The file is either parsed for a certain keyword or if null is given for * the value in row yth and column xth. If the keyword was necessity#critical, * then an error is thrown and the programme aborted. * \warning value is modified (both in contents and position)! * \param verbose 1 - print found value to stderr, 0 - don't * \param *file file to be parsed * \param name Name of value in file (at least 3 chars!) * \param sequential 1 - do not reset file pointer to begin of file, 0 - set to beginning * (if file is sequentially parsed this can be way faster! However, beware of multiple values per line, as whole line is read - * best approach: 0 0 0 1 (not resetted only on last value of line) - and of yth, which is now * counted from this unresetted position!) * \param xth Which among a number of parameters it is (in grid case it's row number as grid is read as a whole!) * \param yth In grid case specifying column number, otherwise the yth \a name matching line * \param type Type of the Parameter to be read * \param value address of the value to be read (must have been allocated) * \param repetition determines, if the keyword appears multiply in the config file, which repetition shall be parsed, i.e. 1 if not multiply * \param critical necessity of this keyword being specified (optional, critical) * \return 1 - found, 0 - not found * \note Routine is taken from the pcp project and hack-a-slack adapted to C++ */ int ParseForParameter(const int verbose, ifstream * const file, const char * const name, const int sequential, const int xth, const int yth, const int type, void * value, const int repetition, const int critical) { int i = 0; int j = 0; // loop variables int length = 0; int maxlength = -1; long file_position = file->tellg(); // mark current position char *dummy1 = NULL; char *dummy = NULL; char free_dummy[MAXSTRINGSIZE]; // pointers in the line that is read in per step dummy1 = free_dummy; //fprintf(stderr,"Parsing for %s\n",name); if (repetition == 0) //Error(SomeError, "ParseForParameter(): argument repetition must not be 0!"); return 0; int line = 0; // marks line where parameter was found int found = (type >= grid) ? 0 : (-yth + 1); // marks if yth parameter name was found while((found != repetition)) { dummy1 = dummy = free_dummy; do { file->getline(dummy1, 256); // Read the whole line if (file->eof()) { if ((critical) && (found == 0)) { //Error(InitReading, name); fprintf(stderr,"Error:InitReading, critical %s not found\n", name); exit(255); } else { //if (!sequential) file->clear(); file->seekg(file_position, ios::beg); // rewind to start position return 0; } } line++; } while (dummy != NULL && dummy1 != NULL && ((dummy1[0] == '#') || (dummy1[0] == '\0'))); // skip commentary and empty lines // C++ getline removes newline at end, thus re-add if ((dummy1 != NULL) && (strchr(dummy1,'\n') == NULL)) { i = strlen(dummy1); dummy1[i] = '\n'; dummy1[i+1] = '\0'; } //fprintf(stderr,"line %i ends at %i, newline at %i\n", line, strlen(dummy1), strchr(dummy1,'\n')-free_dummy); if (dummy1 == NULL) { if (verbose) fprintf(stderr,"Error reading line %i\n",line); } else { //fprintf(stderr,"Now parsing the line %i: %s\n", line, dummy1); } // Seek for possible end of keyword on line if given ... if (name != NULL) { dummy = strchr(dummy1,'\t'); // set dummy on first tab or space which ever's nearer if (dummy == NULL) { dummy = strchr(dummy1, ' '); // if not found seek for space while ((dummy != NULL) && ((*dummy == '\t') || (*dummy == ' '))) // skip some more tabs and spaces if necessary dummy++; } if (dummy == NULL) { dummy = strchr(dummy1, '\n'); // set on line end then (whole line = keyword) //fprintf(stderr,"Error: Cannot find tabs or spaces on line %i in search for %s\n", line, name); //Error(FileOpenParams, NULL); } else { //fprintf(stderr,"found tab at %i\n",(char *)dummy-(char *)dummy1); } } else dummy = dummy1; // ... and check if it is the keyword! //fprintf(stderr,"name %p, dummy %i/%c, dummy1 %i/%c, strlen(name) %i\n", &name, dummy, *dummy, dummy1, *dummy1, strlen(name)); if ((name == NULL) || (((dummy-dummy1 >= 3) && (strncmp(dummy1, name, strlen(name)) == 0)) && ((unsigned int)(dummy-dummy1) == strlen(name)))) { found++; // found the parameter! //fprintf(stderr,"found %s at line %i between %i and %i\n", name, line, dummy1, dummy); if (found == repetition) { for (i=0;i= grid) { // grid structure means that grid starts on the next line, not right after keyword dummy1 = dummy = free_dummy; do { file->getline(dummy1, 256); // Read the whole line, skip commentary and empty ones if (file->eof()) { if ((critical) && (found == 0)) { //Error(InitReading, name); fprintf(stderr,"Error:InitReading, critical %s not found\n", name); exit(255); } else { //if (!sequential) file->clear(); file->seekg(file_position, ios::beg); // rewind to start position return 0; } } line++; } while ((dummy1[0] == '#') || (dummy1[0] == '\n')); if (dummy1 == NULL){ if (verbose) fprintf(stderr,"Error reading line %i\n", line); } else { //fprintf(stderr,"Reading next line %i: %s\n", line, dummy1); } } else { // simple int, strings or doubles start in the same line while ((*dummy == '\t') || (*dummy == ' ')) // skip interjacent tabs and spaces dummy++; } // C++ getline removes newline at end, thus re-add if ((dummy1 != NULL) && (strchr(dummy1,'\n') == NULL)) { j = strlen(dummy1); dummy1[j] = '\n'; dummy1[j+1] = '\0'; } int start = (type >= grid) ? 0 : yth-1 ; for (j=start;j j) && (type == upper_trigrid)) || ((j > i) && (type == lower_trigrid))) { *((double *)value) = 0.0; fprintf(stderr,"%f\t",*((double *)value)); value = (void *)((long)value + sizeof(double)); //value += sizeof(double); } else { // otherwise we must skip all interjacent tabs and spaces and find next value dummy1 = dummy; dummy = strchr(dummy1, '\t'); // seek for tab or space if (dummy == NULL) dummy = strchr(dummy1, ' '); // if not found seek for space if (dummy == NULL) { // if still zero returned ... dummy = strchr(dummy1, '\n'); // ... at line end then if ((j < yth-1) && (type < 4)) { // check if xth value or not yet if (critical) { if (verbose) fprintf(stderr,"Error: EoL at %i and still missing %i value(s) for parameter %s\n", line, yth-j, name); //return 0; exit(255); //Error(FileOpenParams, NULL); } else { //if (!sequential) file->clear(); file->seekg(file_position, ios::beg); // rewind to start position return 0; } } } else { //fprintf(stderr,"found tab at %i\n",(char *)dummy-(char *)free_dummy); } if (*dummy1 == '#') { // found comment, skipping rest of line //if (verbose) fprintf(stderr,"Error: '#' at %i and still missing %i value(s) for parameter %s\n", line, yth-j, name); if (!sequential) { // here we need it! file->seekg(file_position, ios::beg); // rewind to start position } return 0; } //fprintf(stderr,"value from %i to %i\n",(char *)dummy1-(char *)free_dummy,(char *)dummy-(char *)free_dummy); switch(type) { case (row_int): *((int *)value) = atoi(dummy1); if ((verbose) && (i==0) && (j==0)) fprintf(stderr,"%s = ", name); if (verbose) fprintf(stderr,"%i\t",*((int *)value)); value = (void *)((long)value + sizeof(int)); //value += sizeof(int); break; case(row_double): case(grid): case(lower_trigrid): case(upper_trigrid): *((double *)value) = atof(dummy1); if ((verbose) && (i==0) && (j==0)) fprintf(stderr,"%s = ", name); if (verbose) fprintf(stderr,"%lg\t",*((double *)value)); value = (void *)((long)value + sizeof(double)); //value += sizeof(double); break; case(double_type): *((double *)value) = atof(dummy1); if ((verbose) && (i == xth-1)) fprintf(stderr,"%s = %lg\n", name, *((double *) value)); //value += sizeof(double); break; case(int_type): *((int *)value) = atoi(dummy1); if ((verbose) && (i == xth-1)) fprintf(stderr,"%s = %i\n", name, *((int *) value)); //value += sizeof(int); break; default: case(string_type): if (value != NULL) { //if (maxlength == -1) maxlength = strlen((char *)value); // get maximum size of string array maxlength = MAXSTRINGSIZE; length = maxlength > (dummy-dummy1) ? (dummy-dummy1) : maxlength; // cap at maximum strncpy((char *)value, dummy1, length); // copy as much ((char *)value)[length] = '\0'; // and set end marker if ((verbose) && (i == xth-1)) fprintf(stderr,"%s is '%s' (%i chars)\n",name,((char *) value), length); //value += sizeof(char); } else { } break; } } while (*dummy == '\t') dummy++; } } } } } if ((type >= row_int) && (verbose)) fprintf(stderr,"\n"); if (!sequential) { file->clear(); file->seekg(file_position, ios::beg); // rewind to start position } //fprintf(stderr, "End of Parsing\n\n"); return (found); // true if found, false if not } /** Reads parameter from a parsed file. * The file is either parsed for a certain keyword or if null is given for * the value in row yth and column xth. If the keyword was necessity#critical, * then an error is thrown and the programme aborted. * \warning value is modified (both in contents and position)! * \param verbose 1 - print found value to stderr, 0 - don't * \param *FileBuffer pointer to buffer structure * \param name Name of value in file (at least 3 chars!) * \param sequential 1 - do not reset file pointer to begin of file, 0 - set to beginning * (if file is sequentially parsed this can be way faster! However, beware of multiple values per line, as whole line is read - * best approach: 0 0 0 1 (not resetted only on last value of line) - and of yth, which is now * counted from this unresetted position!) * \param xth Which among a number of parameters it is (in grid case it's row number as grid is read as a whole!) * \param yth In grid case specifying column number, otherwise the yth \a name matching line * \param type Type of the Parameter to be read * \param value address of the value to be read (must have been allocated) * \param repetition determines, if the keyword appears multiply in the config file, which repetition shall be parsed, i.e. 1 if not multiply * \param critical necessity of this keyword being specified (optional, critical) * \return 1 - found, 0 - not found * \note Routine is taken from the pcp project and hack-a-slack adapted to C++ */ int ParseForParameter(const int verbose, struct ConfigFileBuffer * const FileBuffer, const char * const name, const int sequential, const int xth, const int yth, const int type, void * value, const int repetition, const int critical) { int i = 0; int j = 0; // loop variables int length = 0; int maxlength = -1; int OldCurrentLine = FileBuffer->CurrentLine; char *dummy1 = NULL; char *dummy = NULL; // pointers in the line that is read in per step //fprintf(stderr,"Parsing for %s\n",name); if (repetition == 0) //Error(SomeError, "ParseForParameter(): argument repetition must not be 0!"); return 0; int line = 0; // marks line where parameter was found int found = (type >= grid) ? 0 : (-yth + 1); // marks if yth parameter name was found while((found != repetition)) { dummy1 = dummy = NULL; do { dummy1 = FileBuffer->buffer[ FileBuffer->LineMapping[FileBuffer->CurrentLine++] ]; if (FileBuffer->CurrentLine >= FileBuffer->NoLines) { if ((critical) && (found == 0)) { //Error(InitReading, name); fprintf(stderr,"Error:InitReading, critical %s not found\n", name); exit(255); } else { FileBuffer->CurrentLine = OldCurrentLine; // rewind to start position return 0; } } if (dummy1 == NULL) { if (verbose) fprintf(stderr,"Error reading line %i\n",line); } else { //fprintf(stderr,"Now parsing the line %i: %s\n", line, dummy1); } line++; } while (dummy1 != NULL && ((dummy1[0] == '#') || (dummy1[0] == '\0'))); // skip commentary and empty lines // Seek for possible end of keyword on line if given ... if (name != NULL) { dummy = strchr(dummy1,'\t'); // set dummy on first tab or space which ever's nearer if (dummy == NULL) { dummy = strchr(dummy1, ' '); // if not found seek for space while ((dummy != NULL) && ((*dummy == '\t') || (*dummy == ' '))) // skip some more tabs and spaces if necessary dummy++; } if (dummy == NULL) { dummy = strchr(dummy1, '\n'); // set on line end then (whole line = keyword) //fprintf(stderr,"Error: Cannot find tabs or spaces on line %i in search for %s\n", line, name); //Error(FileOpenParams, NULL); } else { //fprintf(stderr,"found tab at %i\n",(char *)dummy-(char *)dummy1); } } else dummy = dummy1; // ... and check if it is the keyword! //fprintf(stderr,"name %p, dummy %i/%c, dummy1 %i/%c, strlen(name) %i\n", &name, dummy, *dummy, dummy1, *dummy1, strlen(name)); if ((name == NULL) || (((dummy-dummy1 >= 3) && (strncmp(dummy1, name, strlen(name)) == 0)) && ((unsigned int)(dummy-dummy1) == strlen(name)))) { found++; // found the parameter! //fprintf(stderr,"found %s at line %i between %i and %i\n", name, line, dummy1, dummy); if (found == repetition) { for (i=0;i= grid) { // grid structure means that grid starts on the next line, not right after keyword dummy1 = dummy = NULL; do { dummy1 = FileBuffer->buffer[ FileBuffer->LineMapping[ FileBuffer->CurrentLine++] ]; if (FileBuffer->CurrentLine >= FileBuffer->NoLines) { if ((critical) && (found == 0)) { //Error(InitReading, name); fprintf(stderr,"Error:InitReading, critical %s not found\n", name); exit(255); } else { FileBuffer->CurrentLine = OldCurrentLine; // rewind to start position return 0; } } if (dummy1 == NULL) { if (verbose) fprintf(stderr,"Error reading line %i\n", line); } else { //fprintf(stderr,"Reading next line %i: %s\n", line, dummy1); } line++; } while ((dummy1 != NULL) && ((dummy1[0] == '#') || (dummy1[0] == '\n'))); dummy = dummy1; } else { // simple int, strings or doubles start in the same line while ((*dummy == '\t') || (*dummy == ' ')) // skip interjacent tabs and spaces dummy++; } for (j=((type >= grid) ? 0 : yth-1);j j) && (type == upper_trigrid)) || ((j > i) && (type == lower_trigrid))) { *((double *)value) = 0.0; fprintf(stderr,"%f\t",*((double *)value)); value = (void *)((long)value + sizeof(double)); //value += sizeof(double); } else { // otherwise we must skip all interjacent tabs and spaces and find next value dummy1 = dummy; dummy = strchr(dummy1, '\t'); // seek for tab or space if (dummy == NULL) dummy = strchr(dummy1, ' '); // if not found seek for space if (dummy == NULL) { // if still zero returned ... dummy = strchr(dummy1, '\n'); // ... at line end then if ((j < yth-1) && (type < 4)) { // check if xth value or not yet if (critical) { if (verbose) fprintf(stderr,"Error: EoL at %i and still missing %i value(s) for parameter %s\n", line, yth-j, name); //return 0; exit(255); //Error(FileOpenParams, NULL); } else { if (!sequential) { // here we need it! FileBuffer->CurrentLine = OldCurrentLine; // rewind to start position } return 0; } } } else { //fprintf(stderr,"found tab at %i\n",(char *)dummy-(char *)free_dummy); } if (*dummy1 == '#') { // found comment, skipping rest of line //if (verbose) fprintf(stderr,"Error: '#' at %i and still missing %i value(s) for parameter %s\n", line, yth-j, name); if (!sequential) { // here we need it! FileBuffer->CurrentLine = OldCurrentLine; // rewind to start position } return 0; } //fprintf(stderr,"value from %i to %i\n",(char *)dummy1-(char *)free_dummy,(char *)dummy-(char *)free_dummy); switch(type) { case (row_int): *((int *)value) = atoi(dummy1); if ((verbose) && (i==0) && (j==0)) fprintf(stderr,"%s = ", name); if (verbose) fprintf(stderr,"%i\t",*((int *)value)); value = (void *)((long)value + sizeof(int)); //value += sizeof(int); break; case(row_double): case(grid): case(lower_trigrid): case(upper_trigrid): *((double *)value) = atof(dummy1); if ((verbose) && (i==0) && (j==0)) fprintf(stderr,"%s = ", name); if (verbose) fprintf(stderr,"%lg\t",*((double *)value)); value = (void *)((long)value + sizeof(double)); //value += sizeof(double); break; case(double_type): *((double *)value) = atof(dummy1); if ((verbose) && (i == xth-1)) fprintf(stderr,"%s = %lg\n", name, *((double *) value)); //value += sizeof(double); break; case(int_type): *((int *)value) = atoi(dummy1); if ((verbose) && (i == xth-1)) fprintf(stderr,"%s = %i\n", name, *((int *) value)); //value += sizeof(int); break; default: case(string_type): if (value != NULL) { //if (maxlength == -1) maxlength = strlen((char *)value); // get maximum size of string array maxlength = MAXSTRINGSIZE; length = maxlength > (dummy-dummy1) ? (dummy-dummy1) : maxlength; // cap at maximum strncpy((char *)value, dummy1, length); // copy as much ((char *)value)[length] = '\0'; // and set end marker if ((verbose) && (i == xth-1)) fprintf(stderr,"%s is '%s' (%i chars)\n",name,((char *) value), length); //value += sizeof(char); } else { } break; } } while (*dummy == '\t') dummy++; } } } } } if ((type >= row_int) && (verbose)) fprintf(stderr,"\n"); if (!sequential) { FileBuffer->CurrentLine = OldCurrentLine; // rewind to start position } //fprintf(stderr, "End of Parsing\n\n"); return (found); // true if found, false if not } /** Reading of Thermostat related values from parameter file. * \param *fb file buffer containing the config file */ void config::ParseThermostats(class ConfigFileBuffer * const fb) { char * const thermo = new char[12]; const int verbose = 0; // read desired Thermostat from file along with needed additional parameters if (ParseForParameter(verbose,fb,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) { if (strcmp(thermo, Thermostats->ThermostatNames[0]) == 0) { // None if (Thermostats->ThermostatImplemented[0] == 1) { Thermostats->Thermostat = None; } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else if (strcmp(thermo, Thermostats->ThermostatNames[1]) == 0) { // Woodcock if (Thermostats->ThermostatImplemented[1] == 1) { Thermostats->Thermostat = Woodcock; ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, int_type, &Thermostats->ScaleTempStep, 1, critical); // read scaling frequency } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else if (strcmp(thermo, Thermostats->ThermostatNames[2]) == 0) { // Gaussian if (Thermostats->ThermostatImplemented[2] == 1) { Thermostats->Thermostat = Gaussian; ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, int_type, &Thermostats->ScaleTempStep, 1, critical); // read collision rate } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else if (strcmp(thermo, Thermostats->ThermostatNames[3]) == 0) { // Langevin if (Thermostats->ThermostatImplemented[3] == 1) { Thermostats->Thermostat = Langevin; ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->TempFrequency, 1, critical); // read gamma if (ParseForParameter(verbose,fb,"Thermostat", 0, 3, 1, double_type, &Thermostats->alpha, 1, optional)) { DoLog(2) && (Log() << Verbose(2) << "Extended Stochastic Thermostat detected with interpolation coefficient " << Thermostats->alpha << "." << endl); } else { Thermostats->alpha = 1.; } } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else if (strcmp(thermo, Thermostats->ThermostatNames[4]) == 0) { // Berendsen if (Thermostats->ThermostatImplemented[4] == 1) { Thermostats->Thermostat = Berendsen; ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->TempFrequency, 1, critical); // read \tau_T } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else if (strcmp(thermo, Thermostats->ThermostatNames[5]) == 0) { // Nose-Hoover if (Thermostats->ThermostatImplemented[5] == 1) { Thermostats->Thermostat = NoseHoover; ParseForParameter(verbose,fb,"Thermostat", 0, 2, 1, double_type, &Thermostats->HooverMass, 1, critical); // read Hoovermass Thermostats->alpha = 0.; } else { DoLog(1) && (Log() << Verbose(1) << "Warning: " << Thermostats->ThermostatNames[0] << " thermostat not implemented, falling back to None." << endl); Thermostats->Thermostat = None; } } else { DoLog(1) && (Log() << Verbose(1) << " Warning: thermostat name was not understood!" << endl); Thermostats->Thermostat = None; } } else { if ((Thermostats->TargetTemp != 0)) DoLog(2) && (Log() << Verbose(2) << "No thermostat chosen despite finite temperature MD, falling back to None." << endl); Thermostats->Thermostat = None; } delete[](thermo); };