1 | /*
|
---|
2 | * atom_trajectoryparticle.cpp
|
---|
3 | *
|
---|
4 | * Created on: Oct 19, 2009
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | // include config.h
|
---|
9 | #ifdef HAVE_CONFIG_H
|
---|
10 | #include <config.h>
|
---|
11 | #endif
|
---|
12 |
|
---|
13 | #include "Helpers/MemDebug.hpp"
|
---|
14 |
|
---|
15 | #include "atom.hpp"
|
---|
16 | #include "atom_trajectoryparticle.hpp"
|
---|
17 | #include "config.hpp"
|
---|
18 | #include "element.hpp"
|
---|
19 | #include "Helpers/Info.hpp"
|
---|
20 | #include "Helpers/Log.hpp"
|
---|
21 | #include "parser.hpp"
|
---|
22 | #include "ThermoStatContainer.hpp"
|
---|
23 | #include "Helpers/Verbose.hpp"
|
---|
24 |
|
---|
25 | /** Constructor of class TrajectoryParticle.
|
---|
26 | */
|
---|
27 | TrajectoryParticle::TrajectoryParticle()
|
---|
28 | {
|
---|
29 | };
|
---|
30 |
|
---|
31 | /** Destructor of class TrajectoryParticle.
|
---|
32 | */
|
---|
33 | TrajectoryParticle::~TrajectoryParticle()
|
---|
34 | {
|
---|
35 | };
|
---|
36 |
|
---|
37 |
|
---|
38 | /** Adds kinetic energy of this atom to given temperature value.
|
---|
39 | * \param *temperature add on this value
|
---|
40 | * \param step given step of trajectory to add
|
---|
41 | */
|
---|
42 | void TrajectoryParticle::AddKineticToTemperature(double *temperature, int step) const
|
---|
43 | {
|
---|
44 | for (int i=NDIM;i--;)
|
---|
45 | *temperature += getType()->mass * Trajectory.U.at(step)[i]* Trajectory.U.at(step)[i];
|
---|
46 | };
|
---|
47 |
|
---|
48 | double TrajectoryParticle::getKineticEnergy(unsigned int step){
|
---|
49 | return getType()->mass * Trajectory.U.at(step).NormSquared();
|
---|
50 | }
|
---|
51 |
|
---|
52 | /** Evaluates some constraint potential if atom moves from \a startstep at once to \endstep in trajectory.
|
---|
53 | * \param startstep trajectory begins at
|
---|
54 | * \param endstep trajectory ends at
|
---|
55 | * \param **PermutationMap if atom switches places with some other atom, there is no translation but a permutaton noted here (not in the trajectories of ea
|
---|
56 | * \param *Force Force matrix to store result in
|
---|
57 | */
|
---|
58 | void TrajectoryParticle::EvaluateConstrainedForce(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) const
|
---|
59 | {
|
---|
60 | double constant = 10.;
|
---|
61 | TrajectoryParticle *Sprinter = PermutationMap[nr];
|
---|
62 | // set forces
|
---|
63 | for (int i=NDIM;i++;)
|
---|
64 | Force->Matrix[0][nr][5+i] += 2.*constant*sqrt(Trajectory.R.at(startstep).distance(Sprinter->Trajectory.R.at(endstep)));
|
---|
65 | };
|
---|
66 |
|
---|
67 | /** Correct velocity against the summed \a CoGVelocity for \a step.
|
---|
68 | * \param *ActualTemp sum up actual temperature meanwhile
|
---|
69 | * \param Step MD step in atom::Tracjetory
|
---|
70 | * \param *CoGVelocity remnant velocity (i.e. vector sum of all atom velocities)
|
---|
71 | */
|
---|
72 | void TrajectoryParticle::CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity)
|
---|
73 | {
|
---|
74 | for(int d=0;d<NDIM;d++) {
|
---|
75 | Trajectory.U.at(Step)[d] -= CoGVelocity->at(d);
|
---|
76 | *ActualTemp += 0.5 * getType()->mass * Trajectory.U.at(Step)[d] * Trajectory.U.at(Step)[d];
|
---|
77 | }
|
---|
78 | };
|
---|
79 |
|
---|
80 | /** Extends the trajectory STL vector to the new size.
|
---|
81 | * Does nothing if \a MaxSteps is smaller than current size.
|
---|
82 | * \param MaxSteps
|
---|
83 | */
|
---|
84 | void TrajectoryParticle::ResizeTrajectory(int MaxSteps)
|
---|
85 | {
|
---|
86 | Info FunctionInfo(__func__);
|
---|
87 | if (Trajectory.R.size() <= (unsigned int)(MaxSteps)) {
|
---|
88 | DoLog(0) && (Log() << Verbose(0) << "Increasing size for trajectory array of " << nr << " from " << Trajectory.R.size() << " to " << (MaxSteps+1) << "." << endl);
|
---|
89 | Trajectory.R.resize(MaxSteps+1);
|
---|
90 | Trajectory.U.resize(MaxSteps+1);
|
---|
91 | Trajectory.F.resize(MaxSteps+1);
|
---|
92 | }
|
---|
93 | };
|
---|
94 |
|
---|
95 | /** Copies a given trajectory step \a src onto another \a dest
|
---|
96 | * \param dest index of destination step
|
---|
97 | * \param src index of source step
|
---|
98 | */
|
---|
99 | void TrajectoryParticle::CopyStepOnStep(int dest, int src)
|
---|
100 | {
|
---|
101 | if (dest == src) // self assignment check
|
---|
102 | return;
|
---|
103 |
|
---|
104 | for (int n=NDIM;n--;) {
|
---|
105 | Trajectory.R.at(dest)[n] = Trajectory.R.at(src)[n];
|
---|
106 | Trajectory.U.at(dest)[n] = Trajectory.U.at(src)[n];
|
---|
107 | Trajectory.F.at(dest)[n] = Trajectory.F.at(src)[n];
|
---|
108 | }
|
---|
109 | };
|
---|
110 |
|
---|
111 | /** Performs a velocity verlet update of the trajectory.
|
---|
112 | * Parameters are according to those in configuration class.
|
---|
113 | * \param NextStep index of sequential step to set
|
---|
114 | * \param *configuration pointer to configuration with parameters
|
---|
115 | * \param *Force matrix with forces
|
---|
116 | */
|
---|
117 | void TrajectoryParticle::VelocityVerletUpdate(int NextStep, config *configuration, ForceMatrix *Force, const size_t offset)
|
---|
118 | {
|
---|
119 | //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
120 | for (int d=0; d<NDIM; d++) {
|
---|
121 | Trajectory.F.at(NextStep)[d] = -Force->Matrix[0][nr][d+offset]*(configuration->GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);
|
---|
122 | Trajectory.R.at(NextStep)[d] = Trajectory.R.at(NextStep-1)[d];
|
---|
123 | Trajectory.R.at(NextStep)[d] += configuration->Deltat*(Trajectory.U.at(NextStep-1)[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
|
---|
124 | Trajectory.R.at(NextStep)[d] += 0.5*configuration->Deltat*configuration->Deltat*(Trajectory.F.at(NextStep)[d]/getType()->mass); // F = m * a and s =
|
---|
125 | }
|
---|
126 | // Update U
|
---|
127 | for (int d=0; d<NDIM; d++) {
|
---|
128 | Trajectory.U.at(NextStep)[d] = Trajectory.U.at(NextStep-1)[d];
|
---|
129 | Trajectory.U.at(NextStep)[d] += configuration->Deltat * (Trajectory.F.at(NextStep)[d]+Trajectory.F.at(NextStep-1)[d]/getType()->mass); // v = F/m * t
|
---|
130 | }
|
---|
131 | // Update R (and F)
|
---|
132 | // out << "Integrated position&velocity of step " << (NextStep) << ": (";
|
---|
133 | // for (int d=0;d<NDIM;d++)
|
---|
134 | // out << Trajectory.R.at(NextStep).x[d] << " "; // next step
|
---|
135 | // out << ")\t(";
|
---|
136 | // for (int d=0;d<NDIM;d++)
|
---|
137 | // Log() << Verbose(0) << Trajectory.U.at(NextStep).x[d] << " "; // next step
|
---|
138 | // out << ")" << endl;
|
---|
139 | };
|
---|
140 |
|
---|
141 | /** Sums up mass and kinetics.
|
---|
142 | * \param Step step to sum for
|
---|
143 | * \param *TotalMass pointer to total mass sum
|
---|
144 | * \param *TotalVelocity pointer to tota velocity sum
|
---|
145 | */
|
---|
146 | void TrajectoryParticle::SumUpKineticEnergy( int Step, double *TotalMass, Vector *TotalVelocity ) const
|
---|
147 | {
|
---|
148 | *TotalMass += getType()->mass; // sum up total mass
|
---|
149 | for(int d=0;d<NDIM;d++) {
|
---|
150 | TotalVelocity->at(d) += Trajectory.U.at(Step)[d]*getType()->mass;
|
---|
151 | }
|
---|
152 | };
|
---|
153 |
|
---|
154 | /** Scales velocity of atom according to Woodcock thermostat.
|
---|
155 | * \param ScaleTempFactor factor to scale the velocities with (i.e. sqrt of energy scale factor)
|
---|
156 | * \param Step MD step to scale
|
---|
157 | * \param *ekin sum of kinetic energy
|
---|
158 | */
|
---|
159 | void TrajectoryParticle::Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin)
|
---|
160 | {
|
---|
161 | Vector &U = Trajectory.U.at(Step);
|
---|
162 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
163 | for (int d=0; d<NDIM; d++) {
|
---|
164 | U[d] *= ScaleTempFactor;
|
---|
165 | *ekin += 0.5*getType()->mass * U[d]*U[d];
|
---|
166 | }
|
---|
167 | };
|
---|
168 |
|
---|
169 | /** Scales velocity of atom according to Gaussian thermostat.
|
---|
170 | * \param Step MD step to scale
|
---|
171 | * \param *G
|
---|
172 | * \param *E
|
---|
173 | */
|
---|
174 | void TrajectoryParticle::Thermostat_Gaussian_init(int Step, double *G, double *E)
|
---|
175 | {
|
---|
176 | Vector &U = Trajectory.U.at(Step);
|
---|
177 | Vector &F = Trajectory.F.at(Step);
|
---|
178 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
179 | for (int d=0; d<NDIM; d++) {
|
---|
180 | *G += U[d] * F[d];
|
---|
181 | *E += U[d]*U[d]*getType()->mass;
|
---|
182 | }
|
---|
183 | };
|
---|
184 |
|
---|
185 | /** Determines scale factors according to Gaussian thermostat.
|
---|
186 | * \param Step MD step to scale
|
---|
187 | * \param GE G over E ratio
|
---|
188 | * \param *ekin sum of kinetic energy
|
---|
189 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
190 | */
|
---|
191 | void TrajectoryParticle::Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration)
|
---|
192 | {
|
---|
193 | Vector &U = Trajectory.U.at(Step);
|
---|
194 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
195 | for (int d=0; d<NDIM; d++) {
|
---|
196 | U[d] += configuration->Deltat/getType()->mass * ( (G_over_E) * (U[d]*getType()->mass) );
|
---|
197 | *ekin += getType()->mass * U[d]*U[d];
|
---|
198 | }
|
---|
199 | };
|
---|
200 |
|
---|
201 | /** Scales velocity of atom according to Langevin thermostat.
|
---|
202 | * \param Step MD step to scale
|
---|
203 | * \param *r random number generator
|
---|
204 | * \param *ekin sum of kinetic energy
|
---|
205 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
206 | */
|
---|
207 | void TrajectoryParticle::Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration)
|
---|
208 | {
|
---|
209 | double sigma = sqrt(configuration->Thermostats->TargetTemp/getType()->mass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
|
---|
210 | Vector &U = Trajectory.U.at(Step);
|
---|
211 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
212 | // throw a dice to determine whether it gets hit by a heat bath particle
|
---|
213 | if (((((rand()/(double)RAND_MAX))*configuration->Thermostats->TempFrequency) < 1.)) {
|
---|
214 | DoLog(3) && (Log() << Verbose(3) << "Particle " << *this << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ");
|
---|
215 | // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
|
---|
216 | for (int d=0; d<NDIM; d++) {
|
---|
217 | U[d] = gsl_ran_gaussian (r, sigma);
|
---|
218 | }
|
---|
219 | DoLog(2) && (Log() << Verbose(2) << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl);
|
---|
220 | }
|
---|
221 | for (int d=0; d<NDIM; d++)
|
---|
222 | *ekin += 0.5*getType()->mass * U[d]*U[d];
|
---|
223 | }
|
---|
224 | };
|
---|
225 |
|
---|
226 | /** Scales velocity of atom according to Berendsen thermostat.
|
---|
227 | * \param Step MD step to scale
|
---|
228 | * \param ScaleTempFactor factor to scale energy (not velocity!) with
|
---|
229 | * \param *ekin sum of kinetic energy
|
---|
230 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
231 | */
|
---|
232 | void TrajectoryParticle::Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration)
|
---|
233 | {
|
---|
234 | Vector &U = Trajectory.U.at(Step);
|
---|
235 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
236 | for (int d=0; d<NDIM; d++) {
|
---|
237 | U[d] *= sqrt(1+(configuration->Deltat/configuration->Thermostats->TempFrequency)*(ScaleTempFactor-1));
|
---|
238 | *ekin += 0.5*getType()->mass * U[d]*U[d];
|
---|
239 | }
|
---|
240 | }
|
---|
241 | };
|
---|
242 |
|
---|
243 | /** Initializes current run of NoseHoover thermostat.
|
---|
244 | * \param Step MD step to scale
|
---|
245 | * \param *delta_alpha additional sum of kinetic energy on return
|
---|
246 | */
|
---|
247 | void TrajectoryParticle::Thermostat_NoseHoover_init(int Step, double *delta_alpha)
|
---|
248 | {
|
---|
249 | Vector &U = Trajectory.U.at(Step);
|
---|
250 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
251 | for (int d=0; d<NDIM; d++) {
|
---|
252 | *delta_alpha += U[d]*U[d]*getType()->mass;
|
---|
253 | }
|
---|
254 | }
|
---|
255 | };
|
---|
256 |
|
---|
257 | /** Initializes current run of NoseHoover thermostat.
|
---|
258 | * \param Step MD step to scale
|
---|
259 | * \param *ekin sum of kinetic energy
|
---|
260 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
261 | */
|
---|
262 | void TrajectoryParticle::Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration)
|
---|
263 | {
|
---|
264 | Vector &U = Trajectory.U.at(Step);
|
---|
265 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
266 | for (int d=0; d<NDIM; d++) {
|
---|
267 | U[d] += configuration->Deltat/getType()->mass * (configuration->Thermostats->alpha * (U[d] * getType()->mass));
|
---|
268 | *ekin += (0.5*getType()->mass) * U[d]*U[d];
|
---|
269 | }
|
---|
270 | }
|
---|
271 | };
|
---|
272 |
|
---|
273 |
|
---|
274 | std::ostream & TrajectoryParticle::operator << (std::ostream &ost) const
|
---|
275 | {
|
---|
276 | ParticleInfo::operator<<(ost);
|
---|
277 | ost << "," << getPosition();
|
---|
278 | return ost;
|
---|
279 | }
|
---|
280 |
|
---|
281 | std::ostream & operator << (std::ostream &ost, const TrajectoryParticle &a)
|
---|
282 | {
|
---|
283 | a.ParticleInfo::operator<<(ost);
|
---|
284 | ost << "," << a.getPosition();
|
---|
285 | return ost;
|
---|
286 | }
|
---|
287 |
|
---|