/* * atom_trajectoryparticle.cpp * * Created on: Oct 19, 2009 * Author: heber */ #include "Helpers/MemDebug.hpp" #include "atom.hpp" #include "atom_trajectoryparticle.hpp" #include "config.hpp" #include "element.hpp" #include "info.hpp" #include "log.hpp" #include "parser.hpp" #include "ThermoStatContainer.hpp" #include "verbose.hpp" /** Constructor of class TrajectoryParticle. */ TrajectoryParticle::TrajectoryParticle() { }; /** Destructor of class TrajectoryParticle. */ TrajectoryParticle::~TrajectoryParticle() { }; /** Adds kinetic energy of this atom to given temperature value. * \param *temperature add on this value * \param step given step of trajectory to add */ void TrajectoryParticle::AddKineticToTemperature(double *temperature, int step) const { for (int i=NDIM;i--;) *temperature += type->mass * Trajectory.U.at(step)[i]* Trajectory.U.at(step)[i]; }; /** Evaluates some constraint potential if atom moves from \a startstep at once to \endstep in trajectory. * \param startstep trajectory begins at * \param endstep trajectory ends at * \param **PermutationMap if atom switches places with some other atom, there is no translation but a permutaton noted here (not in the trajectories of ea * \param *Force Force matrix to store result in */ void TrajectoryParticle::EvaluateConstrainedForce(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) const { double constant = 10.; TrajectoryParticle *Sprinter = PermutationMap[nr]; // set forces for (int i=NDIM;i++;) Force->Matrix[0][nr][5+i] += 2.*constant*sqrt(Trajectory.R.at(startstep).distance(Sprinter->Trajectory.R.at(endstep))); }; /** Correct velocity against the summed \a CoGVelocity for \a step. * \param *ActualTemp sum up actual temperature meanwhile * \param Step MD step in atom::Tracjetory * \param *CoGVelocity remnant velocity (i.e. vector sum of all atom velocities) */ void TrajectoryParticle::CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity) { for(int d=0;dat(d); *ActualTemp += 0.5 * type->mass * Trajectory.U.at(Step)[d] * Trajectory.U.at(Step)[d]; } }; /** Extends the trajectory STL vector to the new size. * Does nothing if \a MaxSteps is smaller than current size. * \param MaxSteps */ void TrajectoryParticle::ResizeTrajectory(int MaxSteps) { Info FunctionInfo(__func__); if (Trajectory.R.size() <= (unsigned int)(MaxSteps)) { DoLog(0) && (Log() << Verbose(0) << "Increasing size for trajectory array of " << nr << " from " << Trajectory.R.size() << " to " << (MaxSteps+1) << "." << endl); Trajectory.R.resize(MaxSteps+1); Trajectory.U.resize(MaxSteps+1); Trajectory.F.resize(MaxSteps+1); } }; /** Copies a given trajectory step \a src onto another \a dest * \param dest index of destination step * \param src index of source step */ void TrajectoryParticle::CopyStepOnStep(int dest, int src) { if (dest == src) // self assignment check return; for (int n=NDIM;n--;) { Trajectory.R.at(dest)[n] = Trajectory.R.at(src)[n]; Trajectory.U.at(dest)[n] = Trajectory.U.at(src)[n]; Trajectory.F.at(dest)[n] = Trajectory.F.at(src)[n]; } }; /** Performs a velocity verlet update of the trajectory. * Parameters are according to those in configuration class. * \param NextStep index of sequential step to set * \param *configuration pointer to configuration with parameters * \param *Force matrix with forces */ void TrajectoryParticle::VelocityVerletUpdate(int NextStep, config *configuration, ForceMatrix *Force, const size_t offset) { //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a for (int d=0; dMatrix[0][nr][d+offset]*(configuration->GetIsAngstroem() ? AtomicLengthToAngstroem : 1.); Trajectory.R.at(NextStep)[d] = Trajectory.R.at(NextStep-1)[d]; Trajectory.R.at(NextStep)[d] += configuration->Deltat*(Trajectory.U.at(NextStep-1)[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2 Trajectory.R.at(NextStep)[d] += 0.5*configuration->Deltat*configuration->Deltat*(Trajectory.F.at(NextStep)[d]/type->mass); // F = m * a and s = } // Update U for (int d=0; dDeltat * (Trajectory.F.at(NextStep)[d]+Trajectory.F.at(NextStep-1)[d]/type->mass); // v = F/m * t } // Update R (and F) // out << "Integrated position&velocity of step " << (NextStep) << ": ("; // for (int d=0;dmass; // sum up total mass for(int d=0;dat(d) += Trajectory.U.at(Step)[d]*type->mass; } }; /** Scales velocity of atom according to Woodcock thermostat. * \param ScaleTempFactor factor to scale the velocities with (i.e. sqrt of energy scale factor) * \param Step MD step to scale * \param *ekin sum of kinetic energy */ void TrajectoryParticle::Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin) { Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) // even FixedIon moves, only not by other's forces for (int d=0; dmass * U[d]*U[d]; } }; /** Scales velocity of atom according to Gaussian thermostat. * \param Step MD step to scale * \param *G * \param *E */ void TrajectoryParticle::Thermostat_Gaussian_init(int Step, double *G, double *E) { Vector &U = Trajectory.U.at(Step); Vector &F = Trajectory.F.at(Step); if (FixedIon == 0) // even FixedIon moves, only not by other's forces for (int d=0; dmass; } }; /** Determines scale factors according to Gaussian thermostat. * \param Step MD step to scale * \param GE G over E ratio * \param *ekin sum of kinetic energy * \param *configuration configuration class with TempFrequency and TargetTemp */ void TrajectoryParticle::Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration) { Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) // even FixedIon moves, only not by other's forces for (int d=0; dDeltat/type->mass * ( (G_over_E) * (U[d]*type->mass) ); *ekin += type->mass * U[d]*U[d]; } }; /** Scales velocity of atom according to Langevin thermostat. * \param Step MD step to scale * \param *r random number generator * \param *ekin sum of kinetic energy * \param *configuration configuration class with TempFrequency and TargetTemp */ void TrajectoryParticle::Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration) { double sigma = sqrt(configuration->Thermostats->TargetTemp/type->mass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime) Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) { // even FixedIon moves, only not by other's forces // throw a dice to determine whether it gets hit by a heat bath particle if (((((rand()/(double)RAND_MAX))*configuration->Thermostats->TempFrequency) < 1.)) { DoLog(3) && (Log() << Verbose(3) << "Particle " << *this << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> "); // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis for (int d=0; dmass * U[d]*U[d]; } }; /** Scales velocity of atom according to Berendsen thermostat. * \param Step MD step to scale * \param ScaleTempFactor factor to scale energy (not velocity!) with * \param *ekin sum of kinetic energy * \param *configuration configuration class with TempFrequency and Deltat */ void TrajectoryParticle::Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration) { Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) { // even FixedIon moves, only not by other's forces for (int d=0; dDeltat/configuration->Thermostats->TempFrequency)*(ScaleTempFactor-1)); *ekin += 0.5*type->mass * U[d]*U[d]; } } }; /** Initializes current run of NoseHoover thermostat. * \param Step MD step to scale * \param *delta_alpha additional sum of kinetic energy on return */ void TrajectoryParticle::Thermostat_NoseHoover_init(int Step, double *delta_alpha) { Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) { // even FixedIon moves, only not by other's forces for (int d=0; dmass; } } }; /** Initializes current run of NoseHoover thermostat. * \param Step MD step to scale * \param *ekin sum of kinetic energy * \param *configuration configuration class with TempFrequency and Deltat */ void TrajectoryParticle::Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration) { Vector &U = Trajectory.U.at(Step); if (FixedIon == 0) { // even FixedIon moves, only not by other's forces for (int d=0; dDeltat/type->mass * (configuration->Thermostats->alpha * (U[d] * type->mass)); *ekin += (0.5*type->mass) * U[d]*U[d]; } } };