[6b919f8] | 1 | /*
|
---|
| 2 | * atom_trajectoryparticle.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Oct 19, 2009
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[112b09] | 8 | #include "Helpers/MemDebug.hpp"
|
---|
| 9 |
|
---|
[6b919f8] | 10 | #include "atom.hpp"
|
---|
| 11 | #include "atom_trajectoryparticle.hpp"
|
---|
| 12 | #include "config.hpp"
|
---|
| 13 | #include "element.hpp"
|
---|
[c7a473] | 14 | #include "info.hpp"
|
---|
[e138de] | 15 | #include "log.hpp"
|
---|
[6b919f8] | 16 | #include "parser.hpp"
|
---|
[a3fded] | 17 | #include "ThermoStatContainer.hpp"
|
---|
[6b919f8] | 18 | #include "verbose.hpp"
|
---|
| 19 |
|
---|
| 20 | /** Constructor of class TrajectoryParticle.
|
---|
| 21 | */
|
---|
| 22 | TrajectoryParticle::TrajectoryParticle()
|
---|
| 23 | {
|
---|
| 24 | };
|
---|
| 25 |
|
---|
| 26 | /** Destructor of class TrajectoryParticle.
|
---|
| 27 | */
|
---|
| 28 | TrajectoryParticle::~TrajectoryParticle()
|
---|
| 29 | {
|
---|
| 30 | };
|
---|
| 31 |
|
---|
| 32 |
|
---|
| 33 | /** Adds kinetic energy of this atom to given temperature value.
|
---|
| 34 | * \param *temperature add on this value
|
---|
| 35 | * \param step given step of trajectory to add
|
---|
| 36 | */
|
---|
| 37 | void TrajectoryParticle::AddKineticToTemperature(double *temperature, int step) const
|
---|
| 38 | {
|
---|
| 39 | for (int i=NDIM;i--;)
|
---|
[0a4f7f] | 40 | *temperature += type->mass * Trajectory.U.at(step)[i]* Trajectory.U.at(step)[i];
|
---|
[6b919f8] | 41 | };
|
---|
| 42 |
|
---|
| 43 | /** Evaluates some constraint potential if atom moves from \a startstep at once to \endstep in trajectory.
|
---|
| 44 | * \param startstep trajectory begins at
|
---|
| 45 | * \param endstep trajectory ends at
|
---|
| 46 | * \param **PermutationMap if atom switches places with some other atom, there is no translation but a permutaton noted here (not in the trajectories of ea
|
---|
| 47 | * \param *Force Force matrix to store result in
|
---|
| 48 | */
|
---|
[b453f9] | 49 | void TrajectoryParticle::EvaluateConstrainedForce(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force) const
|
---|
[6b919f8] | 50 | {
|
---|
| 51 | double constant = 10.;
|
---|
| 52 | TrajectoryParticle *Sprinter = PermutationMap[nr];
|
---|
| 53 | // set forces
|
---|
| 54 | for (int i=NDIM;i++;)
|
---|
[1513a74] | 55 | Force->Matrix[0][nr][5+i] += 2.*constant*sqrt(Trajectory.R.at(startstep).distance(Sprinter->Trajectory.R.at(endstep)));
|
---|
[6b919f8] | 56 | };
|
---|
| 57 |
|
---|
| 58 | /** Correct velocity against the summed \a CoGVelocity for \a step.
|
---|
| 59 | * \param *ActualTemp sum up actual temperature meanwhile
|
---|
| 60 | * \param Step MD step in atom::Tracjetory
|
---|
| 61 | * \param *CoGVelocity remnant velocity (i.e. vector sum of all atom velocities)
|
---|
| 62 | */
|
---|
| 63 | void TrajectoryParticle::CorrectVelocity(double *ActualTemp, int Step, Vector *CoGVelocity)
|
---|
| 64 | {
|
---|
| 65 | for(int d=0;d<NDIM;d++) {
|
---|
[0a4f7f] | 66 | Trajectory.U.at(Step)[d] -= CoGVelocity->at(d);
|
---|
| 67 | *ActualTemp += 0.5 * type->mass * Trajectory.U.at(Step)[d] * Trajectory.U.at(Step)[d];
|
---|
[6b919f8] | 68 | }
|
---|
| 69 | };
|
---|
| 70 |
|
---|
| 71 | /** Extends the trajectory STL vector to the new size.
|
---|
| 72 | * Does nothing if \a MaxSteps is smaller than current size.
|
---|
| 73 | * \param MaxSteps
|
---|
| 74 | */
|
---|
| 75 | void TrajectoryParticle::ResizeTrajectory(int MaxSteps)
|
---|
| 76 | {
|
---|
[c7a473] | 77 | Info FunctionInfo(__func__);
|
---|
[6b919f8] | 78 | if (Trajectory.R.size() <= (unsigned int)(MaxSteps)) {
|
---|
[c7a473] | 79 | DoLog(0) && (Log() << Verbose(0) << "Increasing size for trajectory array of " << nr << " from " << Trajectory.R.size() << " to " << (MaxSteps+1) << "." << endl);
|
---|
[6b919f8] | 80 | Trajectory.R.resize(MaxSteps+1);
|
---|
| 81 | Trajectory.U.resize(MaxSteps+1);
|
---|
| 82 | Trajectory.F.resize(MaxSteps+1);
|
---|
| 83 | }
|
---|
| 84 | };
|
---|
| 85 |
|
---|
| 86 | /** Copies a given trajectory step \a src onto another \a dest
|
---|
| 87 | * \param dest index of destination step
|
---|
| 88 | * \param src index of source step
|
---|
| 89 | */
|
---|
| 90 | void TrajectoryParticle::CopyStepOnStep(int dest, int src)
|
---|
| 91 | {
|
---|
| 92 | if (dest == src) // self assignment check
|
---|
| 93 | return;
|
---|
| 94 |
|
---|
| 95 | for (int n=NDIM;n--;) {
|
---|
[0a4f7f] | 96 | Trajectory.R.at(dest)[n] = Trajectory.R.at(src)[n];
|
---|
| 97 | Trajectory.U.at(dest)[n] = Trajectory.U.at(src)[n];
|
---|
| 98 | Trajectory.F.at(dest)[n] = Trajectory.F.at(src)[n];
|
---|
[6b919f8] | 99 | }
|
---|
| 100 | };
|
---|
| 101 |
|
---|
| 102 | /** Performs a velocity verlet update of the trajectory.
|
---|
| 103 | * Parameters are according to those in configuration class.
|
---|
| 104 | * \param NextStep index of sequential step to set
|
---|
| 105 | * \param *configuration pointer to configuration with parameters
|
---|
| 106 | * \param *Force matrix with forces
|
---|
| 107 | */
|
---|
[ef7d30] | 108 | void TrajectoryParticle::VelocityVerletUpdate(int NextStep, config *configuration, ForceMatrix *Force, const size_t offset)
|
---|
[6b919f8] | 109 | {
|
---|
| 110 | //a = configuration.Deltat*0.5/walker->type->mass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
| 111 | for (int d=0; d<NDIM; d++) {
|
---|
[ef7d30] | 112 | Trajectory.F.at(NextStep)[d] = -Force->Matrix[0][nr][d+offset]*(configuration->GetIsAngstroem() ? AtomicLengthToAngstroem : 1.);
|
---|
[0a4f7f] | 113 | Trajectory.R.at(NextStep)[d] = Trajectory.R.at(NextStep-1)[d];
|
---|
| 114 | Trajectory.R.at(NextStep)[d] += configuration->Deltat*(Trajectory.U.at(NextStep-1)[d]); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
|
---|
| 115 | Trajectory.R.at(NextStep)[d] += 0.5*configuration->Deltat*configuration->Deltat*(Trajectory.F.at(NextStep)[d]/type->mass); // F = m * a and s =
|
---|
[6b919f8] | 116 | }
|
---|
| 117 | // Update U
|
---|
| 118 | for (int d=0; d<NDIM; d++) {
|
---|
[0a4f7f] | 119 | Trajectory.U.at(NextStep)[d] = Trajectory.U.at(NextStep-1)[d];
|
---|
| 120 | Trajectory.U.at(NextStep)[d] += configuration->Deltat * (Trajectory.F.at(NextStep)[d]+Trajectory.F.at(NextStep-1)[d]/type->mass); // v = F/m * t
|
---|
[6b919f8] | 121 | }
|
---|
| 122 | // Update R (and F)
|
---|
| 123 | // out << "Integrated position&velocity of step " << (NextStep) << ": (";
|
---|
| 124 | // for (int d=0;d<NDIM;d++)
|
---|
| 125 | // out << Trajectory.R.at(NextStep).x[d] << " "; // next step
|
---|
| 126 | // out << ")\t(";
|
---|
| 127 | // for (int d=0;d<NDIM;d++)
|
---|
[e138de] | 128 | // Log() << Verbose(0) << Trajectory.U.at(NextStep).x[d] << " "; // next step
|
---|
[6b919f8] | 129 | // out << ")" << endl;
|
---|
| 130 | };
|
---|
| 131 |
|
---|
| 132 | /** Sums up mass and kinetics.
|
---|
| 133 | * \param Step step to sum for
|
---|
| 134 | * \param *TotalMass pointer to total mass sum
|
---|
| 135 | * \param *TotalVelocity pointer to tota velocity sum
|
---|
| 136 | */
|
---|
[b453f9] | 137 | void TrajectoryParticle::SumUpKineticEnergy( int Step, double *TotalMass, Vector *TotalVelocity ) const
|
---|
[6b919f8] | 138 | {
|
---|
| 139 | *TotalMass += type->mass; // sum up total mass
|
---|
| 140 | for(int d=0;d<NDIM;d++) {
|
---|
[0a4f7f] | 141 | TotalVelocity->at(d) += Trajectory.U.at(Step)[d]*type->mass;
|
---|
[6b919f8] | 142 | }
|
---|
| 143 | };
|
---|
| 144 |
|
---|
| 145 | /** Scales velocity of atom according to Woodcock thermostat.
|
---|
| 146 | * \param ScaleTempFactor factor to scale the velocities with (i.e. sqrt of energy scale factor)
|
---|
| 147 | * \param Step MD step to scale
|
---|
| 148 | * \param *ekin sum of kinetic energy
|
---|
| 149 | */
|
---|
| 150 | void TrajectoryParticle::Thermostat_Woodcock(double ScaleTempFactor, int Step, double *ekin)
|
---|
| 151 | {
|
---|
[0a4f7f] | 152 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 153 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 154 | for (int d=0; d<NDIM; d++) {
|
---|
| 155 | U[d] *= ScaleTempFactor;
|
---|
| 156 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 157 | }
|
---|
| 158 | };
|
---|
| 159 |
|
---|
| 160 | /** Scales velocity of atom according to Gaussian thermostat.
|
---|
| 161 | * \param Step MD step to scale
|
---|
| 162 | * \param *G
|
---|
| 163 | * \param *E
|
---|
| 164 | */
|
---|
| 165 | void TrajectoryParticle::Thermostat_Gaussian_init(int Step, double *G, double *E)
|
---|
| 166 | {
|
---|
[0a4f7f] | 167 | Vector &U = Trajectory.U.at(Step);
|
---|
| 168 | Vector &F = Trajectory.F.at(Step);
|
---|
[6b919f8] | 169 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 170 | for (int d=0; d<NDIM; d++) {
|
---|
| 171 | *G += U[d] * F[d];
|
---|
| 172 | *E += U[d]*U[d]*type->mass;
|
---|
| 173 | }
|
---|
| 174 | };
|
---|
| 175 |
|
---|
| 176 | /** Determines scale factors according to Gaussian thermostat.
|
---|
| 177 | * \param Step MD step to scale
|
---|
| 178 | * \param GE G over E ratio
|
---|
| 179 | * \param *ekin sum of kinetic energy
|
---|
| 180 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
| 181 | */
|
---|
| 182 | void TrajectoryParticle::Thermostat_Gaussian_least_constraint(int Step, double G_over_E, double *ekin, config *configuration)
|
---|
| 183 | {
|
---|
[0a4f7f] | 184 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 185 | if (FixedIon == 0) // even FixedIon moves, only not by other's forces
|
---|
| 186 | for (int d=0; d<NDIM; d++) {
|
---|
| 187 | U[d] += configuration->Deltat/type->mass * ( (G_over_E) * (U[d]*type->mass) );
|
---|
| 188 | *ekin += type->mass * U[d]*U[d];
|
---|
| 189 | }
|
---|
| 190 | };
|
---|
| 191 |
|
---|
| 192 | /** Scales velocity of atom according to Langevin thermostat.
|
---|
| 193 | * \param Step MD step to scale
|
---|
| 194 | * \param *r random number generator
|
---|
| 195 | * \param *ekin sum of kinetic energy
|
---|
| 196 | * \param *configuration configuration class with TempFrequency and TargetTemp
|
---|
| 197 | */
|
---|
| 198 | void TrajectoryParticle::Thermostat_Langevin(int Step, gsl_rng * r, double *ekin, config *configuration)
|
---|
| 199 | {
|
---|
[a3fded] | 200 | double sigma = sqrt(configuration->Thermostats->TargetTemp/type->mass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
|
---|
[0a4f7f] | 201 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 202 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 203 | // throw a dice to determine whether it gets hit by a heat bath particle
|
---|
[a3fded] | 204 | if (((((rand()/(double)RAND_MAX))*configuration->Thermostats->TempFrequency) < 1.)) {
|
---|
[a67d19] | 205 | DoLog(3) && (Log() << Verbose(3) << "Particle " << *this << " was hit (sigma " << sigma << "): " << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << " -> ");
|
---|
[6b919f8] | 206 | // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
|
---|
| 207 | for (int d=0; d<NDIM; d++) {
|
---|
| 208 | U[d] = gsl_ran_gaussian (r, sigma);
|
---|
| 209 | }
|
---|
[a67d19] | 210 | DoLog(2) && (Log() << Verbose(2) << sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]) << endl);
|
---|
[6b919f8] | 211 | }
|
---|
| 212 | for (int d=0; d<NDIM; d++)
|
---|
| 213 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 214 | }
|
---|
| 215 | };
|
---|
| 216 |
|
---|
| 217 | /** Scales velocity of atom according to Berendsen thermostat.
|
---|
| 218 | * \param Step MD step to scale
|
---|
| 219 | * \param ScaleTempFactor factor to scale energy (not velocity!) with
|
---|
| 220 | * \param *ekin sum of kinetic energy
|
---|
| 221 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
| 222 | */
|
---|
| 223 | void TrajectoryParticle::Thermostat_Berendsen(int Step, double ScaleTempFactor, double *ekin, config *configuration)
|
---|
| 224 | {
|
---|
[0a4f7f] | 225 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 226 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 227 | for (int d=0; d<NDIM; d++) {
|
---|
[a3fded] | 228 | U[d] *= sqrt(1+(configuration->Deltat/configuration->Thermostats->TempFrequency)*(ScaleTempFactor-1));
|
---|
[6b919f8] | 229 | *ekin += 0.5*type->mass * U[d]*U[d];
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 | };
|
---|
| 233 |
|
---|
| 234 | /** Initializes current run of NoseHoover thermostat.
|
---|
| 235 | * \param Step MD step to scale
|
---|
| 236 | * \param *delta_alpha additional sum of kinetic energy on return
|
---|
| 237 | */
|
---|
| 238 | void TrajectoryParticle::Thermostat_NoseHoover_init(int Step, double *delta_alpha)
|
---|
| 239 | {
|
---|
[0a4f7f] | 240 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 241 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 242 | for (int d=0; d<NDIM; d++) {
|
---|
| 243 | *delta_alpha += U[d]*U[d]*type->mass;
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 | };
|
---|
| 247 |
|
---|
| 248 | /** Initializes current run of NoseHoover thermostat.
|
---|
| 249 | * \param Step MD step to scale
|
---|
| 250 | * \param *ekin sum of kinetic energy
|
---|
| 251 | * \param *configuration configuration class with TempFrequency and Deltat
|
---|
| 252 | */
|
---|
| 253 | void TrajectoryParticle::Thermostat_NoseHoover_scale(int Step, double *ekin, config *configuration)
|
---|
| 254 | {
|
---|
[0a4f7f] | 255 | Vector &U = Trajectory.U.at(Step);
|
---|
[6b919f8] | 256 | if (FixedIon == 0) { // even FixedIon moves, only not by other's forces
|
---|
| 257 | for (int d=0; d<NDIM; d++) {
|
---|
[a3fded] | 258 | U[d] += configuration->Deltat/type->mass * (configuration->Thermostats->alpha * (U[d] * type->mass));
|
---|
[6b919f8] | 259 | *ekin += (0.5*type->mass) * U[d]*U[d];
|
---|
| 260 | }
|
---|
| 261 | }
|
---|
| 262 | };
|
---|