source: src/analysis_correlation.cpp@ e4b2f6

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since e4b2f6 was 129204, checked in by Frederik Heber <heber@…>, 14 years ago

Moved bond.* to Bond/, new class GraphEdge which contains graph parts of bond.

  • enums Shading and EdgeType are now part of GraphEdge, hence bigger change in the code where these are used.
  • Property mode set to 100644
File size: 26.0 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24
25#include "atom.hpp"
26#include "Bond/bond.hpp"
27#include "BoundaryTriangleSet.hpp"
28#include "Box.hpp"
29#include "element.hpp"
30#include "CodePatterns/Info.hpp"
31#include "CodePatterns/Log.hpp"
32#include "Formula.hpp"
33#include "molecule.hpp"
34#include "tesselation.hpp"
35#include "tesselationhelpers.hpp"
36#include "triangleintersectionlist.hpp"
37#include "World.hpp"
38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/RealSpaceMatrix.hpp"
40#include "CodePatterns/Verbose.hpp"
41#include "World.hpp"
42#include "Box.hpp"
43
44#include "analysis_correlation.hpp"
45
46/** Calculates the dipole vector of a given atomSet.
47 *
48 * Note that we use the following procedure as rule of thumb:
49 * -# go through every bond of the atom
50 * -# calculate the difference of electronegativities \f$\Delta\text{EN}\f$
51 * -# if \f$\Delta\text{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
52 * -# sum up all vectors
53 * -# finally, divide by the number of summed vectors
54 *
55 * @param atomsbegin begin iterator of atomSet
56 * @param atomsend end iterator of atomset
57 * @return dipole vector
58 */
59Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
60{
61 Vector DipoleVector;
62 size_t SumOfVectors = 0;
63 // go through all atoms
64 for (molecule::const_iterator atomiter = atomsbegin;
65 atomiter != atomsend;
66 ++atomiter) {
67 // go through all bonds
68 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
69 for (BondList::const_iterator bonditer = ListOfBonds.begin();
70 bonditer != ListOfBonds.end();
71 ++bonditer) {
72 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
73 if (Otheratom->getId() > (*atomiter)->getId()) {
74 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
75 -Otheratom->getType()->getElectronegativity();
76 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
77 // DeltaEN is always positive, gives correct orientation of vector
78 BondDipoleVector.Normalize();
79 BondDipoleVector *= DeltaEN;
80 DipoleVector += BondDipoleVector;
81 SumOfVectors++;
82 }
83 }
84 }
85 DipoleVector *= 1./(double)SumOfVectors;
86 DoLog(1) && (Log() << Verbose(1) << "Resulting dipole vector is " << DipoleVector << std::endl);
87
88 return DipoleVector;
89};
90
91/** Calculates the dipole angular correlation for given molecule type.
92 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
93 * Angles are given in degrees.
94 * \param *molecules vector of molecules
95 * \return Map of doubles with values the pair of the two atoms.
96 */
97DipoleAngularCorrelationMap *DipoleAngularCorrelation(std::vector<molecule *> &molecules)
98{
99 Info FunctionInfo(__func__);
100 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
101// double distance = 0.;
102// Box &domain = World::getInstance().getDomain();
103//
104 if (molecules.empty()) {
105 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
106 return outmap;
107 }
108
109 outmap = new DipoleAngularCorrelationMap;
110 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
111 MolWalker != molecules.end(); ++MolWalker) {
112 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is "
113 << (*MolWalker)->getId() << "." << endl);
114 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
115 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
116 for (++MolOtherWalker;
117 MolOtherWalker != molecules.end();
118 ++MolOtherWalker) {
119 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is "
120 << (*MolOtherWalker)->getId() << "." << endl);
121 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
122 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
123 DoLog(1) && (Log() << Verbose(1) << "Angle is " << angle << "." << endl);
124 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
125 }
126 }
127 return outmap;
128};
129
130
131/** Calculates the pair correlation between given elements.
132 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
133 * \param *molecules vector of molecules
134 * \param &elements vector of elements to correlate
135 * \return Map of doubles with values the pair of the two atoms.
136 */
137PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
138{
139 Info FunctionInfo(__func__);
140 PairCorrelationMap *outmap = new PairCorrelationMap;
141 double distance = 0.;
142 Box &domain = World::getInstance().getDomain();
143
144 if (molecules.empty()) {
145 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
146 return outmap;
147 }
148 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
149 (*MolWalker)->doCountAtoms();
150
151 // create all possible pairs of elements
152 set <pair<const element *,const element *> > PairsOfElements;
153 if (elements.size() >= 2) {
154 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
155 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
156 if (type1 != type2) {
157 PairsOfElements.insert( make_pair(*type1,*type2) );
158 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
159 }
160 } else if (elements.size() == 1) { // one to all are valid
161 const element *elemental = *elements.begin();
162 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
163 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
164 } else { // all elements valid
165 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
166 }
167
168 outmap = new PairCorrelationMap;
169 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
170 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
171 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
172 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
173 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
174 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
175 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
176 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
177 if ((*iter)->getId() < (*runner)->getId()){
178 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
179 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
180 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
181 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
182 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
183 }
184 }
185 }
186 }
187 }
188 }
189 return outmap;
190};
191
192/** Calculates the pair correlation between given elements.
193 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
194 * \param *molecules list of molecules structure
195 * \param &elements vector of elements to correlate
196 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
197 * \return Map of doubles with values the pair of the two atoms.
198 */
199PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
200{
201 Info FunctionInfo(__func__);
202 PairCorrelationMap *outmap = new PairCorrelationMap;
203 double distance = 0.;
204 int n[NDIM];
205 Vector checkX;
206 Vector periodicX;
207 int Othern[NDIM];
208 Vector checkOtherX;
209 Vector periodicOtherX;
210
211 if (molecules.empty()) {
212 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
213 return outmap;
214 }
215 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
216 (*MolWalker)->doCountAtoms();
217
218 // create all possible pairs of elements
219 set <pair<const element *,const element *> > PairsOfElements;
220 if (elements.size() >= 2) {
221 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
222 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
223 if (type1 != type2) {
224 PairsOfElements.insert( make_pair(*type1,*type2) );
225 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
226 }
227 } else if (elements.size() == 1) { // one to all are valid
228 const element *elemental = *elements.begin();
229 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
230 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
231 } else { // all elements valid
232 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
233 }
234
235 outmap = new PairCorrelationMap;
236 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
237 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
238 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
239 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
240 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
241 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
242 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
243 // go through every range in xyz and get distance
244 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
245 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
246 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
247 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
248 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
249 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
250 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
251 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
252 if ((*iter)->getId() < (*runner)->getId()){
253 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
254 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
255 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
256 // go through every range in xyz and get distance
257 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
258 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
259 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
260 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
261 distance = checkX.distance(checkOtherX);
262 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
263 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
264 }
265 }
266 }
267 }
268 }
269 }
270 }
271 }
272
273 return outmap;
274};
275
276/** Calculates the distance (pair) correlation between a given element and a point.
277 * \param *molecules list of molecules structure
278 * \param &elements vector of elements to correlate with point
279 * \param *point vector to the correlation point
280 * \return Map of dobules with values as pairs of atom and the vector
281 */
282CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
283{
284 Info FunctionInfo(__func__);
285 CorrelationToPointMap *outmap = new CorrelationToPointMap;
286 double distance = 0.;
287 Box &domain = World::getInstance().getDomain();
288
289 if (molecules.empty()) {
290 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
291 return outmap;
292 }
293 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
294 (*MolWalker)->doCountAtoms();
295 outmap = new CorrelationToPointMap;
296 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
297 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
298 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
299 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
300 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
301 if ((*type == NULL) || ((*iter)->getType() == *type)) {
302 distance = domain.periodicDistance((*iter)->getPosition(),*point);
303 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
304 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
305 }
306 }
307 }
308
309 return outmap;
310};
311
312/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
313 * \param *molecules list of molecules structure
314 * \param &elements vector of elements to correlate to point
315 * \param *point vector to the correlation point
316 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
317 * \return Map of dobules with values as pairs of atom and the vector
318 */
319CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
320{
321 Info FunctionInfo(__func__);
322 CorrelationToPointMap *outmap = new CorrelationToPointMap;
323 double distance = 0.;
324 int n[NDIM];
325 Vector periodicX;
326 Vector checkX;
327
328 if (molecules.empty()) {
329 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
330 return outmap;
331 }
332 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
333 (*MolWalker)->doCountAtoms();
334 outmap = new CorrelationToPointMap;
335 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
336 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
337 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
338 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
339 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
340 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
341 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
342 if ((*type == NULL) || ((*iter)->getType() == *type)) {
343 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
344 // go through every range in xyz and get distance
345 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
346 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
347 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
348 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
349 distance = checkX.distance(*point);
350 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
351 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
352 }
353 }
354 }
355 }
356
357 return outmap;
358};
359
360/** Calculates the distance (pair) correlation between a given element and a surface.
361 * \param *molecules list of molecules structure
362 * \param &elements vector of elements to correlate to surface
363 * \param *Surface pointer to Tesselation class surface
364 * \param *LC LinkedCell structure to quickly find neighbouring atoms
365 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
366 */
367CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
368{
369 Info FunctionInfo(__func__);
370 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
371 double distance = 0;
372 class BoundaryTriangleSet *triangle = NULL;
373 Vector centroid;
374
375 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
376 DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
377 return outmap;
378 }
379 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
380 (*MolWalker)->doCountAtoms();
381 outmap = new CorrelationToSurfaceMap;
382 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
383 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl);
384 if ((*MolWalker)->empty())
385 DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl);
386 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
387 DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl);
388 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
389 if ((*type == NULL) || ((*iter)->getType() == *type)) {
390 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
391 distance = Intersections.GetSmallestDistance();
392 triangle = Intersections.GetClosestTriangle();
393 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
394 }
395 }
396 }
397
398 return outmap;
399};
400
401/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
402 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
403 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
404 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
405 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
406 * \param *molecules list of molecules structure
407 * \param &elements vector of elements to correlate to surface
408 * \param *Surface pointer to Tesselation class surface
409 * \param *LC LinkedCell structure to quickly find neighbouring atoms
410 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
411 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
412 */
413CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
414{
415 Info FunctionInfo(__func__);
416 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
417 double distance = 0;
418 class BoundaryTriangleSet *triangle = NULL;
419 Vector centroid;
420 int n[NDIM];
421 Vector periodicX;
422 Vector checkX;
423
424 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
425 DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
426 return outmap;
427 }
428 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
429 (*MolWalker)->doCountAtoms();
430 outmap = new CorrelationToSurfaceMap;
431 double ShortestDistance = 0.;
432 BoundaryTriangleSet *ShortestTriangle = NULL;
433 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
434 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
435 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
436 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
437 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
438 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
439 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
440 if ((*type == NULL) || ((*iter)->getType() == *type)) {
441 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
442 // go through every range in xyz and get distance
443 ShortestDistance = -1.;
444 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
445 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
446 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
447 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
448 TriangleIntersectionList Intersections(checkX,Surface,LC);
449 distance = Intersections.GetSmallestDistance();
450 triangle = Intersections.GetClosestTriangle();
451 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
452 ShortestDistance = distance;
453 ShortestTriangle = triangle;
454 }
455 }
456 // insert
457 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
458 //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl;
459 }
460 }
461 }
462
463 return outmap;
464};
465
466/** Returns the index of the bin for a given value.
467 * \param value value whose bin to look for
468 * \param BinWidth width of bin
469 * \param BinStart first bin
470 */
471int GetBin ( const double value, const double BinWidth, const double BinStart )
472{
473 //Info FunctionInfo(__func__);
474 int bin =(int) (floor((value - BinStart)/BinWidth));
475 return (bin);
476};
477
478
479/** Adds header part that is unique to BinPairMap.
480 *
481 * @param file stream to print to
482 */
483void OutputCorrelation_Header( ofstream * const file )
484{
485 *file << "\tCount";
486};
487
488/** Prints values stored in BinPairMap iterator.
489 *
490 * @param file stream to print to
491 * @param runner iterator pointing at values to print
492 */
493void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
494{
495 *file << runner->second;
496};
497
498
499/** Adds header part that is unique to DipoleAngularCorrelationMap.
500 *
501 * @param file stream to print to
502 */
503void OutputDipoleAngularCorrelation_Header( ofstream * const file )
504{
505 *file << "\tAtom1\tAtom2";
506};
507
508/** Prints values stored in DipoleAngularCorrelationMap iterator.
509 *
510 * @param file stream to print to
511 * @param runner iterator pointing at values to print
512 */
513void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
514{
515 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
516};
517
518
519/** Adds header part that is unique to PairCorrelationMap.
520 *
521 * @param file stream to print to
522 */
523void OutputPairCorrelation_Header( ofstream * const file )
524{
525 *file << "\tAtom1\tAtom2";
526};
527
528/** Prints values stored in PairCorrelationMap iterator.
529 *
530 * @param file stream to print to
531 * @param runner iterator pointing at values to print
532 */
533void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
534{
535 *file << *(runner->second.first) << "\t" << *(runner->second.second);
536};
537
538
539/** Adds header part that is unique to CorrelationToPointMap.
540 *
541 * @param file stream to print to
542 */
543void OutputCorrelationToPoint_Header( ofstream * const file )
544{
545 *file << "\tAtom::x[i]-point.x[i]";
546};
547
548/** Prints values stored in CorrelationToPointMap iterator.
549 *
550 * @param file stream to print to
551 * @param runner iterator pointing at values to print
552 */
553void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
554{
555 for (int i=0;i<NDIM;i++)
556 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
557};
558
559
560/** Adds header part that is unique to CorrelationToSurfaceMap.
561 *
562 * @param file stream to print to
563 */
564void OutputCorrelationToSurface_Header( ofstream * const file )
565{
566 *file << "\tTriangle";
567};
568
569/** Prints values stored in CorrelationToSurfaceMap iterator.
570 *
571 * @param file stream to print to
572 * @param runner iterator pointing at values to print
573 */
574void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
575{
576 *file << *(runner->second.first) << "\t" << *(runner->second.second);
577};
Note: See TracBrowser for help on using the repository browser.