/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010 University of Bonn. All rights reserved. * Please see the LICENSE file or "Copyright notice" in builder.cpp for details. */ /* * analysis.cpp * * Created on: Oct 13, 2009 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include #include #include "atom.hpp" #include "Bond/bond.hpp" #include "BoundaryTriangleSet.hpp" #include "Box.hpp" #include "element.hpp" #include "CodePatterns/Info.hpp" #include "CodePatterns/Log.hpp" #include "Formula.hpp" #include "molecule.hpp" #include "tesselation.hpp" #include "tesselationhelpers.hpp" #include "triangleintersectionlist.hpp" #include "World.hpp" #include "LinearAlgebra/Vector.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "CodePatterns/Verbose.hpp" #include "World.hpp" #include "Box.hpp" #include "analysis_correlation.hpp" /** Calculates the dipole vector of a given atomSet. * * Note that we use the following procedure as rule of thumb: * -# go through every bond of the atom * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$ * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element * -# sum up all vectors * -# finally, divide by the number of summed vectors * * @param atomsbegin begin iterator of atomSet * @param atomsend end iterator of atomset * @return dipole vector */ Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend) { Vector DipoleVector; size_t SumOfVectors = 0; // go through all atoms for (molecule::const_iterator atomiter = atomsbegin; atomiter != atomsend; ++atomiter) { // go through all bonds const BondList& ListOfBonds = (*atomiter)->getListOfBonds(); for (BondList::const_iterator bonditer = ListOfBonds.begin(); bonditer != ListOfBonds.end(); ++bonditer) { const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter); if (Otheratom->getId() > (*atomiter)->getId()) { const double DeltaEN = (*atomiter)->getType()->getElectronegativity() -Otheratom->getType()->getElectronegativity(); Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition(); // DeltaEN is always positive, gives correct orientation of vector BondDipoleVector.Normalize(); BondDipoleVector *= DeltaEN; DipoleVector += BondDipoleVector; SumOfVectors++; } } } DipoleVector *= 1./(double)SumOfVectors; DoLog(1) && (Log() << Verbose(1) << "Resulting dipole vector is " << DipoleVector << std::endl); return DipoleVector; }; /** Calculates the dipole angular correlation for given molecule type. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * Angles are given in degrees. * \param *molecules vector of molecules * \return Map of doubles with values the pair of the two atoms. */ DipoleAngularCorrelationMap *DipoleAngularCorrelation(std::vector &molecules) { Info FunctionInfo(__func__); DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap; // double distance = 0.; // Box &domain = World::getInstance().getDomain(); // if (molecules.empty()) { DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl); return outmap; } outmap = new DipoleAngularCorrelationMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); ++MolWalker) { DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << (*MolWalker)->getId() << "." << endl); const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end()); std::vector::const_iterator MolOtherWalker = MolWalker; for (++MolOtherWalker; MolOtherWalker != molecules.end(); ++MolOtherWalker) { DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << (*MolOtherWalker)->getId() << "." << endl); const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end()); const double angle = Dipole.Angle(OtherDipole) * (180./M_PI); DoLog(1) && (Log() << Verbose(1) << "Angle is " << angle << "." << endl); outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) ); } } return outmap; }; /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *molecules vector of molecules * \param &elements vector of elements to correlate * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PairCorrelation(std::vector &molecules, const std::vector &elements) { Info FunctionInfo(__func__); PairCorrelationMap *outmap = new PairCorrelationMap; double distance = 0.; Box &domain = World::getInstance().getDomain(); if (molecules.empty()) { DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); // create all possible pairs of elements set > PairsOfElements; if (elements.size() >= 2) { for (vector::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1) for (vector::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2) if (type1 != type2) { PairsOfElements.insert( make_pair(*type1,*type2) ); DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl); } } else if (elements.size() == 1) { // one to all are valid const element *elemental = *elements.begin(); PairsOfElements.insert( pair(elemental,0) ); PairsOfElements.insert( pair(0,elemental) ); } else { // all elements valid PairsOfElements.insert( pair((element *)NULL, (element *)NULL) ); } outmap = new PairCorrelationMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){ DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (std::vector::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){ DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl); for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) { DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl); if ((*iter)->getId() < (*runner)->getId()){ for (set >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner) if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) { distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition()); //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl; outmap->insert ( pair > (distance, pair ((*iter), (*runner)) ) ); } } } } } } return outmap; }; /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *molecules list of molecules structure * \param &elements vector of elements to correlate * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PeriodicPairCorrelation(std::vector &molecules, const std::vector &elements, const int ranges[NDIM] ) { Info FunctionInfo(__func__); PairCorrelationMap *outmap = new PairCorrelationMap; double distance = 0.; int n[NDIM]; Vector checkX; Vector periodicX; int Othern[NDIM]; Vector checkOtherX; Vector periodicOtherX; if (molecules.empty()) { DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); // create all possible pairs of elements set > PairsOfElements; if (elements.size() >= 2) { for (vector::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1) for (vector::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2) if (type1 != type2) { PairsOfElements.insert( make_pair(*type1,*type2) ); DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl); } } else if (elements.size() == 1) { // one to all are valid const element *elemental = *elements.begin(); PairsOfElements.insert( pair(elemental,0) ); PairsOfElements.insert( pair(0,elemental) ); } else { // all elements valid PairsOfElements.insert( pair((element *)NULL, (element *)NULL) ); } outmap = new PairCorrelationMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){ RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM(); RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); for (std::vector::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){ DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl); for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) { DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl); if ((*iter)->getId() < (*runner)->getId()){ for (set >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner) if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) { periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++) for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++) for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) { checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX); distance = checkX.distance(checkOtherX); //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl; outmap->insert ( pair > (distance, pair ((*iter), (*runner)) ) ); } } } } } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate with point * \param *point vector to the correlation point * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *CorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = new CorrelationToPointMap; double distance = 0.; Box &domain = World::getInstance().getDomain(); if (molecules.empty()) { DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToPointMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { distance = domain.periodicDistance((*iter)->getPosition(),*point); DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl); outmap->insert ( pair >(distance, pair ((*iter), point) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to point * \param *point vector to the correlation point * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = new CorrelationToPointMap; double distance = 0.; int n[NDIM]; Vector periodicX; Vector checkX; if (molecules.empty()) { DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToPointMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM(); RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); distance = checkX.distance(*point); DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl); outmap->insert ( pair >(distance, pair (*iter, point) ) ); } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a surface. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *CorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell *LC ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) { DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToSurfaceMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl); if ((*MolWalker)->empty()) DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); outmap->insert ( pair >(distance, pair ((*iter), triangle) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface. * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1. * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane(). * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; int n[NDIM]; Vector periodicX; Vector checkX; if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) { DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToSurfaceMap; double ShortestDistance = 0.; BoundaryTriangleSet *ShortestTriangle = NULL; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM(); RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance ShortestDistance = -1.; for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); TriangleIntersectionList Intersections(checkX,Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); if ((ShortestDistance == -1.) || (distance < ShortestDistance)) { ShortestDistance = distance; ShortestTriangle = triangle; } } // insert outmap->insert ( pair >(ShortestDistance, pair (*iter, ShortestTriangle) ) ); //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl; } } } return outmap; }; /** Returns the index of the bin for a given value. * \param value value whose bin to look for * \param BinWidth width of bin * \param BinStart first bin */ int GetBin ( const double value, const double BinWidth, const double BinStart ) { //Info FunctionInfo(__func__); int bin =(int) (floor((value - BinStart)/BinWidth)); return (bin); }; /** Adds header part that is unique to BinPairMap. * * @param file stream to print to */ void OutputCorrelation_Header( ofstream * const file ) { *file << "\tCount"; }; /** Prints values stored in BinPairMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner ) { *file << runner->second; }; /** Adds header part that is unique to DipoleAngularCorrelationMap. * * @param file stream to print to */ void OutputDipoleAngularCorrelation_Header( ofstream * const file ) { *file << "\tAtom1\tAtom2"; }; /** Prints values stored in DipoleAngularCorrelationMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner ) { *file << runner->second.first->getId() << "\t" << runner->second.second->getId(); }; /** Adds header part that is unique to PairCorrelationMap. * * @param file stream to print to */ void OutputPairCorrelation_Header( ofstream * const file ) { *file << "\tAtom1\tAtom2"; }; /** Prints values stored in PairCorrelationMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner ) { *file << *(runner->second.first) << "\t" << *(runner->second.second); }; /** Adds header part that is unique to CorrelationToPointMap. * * @param file stream to print to */ void OutputCorrelationToPoint_Header( ofstream * const file ) { *file << "\tAtom::x[i]-point.x[i]"; }; /** Prints values stored in CorrelationToPointMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner ) { for (int i=0;isecond.first->at(i) - runner->second.second->at(i)); }; /** Adds header part that is unique to CorrelationToSurfaceMap. * * @param file stream to print to */ void OutputCorrelationToSurface_Header( ofstream * const file ) { *file << "\tTriangle"; }; /** Prints values stored in CorrelationToSurfaceMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner ) { *file << *(runner->second.first) << "\t" << *(runner->second.second); };