/* * analysis.cpp * * Created on: Oct 13, 2009 * Author: heber */ #include "Helpers/MemDebug.hpp" #include #include #include "analysis_correlation.hpp" #include "element.hpp" #include "info.hpp" #include "log.hpp" #include "molecule.hpp" #include "tesselation.hpp" #include "tesselationhelpers.hpp" #include "triangleintersectionlist.hpp" #include "vector.hpp" #include "Matrix.hpp" #include "verbose.hpp" #include "World.hpp" #include "Box.hpp" /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *molecules list of molecules structure * \param &elements vector of elements to correlate * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PairCorrelation(MoleculeListClass * const &molecules, const std::vector &elements) { Info FunctionInfo(__func__); PairCorrelationMap *outmap = NULL; double distance = 0.; Box &domain = World::getInstance().getDomain(); if (molecules->ListOfMolecules.empty()) { DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); // create all possible pairs of elements set > PairsOfElements; if (elements.size() >= 2) { for (vector::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1) for (vector::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2) if (type1 != type2) { PairsOfElements.insert( pair(*type1,*type2) ); DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << (*type1)->symbol << " and " << (*type2)->symbol << "." << endl); } } else if (elements.size() == 1) { // one to all are valid element *elemental = *elements.begin(); PairsOfElements.insert( pair(elemental,(element *)NULL) ); PairsOfElements.insert( pair((element *)NULL,elemental) ); } else { // all elements valid PairsOfElements.insert( pair((element *)NULL, (element *)NULL) ); } outmap = new PairCorrelationMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++){ if ((*MolWalker)->ActiveFlag) { DoeLog(2) && (eLog()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); eLog() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (MoleculeList::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules->ListOfMolecules.end(); MolOtherWalker++){ if ((*MolOtherWalker)->ActiveFlag) { DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl); for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) { DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl); if ((*iter)->getId() < (*runner)->getId()){ for (set >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner) if ((PairRunner->first == (**iter).type) && (PairRunner->second == (**runner).type)) { distance = domain.periodicDistance(*(*iter)->node,*(*runner)->node); //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl; outmap->insert ( pair > (distance, pair ((*iter), (*runner)) ) ); } } } } } } } } return outmap; }; /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *molecules list of molecules structure * \param &elements vector of elements to correlate * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PeriodicPairCorrelation(MoleculeListClass * const &molecules, const std::vector &elements, const int ranges[NDIM] ) { Info FunctionInfo(__func__); PairCorrelationMap *outmap = NULL; double distance = 0.; int n[NDIM]; Vector checkX; Vector periodicX; int Othern[NDIM]; Vector checkOtherX; Vector periodicOtherX; if (molecules->ListOfMolecules.empty()) { DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); // create all possible pairs of elements set > PairsOfElements; if (elements.size() >= 2) { for (vector::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1) for (vector::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2) if (type1 != type2) { PairsOfElements.insert( pair(*type1,*type2) ); DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << (*type1)->symbol << " and " << (*type2)->symbol << "." << endl); } } else if (elements.size() == 1) { // one to all are valid element *elemental = *elements.begin(); PairsOfElements.insert( pair(elemental,(element *)NULL) ); PairsOfElements.insert( pair((element *)NULL,elemental) ); } else { // all elements valid PairsOfElements.insert( pair((element *)NULL, (element *)NULL) ); } outmap = new PairCorrelationMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++){ if ((*MolWalker)->ActiveFlag) { Matrix FullMatrix = World::getInstance().getDomain().getM(); Matrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoeLog(2) && (eLog()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); eLog() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); periodicX = FullInverseMatrix * (*(*iter)->node); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); for (MoleculeList::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules->ListOfMolecules.end(); MolOtherWalker++){ if ((*MolOtherWalker)->ActiveFlag) { DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl); for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) { DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl); if ((*iter)->getId() < (*runner)->getId()){ for (set >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner) if ((PairRunner->first == (**iter).type) && (PairRunner->second == (**runner).type)) { periodicOtherX = FullInverseMatrix * (*(*runner)->node); // x now in [0,1)^3 // go through every range in xyz and get distance for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++) for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++) for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) { checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX); distance = checkX.distance(checkOtherX); //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl; outmap->insert ( pair > (distance, pair ((*iter), (*runner)) ) ); } } } } } } } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate with point * \param *point vector to the correlation point * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *CorrelationToPoint(MoleculeListClass * const &molecules, const std::vector &elements, const Vector *point ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = NULL; double distance = 0.; Box &domain = World::getInstance().getDomain(); if (molecules->ListOfMolecules.empty()) { DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToPointMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->type == *type)) { distance = domain.periodicDistance(*(*iter)->node,*point); DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl); outmap->insert ( pair >(distance, pair ((*iter), point) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to point * \param *point vector to the correlation point * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *PeriodicCorrelationToPoint(MoleculeListClass * const &molecules, const std::vector &elements, const Vector *point, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = NULL; double distance = 0.; int n[NDIM]; Vector periodicX; Vector checkX; if (molecules->ListOfMolecules.empty()) { DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToPointMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { Matrix FullMatrix = World::getInstance().getDomain().getM(); Matrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->type == *type)) { periodicX = FullInverseMatrix * (*(*iter)->node); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); distance = checkX.distance(*point); DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl); outmap->insert ( pair >(distance, pair (*iter, point) ) ); } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a surface. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *CorrelationToSurface(MoleculeListClass * const &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell *LC ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = NULL; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; if ((Surface == NULL) || (LC == NULL) || (molecules->ListOfMolecules.empty())) { DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToSurfaceMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { DoLog(1) && (Log() << Verbose(1) << "Current molecule is " << (*MolWalker)->name << "." << endl); if ((*MolWalker)->empty()) DoLog(1) && (1) && (Log() << Verbose(1) << "\t is empty." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(1) && (Log() << Verbose(1) << "\tCurrent atom is " << *(*iter) << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->type == *type)) { TriangleIntersectionList Intersections((*iter)->node,Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); outmap->insert ( pair >(distance, pair ((*iter), triangle) ) ); } } } else { DoLog(1) && (Log() << Verbose(1) << "molecule " << (*MolWalker)->name << " is not active." << endl); } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface. * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1. * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane(). * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *PeriodicCorrelationToSurface(MoleculeListClass * const &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = NULL; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; int n[NDIM]; Vector periodicX; Vector checkX; if ((Surface == NULL) || (LC == NULL) || (molecules->ListOfMolecules.empty())) { DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl); return outmap; } for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) (*MolWalker)->doCountAtoms(); outmap = new CorrelationToSurfaceMap; double ShortestDistance = 0.; BoundaryTriangleSet *ShortestTriangle = NULL; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { Matrix FullMatrix = World::getInstance().getDomain().getM(); Matrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->type == *type)) { periodicX = FullInverseMatrix * (*(*iter)->node); // x now in [0,1)^3 // go through every range in xyz and get distance ShortestDistance = -1.; for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); TriangleIntersectionList Intersections(&checkX,Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); if ((ShortestDistance == -1.) || (distance < ShortestDistance)) { ShortestDistance = distance; ShortestTriangle = triangle; } } // insert outmap->insert ( pair >(ShortestDistance, pair (*iter, ShortestTriangle) ) ); //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl; } } } return outmap; }; /** Returns the index of the bin for a given value. * \param value value whose bin to look for * \param BinWidth width of bin * \param BinStart first bin */ int GetBin ( const double value, const double BinWidth, const double BinStart ) { Info FunctionInfo(__func__); int bin =(int) (floor((value - BinStart)/BinWidth)); return (bin); }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelation( ofstream * const file, const BinPairMap * const map ) { Info FunctionInfo(__func__); *file << "BinStart\tCount" << endl; for (BinPairMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << setprecision(8) << runner->first << "\t" << runner->second << endl; } }; /** Prints correlation (double, (atom*,atom*) ) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputPairCorrelation( ofstream * const file, const PairCorrelationMap * const map ) { Info FunctionInfo(__func__); *file << "BinStart\tAtom1\tAtom2" << endl; for (PairCorrelationMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << setprecision(8) << runner->first << "\t" << *(runner->second.first) << "\t" << *(runner->second.second) << endl; } }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelationToPoint( ofstream * const file, const CorrelationToPointMap * const map ) { Info FunctionInfo(__func__); *file << "BinStart\tAtom::x[i]-point.x[i]" << endl; for (CorrelationToPointMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << runner->first; for (int i=0;isecond.first->node->at(i) - runner->second.second->at(i)); *file << endl; } }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelationToSurface( ofstream * const file, const CorrelationToSurfaceMap * const map ) { Info FunctionInfo(__func__); *file << "BinStart\tTriangle" << endl; if (!map->empty()) for (CorrelationToSurfaceMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << setprecision(8) << runner->first << "\t" << *(runner->second.first) << "\t" << *(runner->second.second) << endl; } };