/* * analysis.cpp * * Created on: Oct 13, 2009 * Author: heber */ #include #include "analysis_correlation.hpp" #include "element.hpp" #include "log.hpp" #include "molecule.hpp" #include "tesselation.hpp" #include "tesselationhelpers.hpp" #include "vector.hpp" #include "verbose.hpp" /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type1 first element or NULL (if any element) * \param *type2 second element or NULL (if any element) * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PairCorrelation(MoleculeListClass * const &molecules, const element * const type1, const element * const type2 ) { PairCorrelationMap *outmap = NULL; double distance = 0.; if (molecules->ListOfMolecules.empty()) { eLog() << Verbose(1) <<"No molecule given." << endl; return outmap; } outmap = new PairCorrelationMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { eLog() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type1 == NULL) || (Walker->type == type1)) { for (MoleculeList::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules->ListOfMolecules.end(); MolOtherWalker++) if ((*MolOtherWalker)->ActiveFlag) { Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl; atom *OtherWalker = (*MolOtherWalker)->start; while (OtherWalker->next != (*MolOtherWalker)->end) { // only go up to Walker OtherWalker = OtherWalker->next; Log() << Verbose(3) << "Current otheratom is " << *OtherWalker << "." << endl; if (Walker->nr < OtherWalker->nr) if ((type2 == NULL) || (OtherWalker->type == type2)) { distance = Walker->node->PeriodicDistance(OtherWalker->node, (*MolWalker)->cell_size); //Log() << Verbose(1) <<"Inserting " << *Walker << " and " << *OtherWalker << endl; outmap->insert ( pair > (distance, pair (Walker, OtherWalker) ) ); } } } } } } return outmap; }; /** Calculates the pair correlation between given elements. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type1 first element or NULL (if any element) * \param *type2 second element or NULL (if any element) * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PeriodicPairCorrelation(MoleculeListClass * const &molecules, const element * const type1, const element * const type2, const int ranges[NDIM] ) { PairCorrelationMap *outmap = NULL; double distance = 0.; int n[NDIM]; Vector checkX; Vector periodicX; int Othern[NDIM]; Vector checkOtherX; Vector periodicOtherX; if (molecules->ListOfMolecules.empty()) { eLog() << Verbose(1) <<"No molecule given." << endl; return outmap; } outmap = new PairCorrelationMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { double * FullMatrix = ReturnFullMatrixforSymmetric((*MolWalker)->cell_size); double * FullInverseMatrix = InverseMatrix(FullMatrix); eLog() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type1 == NULL) || (Walker->type == type1)) { periodicX.CopyVector(Walker->node); periodicX.MatrixMultiplication(FullInverseMatrix); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX.Init(n[0], n[1], n[2]); checkX.AddVector(&periodicX); checkX.MatrixMultiplication(FullMatrix); for (MoleculeList::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules->ListOfMolecules.end(); MolOtherWalker++) if ((*MolOtherWalker)->ActiveFlag) { Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl; atom *OtherWalker = (*MolOtherWalker)->start; while (OtherWalker->next != (*MolOtherWalker)->end) { // only go up to Walker OtherWalker = OtherWalker->next; Log() << Verbose(3) << "Current otheratom is " << *OtherWalker << "." << endl; if (Walker->nr < OtherWalker->nr) if ((type2 == NULL) || (OtherWalker->type == type2)) { periodicOtherX.CopyVector(OtherWalker->node); periodicOtherX.MatrixMultiplication(FullInverseMatrix); // x now in [0,1)^3 // go through every range in xyz and get distance for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++) for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++) for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) { checkOtherX.Init(Othern[0], Othern[1], Othern[2]); checkOtherX.AddVector(&periodicOtherX); checkOtherX.MatrixMultiplication(FullMatrix); distance = checkX.Distance(&checkOtherX); //Log() << Verbose(1) <<"Inserting " << *Walker << " and " << *OtherWalker << endl; outmap->insert ( pair > (distance, pair (Walker, OtherWalker) ) ); } } } } } } } Free(&FullMatrix); Free(&FullInverseMatrix); } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a point. * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type element or NULL (if any element) * \param *point vector to the correlation point * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *CorrelationToPoint(MoleculeListClass * const &molecules, const element * const type, const Vector *point ) { CorrelationToPointMap *outmap = NULL; double distance = 0.; if (molecules->ListOfMolecules.empty()) { Log() << Verbose(1) <<"No molecule given." << endl; return outmap; } outmap = new CorrelationToPointMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type == NULL) || (Walker->type == type)) { distance = Walker->node->PeriodicDistance(point, (*MolWalker)->cell_size); Log() << Verbose(4) << "Current distance is " << distance << "." << endl; outmap->insert ( pair >(distance, pair (Walker, point) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and a point. * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type element or NULL (if any element) * \param *point vector to the correlation point * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *PeriodicCorrelationToPoint(MoleculeListClass * const &molecules, const element * const type, const Vector *point, const int ranges[NDIM] ) { CorrelationToPointMap *outmap = NULL; double distance = 0.; int n[NDIM]; Vector periodicX; Vector checkX; if (molecules->ListOfMolecules.empty()) { Log() << Verbose(1) <<"No molecule given." << endl; return outmap; } outmap = new CorrelationToPointMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { double * FullMatrix = ReturnFullMatrixforSymmetric((*MolWalker)->cell_size); double * FullInverseMatrix = InverseMatrix(FullMatrix); Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type == NULL) || (Walker->type == type)) { periodicX.CopyVector(Walker->node); periodicX.MatrixMultiplication(FullInverseMatrix); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX.Init(n[0], n[1], n[2]); checkX.AddVector(&periodicX); checkX.MatrixMultiplication(FullMatrix); distance = checkX.Distance(point); Log() << Verbose(4) << "Current distance is " << distance << "." << endl; outmap->insert ( pair >(distance, pair (Walker, point) ) ); } } } Free(&FullMatrix); Free(&FullInverseMatrix); } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a surface. * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type element or NULL (if any element) * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *CorrelationToSurface(MoleculeListClass * const &molecules, const element * const type, const Tesselation * const Surface, const LinkedCell *LC ) { CorrelationToSurfaceMap *outmap = NULL; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; if ((Surface == NULL) || (LC == NULL) || (molecules->ListOfMolecules.empty())) { Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl; return outmap; } outmap = new CorrelationToSurfaceMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type == NULL) || (Walker->type == type)) { triangle = Surface->FindClosestTriangleToPoint(Walker->node, LC ); if (triangle != NULL) { distance = DistanceToTrianglePlane(Walker->node, triangle); outmap->insert ( pair >(distance, pair (Walker, triangle) ) ); } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface. * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1. * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane(). * \param *out output stream for debugging * \param *molecules list of molecules structure * \param *type element or NULL (if any element) * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell structure to quickly find neighbouring atoms * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *PeriodicCorrelationToSurface(MoleculeListClass * const &molecules, const element * const type, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] ) { CorrelationToSurfaceMap *outmap = NULL; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; int n[NDIM]; Vector periodicX; Vector checkX; if ((Surface == NULL) || (LC == NULL) || (molecules->ListOfMolecules.empty())) { Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl; return outmap; } outmap = new CorrelationToSurfaceMap; for (MoleculeList::const_iterator MolWalker = molecules->ListOfMolecules.begin(); MolWalker != molecules->ListOfMolecules.end(); MolWalker++) if ((*MolWalker)->ActiveFlag) { double * FullMatrix = ReturnFullMatrixforSymmetric((*MolWalker)->cell_size); double * FullInverseMatrix = InverseMatrix(FullMatrix); Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl; atom *Walker = (*MolWalker)->start; while (Walker->next != (*MolWalker)->end) { Walker = Walker->next; Log() << Verbose(3) << "Current atom is " << *Walker << "." << endl; if ((type == NULL) || (Walker->type == type)) { periodicX.CopyVector(Walker->node); periodicX.MatrixMultiplication(FullInverseMatrix); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX.Init(n[0], n[1], n[2]); checkX.AddVector(&periodicX); checkX.MatrixMultiplication(FullMatrix); triangle = Surface->FindClosestTriangleToPoint(&checkX, LC ); if (triangle != NULL) { distance = DistanceToTrianglePlane(&checkX, triangle); outmap->insert ( pair >(distance, pair (Walker, triangle) ) ); } } } } Free(&FullMatrix); Free(&FullInverseMatrix); } return outmap; }; /** Returns the start of the bin for a given value. * \param value value whose bin to look for * \param BinWidth width of bin * \param BinStart first bin */ double GetBin ( const double value, const double BinWidth, const double BinStart ) { double bin =(double) (floor((value - BinStart)/BinWidth)); return (bin*BinWidth+BinStart); }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelation( ofstream * const file, const BinPairMap * const map ) { *file << "# BinStart\tCount" << endl; for (BinPairMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << runner->first << "\t" << runner->second << endl; } }; /** Prints correlation (double, (atom*,atom*) ) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputPairCorrelation( ofstream * const file, const PairCorrelationMap * const map ) { *file << "# BinStart\tAtom1\tAtom2" << endl; for (PairCorrelationMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << runner->first << "\t" << *(runner->second.first) << "\t" << *(runner->second.second) << endl; } }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelationToPoint( ofstream * const file, const CorrelationToPointMap * const map ) { *file << "# BinStart\tAtom::x[i]-point.x[i]" << endl; for (CorrelationToPointMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << runner->first; for (int i=0;isecond.first->node->x[i] - runner->second.second->x[i]); *file << endl; } }; /** Prints correlation (double, int) pairs to file. * \param *file file to write to * \param *map map to write */ void OutputCorrelationToSurface( ofstream * const file, const CorrelationToSurfaceMap * const map ) { *file << "# BinStart\tTriangle" << endl; for (CorrelationToSurfaceMap::const_iterator runner = map->begin(); runner != map->end(); ++runner) { *file << runner->first << "\t" << *(runner->second.second) << endl; } };