source: src/Tesselation/tesselationhelpers.cpp@ ce7bfd

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since ce7bfd was ce7bfd, checked in by Frederik Heber <heber@…>, 13 years ago

VERBOSE: Subsequent change in verbosity levels of many tesselation functions after Info removal.

  • Property mode set to 100644
File size: 38.6 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * TesselationHelpers.cpp
10 *
11 * Created on: Aug 3, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <fstream>
23
24#include "tesselationhelpers.hpp"
25
26#include "BoundaryLineSet.hpp"
27#include "BoundaryPointSet.hpp"
28#include "BoundaryPolygonSet.hpp"
29#include "BoundaryTriangleSet.hpp"
30#include "CandidateForTesselation.hpp"
31#include "CodePatterns/Info.hpp"
32#include "CodePatterns/Log.hpp"
33#include "CodePatterns/Verbose.hpp"
34#include "LinearAlgebra/Line.hpp"
35#include "LinearAlgebra/LinearSystemOfEquations.hpp"
36#include "LinearAlgebra/Plane.hpp"
37#include "LinearAlgebra/RealSpaceMatrix.hpp"
38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/vector_ops.hpp"
40#include "LinkedCell/IPointCloud.hpp"
41#include "LinkedCell/linkedcell.hpp"
42#include "tesselation.hpp"
43
44void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
45{
46 //Info FunctionInfo(__func__);
47 RealSpaceMatrix mat;
48 double m11, m12, m13, m14;
49
50 for(int i=0;i<3;i++) {
51 mat.set(i, 0, a[i]);
52 mat.set(i, 1, b[i]);
53 mat.set(i, 2, c[i]);
54 }
55 m11 = mat.determinant();
56
57 for(int i=0;i<3;i++) {
58 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
59 mat.set(i, 1, b[i]);
60 mat.set(i, 2, c[i]);
61 }
62 m12 = mat.determinant();
63
64 for(int i=0;i<3;i++) {
65 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
66 mat.set(i, 1, a[i]);
67 mat.set(i, 2, c[i]);
68 }
69 m13 = mat.determinant();
70
71 for(int i=0;i<3;i++) {
72 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
73 mat.set(i, 1, a[i]);
74 mat.set(i, 2, b[i]);
75 }
76 m14 = mat.determinant();
77
78 if (fabs(m11) < MYEPSILON)
79 ELOG(1, "three points are colinear.");
80
81 center->at(0) = 0.5 * m12/ m11;
82 center->at(1) = -0.5 * m13/ m11;
83 center->at(2) = 0.5 * m14/ m11;
84
85 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
86 ELOG(1, "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS.");
87};
88
89
90
91/**
92 * Function returns center of sphere with RADIUS, which rests on points a, b, c
93 * @param Center this vector will be used for return
94 * @param a vector first point of triangle
95 * @param b vector second point of triangle
96 * @param c vector third point of triangle
97 * @param *Umkreismittelpunkt new center point of circumference
98 * @param Direction vector indicates up/down
99 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
100 * @param Halfplaneindicator double indicates whether Direction is up or down
101 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
102 * @param alpha double angle at a
103 * @param beta double, angle at b
104 * @param gamma, double, angle at c
105 * @param Radius, double
106 * @param Umkreisradius double radius of circumscribing circle
107 */
108void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
109 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
110{
111 //Info FunctionInfo(__func__);
112 Vector TempNormal, helper;
113 double Restradius;
114 Vector OtherCenter;
115 Center->Zero();
116 helper = sin(2.*alpha) * a;
117 (*Center) += helper;
118 helper = sin(2.*beta) * b;
119 (*Center) += helper;
120 helper = sin(2.*gamma) * c;
121 (*Center) += helper;
122 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
123 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
124 (*NewUmkreismittelpunkt) = (*Center);
125 LOG(4, "DEBUG: Center of new circumference is " << *NewUmkreismittelpunkt << ".");
126 // Here we calculated center of circumscribing circle, using barycentric coordinates
127 LOG(4, "DEBUG: Center of circumference is " << *Center << " in direction " << *Direction << ".");
128
129 TempNormal = a - b;
130 helper = a - c;
131 TempNormal.VectorProduct(helper);
132 if (fabs(HalfplaneIndicator) < MYEPSILON)
133 {
134 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
135 {
136 TempNormal *= -1;
137 }
138 }
139 else
140 {
141 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
142 {
143 TempNormal *= -1;
144 }
145 }
146
147 TempNormal.Normalize();
148 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
149 LOG(5, "DEBUG: Height of center of circumference to center of sphere is " << Restradius << ".");
150 TempNormal.Scale(Restradius);
151 LOG(5, "DEBUG: Shift vector to sphere of circumference is " << TempNormal << ".");
152 (*Center) += TempNormal;
153 LOG(5, "DEBUG: Center of sphere of circumference is " << *Center << ".");
154 GetSphere(&OtherCenter, a, b, c, RADIUS);
155 LOG(5, "DEBUG: OtherCenter of sphere of circumference is " << OtherCenter << ".");
156};
157
158
159/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
160 * \param *Center new center on return
161 * \param *a first point
162 * \param *b second point
163 * \param *c third point
164 */
165void GetCenterofCircumcircle(Vector &Center, const Vector &a, const Vector &b, const Vector &c)
166{
167 //Info FunctionInfo(__func__);
168 Vector helper;
169 Vector SideA = b - c;
170 Vector SideB = c - a;
171 Vector SideC = a - b;
172
173 helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
174 helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
175 helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
176
177 Center.Zero();
178 Center += helper[0] * a;
179 Center += helper[1] * b;
180 Center += helper[2] * c;
181 if (fabs(helper[0]+helper[1]+helper[2]) > MYEPSILON)
182 Center.Scale(1./(helper[0]+helper[1]+helper[2]));
183 LOG(4, "DEBUG: Center (2nd algo) is at " << Center << ".");
184};
185
186/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
187 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
188 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
189 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
190 * \param CircleCenter Center of the parameter circle
191 * \param CirclePlaneNormal normal vector to plane of the parameter circle
192 * \param CircleRadius radius of the parameter circle
193 * \param NewSphereCenter new center of a circumcircle
194 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
195 * \param NormalVector normal vector
196 * \param SearchDirection search direction to make angle unique on return.
197 * \param HULLEPSILON machine precision for tesselation points
198 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
199 */
200double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection, const double HULLEPSILON)
201{
202 //Info FunctionInfo(__func__);
203 Vector helper;
204 double radius, alpha;
205
206 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
207 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
208 helper = RelativeNewSphereCenter;
209 // test whether new center is on the parameter circle's plane
210 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
211 ELOG(1, "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!");
212 helper.ProjectOntoPlane(CirclePlaneNormal);
213 }
214 radius = helper.NormSquared();
215 // test whether the new center vector has length of CircleRadius
216 if (fabs(radius - CircleRadius) > HULLEPSILON)
217 ELOG(1, "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << ".");
218 alpha = helper.Angle(RelativeOldSphereCenter);
219 // make the angle unique by checking the halfplanes/search direction
220 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
221 alpha = 2.*M_PI - alpha;
222 LOG(3, "DEBUG: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << ".");
223 radius = helper.distance(RelativeOldSphereCenter);
224 helper.ProjectOntoPlane(NormalVector);
225 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
226 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
227 LOG(4, "DEBUG: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << ".");
228 return alpha;
229 } else {
230 LOG(3, "DEBUG: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << ".");
231 return 2.*M_PI;
232 }
233};
234
235struct Intersection {
236 Vector x1;
237 Vector x2;
238 Vector x3;
239 Vector x4;
240};
241
242/** Gets the angle between a point and a reference relative to the provided center.
243 * We have two shanks point and reference between which the angle is calculated
244 * and by scalar product with OrthogonalVector we decide the interval.
245 * @param point to calculate the angle for
246 * @param reference to which to calculate the angle
247 * @param OrthogonalVector points in direction of [pi,2pi] interval
248 *
249 * @return angle between point and reference
250 */
251double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
252{
253 //Info FunctionInfo(__func__);
254 if (reference.IsZero())
255 return M_PI;
256
257 // calculate both angles and correct with in-plane vector
258 if (point.IsZero())
259 return M_PI;
260 double phi = point.Angle(reference);
261 if (OrthogonalVector.ScalarProduct(point) > 0) {
262 phi = 2.*M_PI - phi;
263 }
264
265 LOG(1, "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << ".");
266
267 return phi;
268}
269
270
271/** Calculates the volume of a general tetraeder.
272 * \param *a first vector
273 * \param *b second vector
274 * \param *c third vector
275 * \param *d fourth vector
276 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
277 */
278double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
279{
280 //Info FunctionInfo(__func__);
281 Vector Point, TetraederVector[3];
282 double volume;
283
284 TetraederVector[0] = a;
285 TetraederVector[1] = b;
286 TetraederVector[2] = c;
287 for (int j=0;j<3;j++)
288 TetraederVector[j].SubtractVector(d);
289 Point = TetraederVector[0];
290 Point.VectorProduct(TetraederVector[1]);
291 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
292 return volume;
293};
294
295/** Calculates the area of a general triangle.
296 * We use the Heron's formula of area, [Bronstein, S. 138]
297 * \param &A first vector
298 * \param &B second vector
299 * \param &C third vector
300 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
301 */
302double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
303{
304 //Info FunctionInfo(__func__);
305
306 const double sidea = B.distance(C);
307 const double sideb = A.distance(C);
308 const double sidec = A.distance(B);
309 const double s = (sidea+sideb+sidec)/2.;
310
311 const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
312 return area;
313};
314
315
316/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
317 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
318 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
319 * \param TPS[3] nodes of the triangle
320 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
321 */
322bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
323{
324 //Info FunctionInfo(__func__);
325 bool result = false;
326 int counter = 0;
327
328 // check all three points
329 for (int i=0;i<3;i++)
330 for (int j=i+1; j<3; j++) {
331 if (nodes[i] == NULL) {
332 LOG(1, "Node nr. " << i << " is not yet present.");
333 result = true;
334 } else if (nodes[i]->lines.find(nodes[j]->node->getNr()) != nodes[i]->lines.end()) { // there already is a line
335 LineMap::const_iterator FindLine;
336 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
337 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->getNr());
338 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
339 // If there is a line with less than two attached triangles, we don't need a new line.
340 if (FindLine->second->triangles.size() < 2) {
341 counter++;
342 break; // increase counter only once per edge
343 }
344 }
345 } else { // no line
346 LOG(1, "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle.");
347 result = true;
348 }
349 }
350 if ((!result) && (counter > 1)) {
351 LOG(1, "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used.");
352 result = true;
353 }
354 return result;
355};
356
357
358///** Sort function for the candidate list.
359// */
360//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
361//{
362// //Info FunctionInfo(__func__);
363// Vector BaseLineVector, OrthogonalVector, helper;
364// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
365// ELOG(1, "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << ".");
366// //return false;
367// exit(1);
368// }
369// // create baseline vector
370// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
371// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
372// BaseLineVector.Normalize();
373//
374// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
375// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
376// helper.SubtractVector(candidate1->point->node);
377// OrthogonalVector.CopyVector(&helper);
378// helper.VectorProduct(&BaseLineVector);
379// OrthogonalVector.SubtractVector(&helper);
380// OrthogonalVector.Normalize();
381//
382// // calculate both angles and correct with in-plane vector
383// helper.CopyVector(candidate1->point->node);
384// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
385// double phi = BaseLineVector.Angle(&helper);
386// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
387// phi = 2.*M_PI - phi;
388// }
389// helper.CopyVector(candidate2->point->node);
390// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
391// double psi = BaseLineVector.Angle(&helper);
392// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
393// psi = 2.*M_PI - psi;
394// }
395//
396// LOG(1, *candidate1->point << " has angle " << phi);
397// LOG(1, *candidate2->point << " has angle " << psi);
398//
399// // return comparison
400// return phi < psi;
401//};
402
403/**
404 * Finds the point which is second closest to the provided one.
405 *
406 * @param Point to which to find the second closest other point
407 * @param linked cell structure
408 *
409 * @return point which is second closest to the provided one
410 */
411TesselPoint* FindSecondClosestTesselPoint(const Vector& Point, const LinkedCell_deprecated* const LC)
412{
413 //Info FunctionInfo(__func__);
414 TesselPoint* closestPoint = NULL;
415 TesselPoint* secondClosestPoint = NULL;
416 double distance = 1e16;
417 double secondDistance = 1e16;
418 Vector helper;
419 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
420
421 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
422 for(int i=0;i<NDIM;i++) // store indices of this cell
423 N[i] = LC->n[i];
424 LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
425
426 LC->GetNeighbourBounds(Nlower, Nupper);
427 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
428 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
429 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
430 const TesselPointSTLList *List = LC->GetCurrentCell();
431 //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
432 if (List != NULL) {
433 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
434 helper = (Point) - ((*Runner)->getPosition());
435 double currentNorm = helper. Norm();
436 if (currentNorm < distance) {
437 // remember second point
438 secondDistance = distance;
439 secondClosestPoint = closestPoint;
440 // mark down new closest point
441 distance = currentNorm;
442 closestPoint = (*Runner);
443 //LOG(2, "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << ".");
444 }
445 }
446 } else {
447 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
448 }
449 }
450
451 return secondClosestPoint;
452};
453
454/**
455 * Finds the point which is closest to the provided one.
456 *
457 * @param Point to which to find the closest other point
458 * @param SecondPoint the second closest other point on return, NULL if none found
459 * @param linked cell structure
460 *
461 * @return point which is closest to the provided one, NULL if none found
462 */
463TesselPoint* FindClosestTesselPoint(const Vector& Point, TesselPoint *&SecondPoint, const LinkedCell_deprecated* const LC)
464{
465 //Info FunctionInfo(__func__);
466 TesselPoint* closestPoint = NULL;
467 SecondPoint = NULL;
468 double distance = 1e16;
469 double secondDistance = 1e16;
470 Vector helper;
471 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
472
473 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
474 for(int i=0;i<NDIM;i++) // store indices of this cell
475 N[i] = LC->n[i];
476 LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
477
478 LC->GetNeighbourBounds(Nlower, Nupper);
479 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
480 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
481 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
482 const TesselPointSTLList *List = LC->GetCurrentCell();
483 //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
484 if (List != NULL) {
485 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
486 helper = (Point) - ((*Runner)->getPosition());
487 double currentNorm = helper.NormSquared();
488 if (currentNorm < distance) {
489 secondDistance = distance;
490 SecondPoint = closestPoint;
491 distance = currentNorm;
492 closestPoint = (*Runner);
493 //LOG(1, "INFO: New Nearest Neighbour is " << *closestPoint << ".");
494 } else if (currentNorm < secondDistance) {
495 secondDistance = currentNorm;
496 SecondPoint = (*Runner);
497 //LOG(1, "INFO: New Second Nearest Neighbour is " << *SecondPoint << ".");
498 }
499 }
500 } else {
501 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
502 }
503 }
504 // output
505 if (closestPoint != NULL) {
506 if (DoLog(3)) {
507 std::stringstream output;
508 output << "Closest point is " << *closestPoint;
509 if (SecondPoint != NULL)
510 output << " and second closest is " << *SecondPoint;
511 LOG(3, "DEBUG: " << output.str() << ".");
512 }
513 }
514 return closestPoint;
515};
516
517/** Returns the closest point on \a *Base with respect to \a *OtherBase.
518 * \param *out output stream for debugging
519 * \param *Base reference line
520 * \param *OtherBase other base line
521 * \return Vector on reference line that has closest distance
522 */
523Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
524{
525 //Info FunctionInfo(__func__);
526 // construct the plane of the two baselines (i.e. take both their directional vectors)
527 Vector Baseline = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
528 Vector OtherBaseline = (OtherBase->endpoints[1]->node->getPosition()) - (OtherBase->endpoints[0]->node->getPosition());
529 Vector Normal = Baseline;
530 Normal.VectorProduct(OtherBaseline);
531 Normal.Normalize();
532 LOG(1, "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << ".");
533
534 // project one offset point of OtherBase onto this plane (and add plane offset vector)
535 Vector NewOffset = (OtherBase->endpoints[0]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
536 NewOffset.ProjectOntoPlane(Normal);
537 NewOffset += (Base->endpoints[0]->node->getPosition());
538 Vector NewDirection = NewOffset + OtherBaseline;
539
540 // calculate the intersection between this projected baseline and Base
541 Vector *Intersection = new Vector;
542 Line line1 = makeLineThrough((Base->endpoints[0]->node->getPosition()),(Base->endpoints[1]->node->getPosition()));
543 Line line2 = makeLineThrough(NewOffset, NewDirection);
544 *Intersection = line1.getIntersection(line2);
545 Normal = (*Intersection) - (Base->endpoints[0]->node->getPosition());
546 LOG(1, "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << ".");
547
548 return Intersection;
549};
550
551/** Returns the distance to the plane defined by \a *triangle
552 * \param *out output stream for debugging
553 * \param *x Vector to calculate distance to
554 * \param *triangle triangle defining plane
555 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
556 */
557double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
558{
559 //Info FunctionInfo(__func__);
560 double distance = 0.;
561 if (x == NULL) {
562 return -1;
563 }
564 distance = x->DistanceToSpace(triangle->getPlane());
565 return distance;
566};
567
568/** Creates the objects in a VRML file.
569 * \param *out output stream for debugging
570 * \param *vrmlfile output stream for tecplot data
571 * \param *Tess Tesselation structure with constructed triangles
572 * \param *mol molecule structure with atom positions
573 */
574void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, IPointCloud & cloud)
575{
576 //Info FunctionInfo(__func__);
577 TesselPoint *Walker = NULL;
578 int i;
579 Vector *center = cloud.GetCenter();
580 if (vrmlfile != NULL) {
581 LOG(1, "INFO: Writing Raster3D file ... ");
582 *vrmlfile << "#VRML V2.0 utf8" << endl;
583 *vrmlfile << "#Created by molecuilder" << endl;
584 *vrmlfile << "#All atoms as spheres" << endl;
585 cloud.GoToFirst();
586 while (!cloud.IsEnd()) {
587 Walker = cloud.GetPoint();
588 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
589 for (i=0;i<NDIM;i++)
590 *vrmlfile << Walker->at(i)-center->at(i) << " ";
591 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
592 cloud.GoToNext();
593 }
594
595 *vrmlfile << "# All tesselation triangles" << endl;
596 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
597 *vrmlfile << "1" << endl << " "; // 1 is triangle type
598 for (i=0;i<3;i++) { // print each node
599 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
600 *vrmlfile << TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j) << " ";
601 *vrmlfile << "\t";
602 }
603 *vrmlfile << "1. 0. 0." << endl; // red as colour
604 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
605 }
606 } else {
607 ELOG(1, "Given vrmlfile is " << vrmlfile << ".");
608 }
609 delete(center);
610};
611
612/** Writes additionally the current sphere (i.e. the last triangle to file).
613 * \param *out output stream for debugging
614 * \param *rasterfile output stream for tecplot data
615 * \param *Tess Tesselation structure with constructed triangles
616 * \param *mol molecule structure with atom positions
617 */
618void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
619{
620 //Info FunctionInfo(__func__);
621 Vector helper;
622
623 if (Tess->LastTriangle != NULL) {
624 // include the current position of the virtual sphere in the temporary raster3d file
625 Vector *center = cloud.GetCenter();
626 // make the circumsphere's center absolute again
627 Vector helper = (1./3.) * ((Tess->LastTriangle->endpoints[0]->node->getPosition()) +
628 (Tess->LastTriangle->endpoints[1]->node->getPosition()) +
629 (Tess->LastTriangle->endpoints[2]->node->getPosition()));
630 helper -= (*center);
631 // and add to file plus translucency object
632 *rasterfile << "# current virtual sphere\n";
633 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
634 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
635 *rasterfile << "9\n terminating special property\n";
636 delete(center);
637 }
638};
639
640/** Creates the objects in a raster3d file (renderable with a header.r3d).
641 * \param *out output stream for debugging
642 * \param *rasterfile output stream for tecplot data
643 * \param *Tess Tesselation structure with constructed triangles
644 * \param *mol molecule structure with atom positions
645 */
646void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
647{
648 //Info FunctionInfo(__func__);
649 TesselPoint *Walker = NULL;
650 int i;
651 Vector *center = cloud.GetCenter();
652 if (rasterfile != NULL) {
653 LOG(1, "INFO: Writing Raster3D file ... ");
654 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
655 *rasterfile << "@header.r3d" << endl;
656 *rasterfile << "# All atoms as spheres" << endl;
657 cloud.GoToFirst();
658 while (!cloud.IsEnd()) {
659 Walker = cloud.GetPoint();
660 *rasterfile << "2" << endl << " "; // 2 is sphere type
661 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
662 const double tmp = Walker->at(j)-center->at(j);
663 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
664 }
665 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
666 cloud.GoToNext();
667 }
668
669 *rasterfile << "# All tesselation triangles" << endl;
670 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
671 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
672 *rasterfile << "1" << endl << " "; // 1 is triangle type
673 for (i=0;i<3;i++) { // print each node
674 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
675 const double tmp = TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j);
676 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
677 }
678 *rasterfile << "\t";
679 }
680 *rasterfile << "1. 0. 0." << endl; // red as colour
681 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
682 }
683 *rasterfile << "9\n# terminating special property\n";
684 } else {
685 ELOG(1, "Given rasterfile is " << rasterfile << ".");
686 }
687 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
688 delete(center);
689};
690
691/** This function creates the tecplot file, displaying the tesselation of the hull.
692 * \param *out output stream for debugging
693 * \param *tecplot output stream for tecplot data
694 * \param N arbitrary number to differentiate various zones in the tecplot format
695 */
696void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, IPointCloud & cloud, const int N)
697{
698 //Info FunctionInfo(__func__);
699 if ((tecplot != NULL) && (TesselStruct != NULL)) {
700 // write header
701 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
702 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
703 *tecplot << "ZONE T=\"";
704 if (N < 0) {
705 *tecplot << cloud.GetName();
706 } else {
707 *tecplot << N << "-";
708 if (TesselStruct->LastTriangle != NULL) {
709 for (int i=0;i<3;i++)
710 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
711 } else {
712 *tecplot << "none";
713 }
714 }
715 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
716 const int MaxId=cloud.GetMaxId();
717 ASSERT(MaxId >= 0, "WriteTecplotFile() - negative MaxId? No atoms present?");
718 int *LookupList = new int[MaxId+1];
719 for (int i=0; i<= MaxId ; i++){
720 LookupList[i] = -1;
721 }
722
723 // print atom coordinates
724 int Counter = 1;
725 TesselPoint *Walker = NULL;
726 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
727 Walker = target->second->node;
728 ASSERT(Walker->getNr() <= MaxId, "WriteTecplotFile() - Id of particle greater than MaxId.");
729 LookupList[Walker->getNr()] = Counter++;
730 for (int i=0;i<NDIM;i++) {
731 const double tmp = Walker->at(i);
732 *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
733 }
734 *tecplot << target->second->value << endl;
735 }
736 *tecplot << endl;
737 // print connectivity
738 LOG(1, "The following triangles were created:");
739 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
740 LOG(1, " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName());
741 *tecplot << LookupList[runner->second->endpoints[0]->node->getNr()] << " " << LookupList[runner->second->endpoints[1]->node->getNr()] << " " << LookupList[runner->second->endpoints[2]->node->getNr()] << endl;
742 }
743 delete[] (LookupList);
744 }
745};
746
747/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
748 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
749 * \param *out output stream for debugging
750 * \param *TesselStruct pointer to Tesselation structure
751 */
752void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
753{
754 //Info FunctionInfo(__func__);
755 class BoundaryPointSet *point = NULL;
756 class BoundaryLineSet *line = NULL;
757 class BoundaryTriangleSet *triangle = NULL;
758 double ConcavityPerLine = 0.;
759 double ConcavityPerTriangle = 0.;
760 double area = 0.;
761 double totalarea = 0.;
762
763 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
764 point = PointRunner->second;
765 LOG(1, "INFO: Current point is " << *point << ".");
766
767 // calculate mean concavity over all connected line
768 ConcavityPerLine = 0.;
769 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
770 line = LineRunner->second;
771 //LOG(1, "INFO: Current line of point " << *point << " is " << *line << ".");
772 ConcavityPerLine -= line->CalculateConvexity();
773 }
774 ConcavityPerLine /= point->lines.size();
775
776 // weigh with total area of the surrounding triangles
777 totalarea = 0.;
778 TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
779 for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
780 totalarea += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
781 }
782 ConcavityPerLine *= totalarea;
783
784 // calculate mean concavity over all attached triangles
785 ConcavityPerTriangle = 0.;
786 for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
787 line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
788 triangle = line->GetOtherTriangle(*TriangleRunner);
789 area = CalculateAreaofGeneralTriangle(triangle->endpoints[0]->node->getPosition() , triangle->endpoints[1]->node->getPosition() , triangle->endpoints[2]->node->getPosition());
790 area += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
791 area *= -line->CalculateConvexity();
792 if (area > 0)
793 ConcavityPerTriangle += area;
794// else
795// ConcavityPerTriangle -= area;
796 }
797 ConcavityPerTriangle /= triangles->size()/totalarea;
798 delete(triangles);
799
800 // add up
801 point->value = ConcavityPerLine + ConcavityPerTriangle;
802 }
803};
804
805
806
807/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
808 * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
809 * \param *out output stream for debugging
810 * \param *TesselStruct pointer to Tesselation structure
811 * \param *Convex pointer to convex Tesselation structure as reference
812 */
813void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
814{
815 //Info FunctionInfo(__func__);
816 double distance = 0.;
817
818 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
819 ELOG(1, "INFO: Current point is " << * PointRunner->second << ".");
820
821 distance = 0.;
822 for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
823 const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(PointRunner->second->node->getPosition() , TriangleRunner->second);
824 if (CurrentDistance < distance)
825 distance = CurrentDistance;
826 }
827
828 PointRunner->second->value = distance;
829 }
830};
831
832/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
833 * \param *out output stream for debugging
834 * \param *TesselStruct
835 * \return true - all have exactly two triangles, false - some not, list is printed to screen
836 */
837bool CheckListOfBaselines(const Tesselation * const TesselStruct)
838{
839 //Info FunctionInfo(__func__);
840 LineMap::const_iterator testline;
841 bool result = false;
842 int counter = 0;
843
844 LOG(1, "Check: List of Baselines with not two connected triangles:");
845 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
846 if (testline->second->triangles.size() != 2) {
847 LOG(2, *testline->second << "\t" << testline->second->triangles.size());
848 counter++;
849 }
850 }
851 if (counter == 0) {
852 LOG(1, "None.");
853 result = true;
854 }
855 return result;
856}
857
858/** Counts the number of triangle pairs that contain the given polygon.
859 * \param *P polygon with endpoints to look for
860 * \param *T set of triangles to create pairs from containing \a *P
861 */
862int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
863{
864 //Info FunctionInfo(__func__);
865 // check number of endpoints in *P
866 if (P->endpoints.size() != 4) {
867 ELOG(1, "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!");
868 return 0;
869 }
870
871 // check number of triangles in *T
872 if (T->size() < 2) {
873 ELOG(1, "Not enough triangles to have pairs!");
874 return 0;
875 }
876
877 LOG(3, "DEBUG: Polygon is " << *P);
878 // create each pair, get the endpoints and check whether *P is contained.
879 int counter = 0;
880 PointSet Trianglenodes;
881 class BoundaryPolygonSet PairTrianglenodes;
882 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
883 for (int i=0;i<3;i++)
884 Trianglenodes.insert((*Walker)->endpoints[i]);
885
886 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
887 if (Walker != PairWalker) { // skip first
888 PairTrianglenodes.endpoints = Trianglenodes;
889 for (int i=0;i<3;i++)
890 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
891 const int size = PairTrianglenodes.endpoints.size();
892 if (size == 4) {
893 LOG(4, "DEBUG: Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes);
894 // now check
895 if (PairTrianglenodes.ContainsPresentTupel(P)) {
896 counter++;
897 LOG(5, " ACCEPT: Matches with " << *P);
898 } else {
899 LOG(5, " REJECT: No match with " << *P);
900 }
901 } else {
902 LOG(5, " REJECT: Less than four endpoints.");
903 }
904 }
905 }
906 Trianglenodes.clear();
907 }
908 return counter;
909};
910
911/** Checks whether two give polygons have two or more points in common.
912 * \param *P1 first polygon
913 * \param *P2 second polygon
914 * \return true - are connected, false = are note
915 */
916bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
917{
918 //Info FunctionInfo(__func__);
919 int counter = 0;
920 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
921 if (P2->ContainsBoundaryPoint((*Runner))) {
922 counter++;
923 LOG(5, "DEBUG: " << *(*Runner) << " of second polygon is found in the first one.");
924 return true;
925 }
926 }
927 return false;
928};
929
930/** Combines second into the first and deletes the second.
931 * \param *P1 first polygon, contains all nodes on return
932 * \param *&P2 second polygon, is deleted.
933 */
934void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
935{
936 //Info FunctionInfo(__func__);
937 pair <PointSet::iterator, bool> Tester;
938 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
939 Tester = P1->endpoints.insert((*Runner));
940 if (Tester.second)
941 LOG(4, "DEBUG: Inserting endpoint " << *(*Runner) << " into first polygon.");
942 }
943 P2->endpoints.clear();
944 delete(P2);
945};
946
Note: See TracBrowser for help on using the repository browser.