source: src/Tesselation/tesselationhelpers.cpp@ 2528d8

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 2528d8 was a2a2f7, checked in by Frederik Heber <heber@…>, 11 years ago

Huge warning fix.

  • fixed unused variables.
  • fixed set but unused variables.
  • fixed signed vs. unsigned int comparison.
  • fixed static_warning_test<false, 98> (commented out _IMPLEMENT).
  • Property mode set to 100644
File size: 39.2 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
5 *
6 *
7 * This file is part of MoleCuilder.
8 *
9 * MoleCuilder is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * MoleCuilder is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * TesselationHelpers.cpp
25 *
26 * Created on: Aug 3, 2009
27 * Author: heber
28 */
29
30// include config.h
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35#include "CodePatterns/MemDebug.hpp"
36
37#include <fstream>
38
39#include "tesselationhelpers.hpp"
40
41#include "BoundaryLineSet.hpp"
42#include "BoundaryPointSet.hpp"
43#include "BoundaryPolygonSet.hpp"
44#include "BoundaryTriangleSet.hpp"
45#include "CandidateForTesselation.hpp"
46#include "CodePatterns/Info.hpp"
47#include "CodePatterns/Log.hpp"
48#include "CodePatterns/Verbose.hpp"
49#include "LinearAlgebra/Line.hpp"
50#include "LinearAlgebra/LinearSystemOfEquations.hpp"
51#include "LinearAlgebra/Plane.hpp"
52#include "LinearAlgebra/RealSpaceMatrix.hpp"
53#include "LinearAlgebra/Vector.hpp"
54#include "LinearAlgebra/vector_ops.hpp"
55#include "LinkedCell/IPointCloud.hpp"
56#include "LinkedCell/linkedcell.hpp"
57#include "tesselation.hpp"
58
59void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
60{
61 //Info FunctionInfo(__func__);
62 RealSpaceMatrix mat;
63 double m11, m12, m13, m14;
64
65 for(int i=0;i<3;i++) {
66 mat.set(i, 0, a[i]);
67 mat.set(i, 1, b[i]);
68 mat.set(i, 2, c[i]);
69 }
70 m11 = mat.determinant();
71
72 for(int i=0;i<3;i++) {
73 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
74 mat.set(i, 1, b[i]);
75 mat.set(i, 2, c[i]);
76 }
77 m12 = mat.determinant();
78
79 for(int i=0;i<3;i++) {
80 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
81 mat.set(i, 1, a[i]);
82 mat.set(i, 2, c[i]);
83 }
84 m13 = mat.determinant();
85
86 for(int i=0;i<3;i++) {
87 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
88 mat.set(i, 1, a[i]);
89 mat.set(i, 2, b[i]);
90 }
91 m14 = mat.determinant();
92
93 if (fabs(m11) < MYEPSILON)
94 ELOG(1, "three points are colinear.");
95
96 center->at(0) = 0.5 * m12/ m11;
97 center->at(1) = -0.5 * m13/ m11;
98 center->at(2) = 0.5 * m14/ m11;
99
100 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
101 ELOG(1, "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS.");
102};
103
104
105
106/**
107 * Function returns center of sphere with RADIUS, which rests on points a, b, c
108 * @param Center this vector will be used for return
109 * @param a vector first point of triangle
110 * @param b vector second point of triangle
111 * @param c vector third point of triangle
112 * @param *Umkreismittelpunkt new center point of circumference
113 * @param Direction vector indicates up/down
114 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
115 * @param Halfplaneindicator double indicates whether Direction is up or down
116 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
117 * @param alpha double angle at a
118 * @param beta double, angle at b
119 * @param gamma, double, angle at c
120 * @param Radius, double
121 * @param Umkreisradius double radius of circumscribing circle
122 */
123void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
124 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
125{
126 //Info FunctionInfo(__func__);
127 Vector TempNormal, helper;
128 double Restradius;
129 Vector OtherCenter;
130 Center->Zero();
131 helper = sin(2.*alpha) * a;
132 (*Center) += helper;
133 helper = sin(2.*beta) * b;
134 (*Center) += helper;
135 helper = sin(2.*gamma) * c;
136 (*Center) += helper;
137 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
138 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
139 (*NewUmkreismittelpunkt) = (*Center);
140 LOG(4, "DEBUG: Center of new circumference is " << *NewUmkreismittelpunkt << ".");
141 // Here we calculated center of circumscribing circle, using barycentric coordinates
142 LOG(4, "DEBUG: Center of circumference is " << *Center << " in direction " << *Direction << ".");
143
144 TempNormal = a - b;
145 helper = a - c;
146 TempNormal.VectorProduct(helper);
147 if (fabs(HalfplaneIndicator) < MYEPSILON)
148 {
149 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
150 {
151 TempNormal *= -1;
152 }
153 }
154 else
155 {
156 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
157 {
158 TempNormal *= -1;
159 }
160 }
161
162 TempNormal.Normalize();
163 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
164 LOG(5, "DEBUG: Height of center of circumference to center of sphere is " << Restradius << ".");
165 TempNormal.Scale(Restradius);
166 LOG(5, "DEBUG: Shift vector to sphere of circumference is " << TempNormal << ".");
167 (*Center) += TempNormal;
168 LOG(5, "DEBUG: Center of sphere of circumference is " << *Center << ".");
169 GetSphere(&OtherCenter, a, b, c, RADIUS);
170 LOG(5, "DEBUG: OtherCenter of sphere of circumference is " << OtherCenter << ".");
171};
172
173
174/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
175 * \param *Center new center on return
176 * \param *a first point
177 * \param *b second point
178 * \param *c third point
179 */
180void GetCenterofCircumcircle(Vector &Center, const Vector &a, const Vector &b, const Vector &c)
181{
182 //Info FunctionInfo(__func__);
183 Vector helper;
184 Vector SideA = b - c;
185 Vector SideB = c - a;
186 Vector SideC = a - b;
187
188 helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
189 helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
190 helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
191
192 Center.Zero();
193 Center += helper[0] * a;
194 Center += helper[1] * b;
195 Center += helper[2] * c;
196 if (fabs(helper[0]+helper[1]+helper[2]) > MYEPSILON)
197 Center.Scale(1./(helper[0]+helper[1]+helper[2]));
198 LOG(4, "DEBUG: Center (2nd algo) is at " << Center << ".");
199};
200
201/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
202 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
203 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
204 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
205 * \param CircleCenter Center of the parameter circle
206 * \param CirclePlaneNormal normal vector to plane of the parameter circle
207 * \param CircleRadius radius of the parameter circle
208 * \param NewSphereCenter new center of a circumcircle
209 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
210 * \param NormalVector normal vector
211 * \param SearchDirection search direction to make angle unique on return.
212 * \param HULLEPSILON machine precision for tesselation points
213 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
214 */
215double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection, const double HULLEPSILON)
216{
217 //Info FunctionInfo(__func__);
218 Vector helper;
219 double radius, alpha;
220
221 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
222 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
223 helper = RelativeNewSphereCenter;
224 // test whether new center is on the parameter circle's plane
225 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
226 ELOG(1, "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!");
227 helper.ProjectOntoPlane(CirclePlaneNormal);
228 }
229 radius = helper.NormSquared();
230 // test whether the new center vector has length of CircleRadius
231 if (fabs(radius - CircleRadius) > HULLEPSILON)
232 ELOG(1, "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << ".");
233 alpha = helper.Angle(RelativeOldSphereCenter);
234 // make the angle unique by checking the halfplanes/search direction
235 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
236 alpha = 2.*M_PI - alpha;
237 LOG(3, "DEBUG: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << ".");
238 radius = helper.distance(RelativeOldSphereCenter);
239 helper.ProjectOntoPlane(NormalVector);
240 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
241 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
242 LOG(4, "DEBUG: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << ".");
243 return alpha;
244 } else {
245 LOG(3, "DEBUG: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << ".");
246 return 2.*M_PI;
247 }
248};
249
250struct Intersection {
251 Vector x1;
252 Vector x2;
253 Vector x3;
254 Vector x4;
255};
256
257/** Gets the angle between a point and a reference relative to the provided center.
258 * We have two shanks point and reference between which the angle is calculated
259 * and by scalar product with OrthogonalVector we decide the interval.
260 * @param point to calculate the angle for
261 * @param reference to which to calculate the angle
262 * @param OrthogonalVector points in direction of [pi,2pi] interval
263 *
264 * @return angle between point and reference
265 */
266double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
267{
268 //Info FunctionInfo(__func__);
269 if (reference.IsZero())
270 return M_PI;
271
272 // calculate both angles and correct with in-plane vector
273 if (point.IsZero())
274 return M_PI;
275 double phi = point.Angle(reference);
276 if (OrthogonalVector.ScalarProduct(point) > 0) {
277 phi = 2.*M_PI - phi;
278 }
279
280 LOG(1, "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << ".");
281
282 return phi;
283}
284
285
286/** Calculates the volume of a general tetraeder.
287 * \param *a first vector
288 * \param *b second vector
289 * \param *c third vector
290 * \param *d fourth vector
291 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
292 */
293double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
294{
295 //Info FunctionInfo(__func__);
296 Vector Point, TetraederVector[3];
297 double volume;
298
299 TetraederVector[0] = a;
300 TetraederVector[1] = b;
301 TetraederVector[2] = c;
302 for (int j=0;j<3;j++)
303 TetraederVector[j].SubtractVector(d);
304 Point = TetraederVector[0];
305 Point.VectorProduct(TetraederVector[1]);
306 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
307 return volume;
308};
309
310/** Calculates the area of a general triangle.
311 * We use the Heron's formula of area, [Bronstein, S. 138]
312 * \param &A first vector
313 * \param &B second vector
314 * \param &C third vector
315 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
316 */
317double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
318{
319 //Info FunctionInfo(__func__);
320
321 const double sidea = B.distance(C);
322 const double sideb = A.distance(C);
323 const double sidec = A.distance(B);
324 const double s = (sidea+sideb+sidec)/2.;
325
326 const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
327 return area;
328};
329
330
331/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
332 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
333 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
334 * \param TPS[3] nodes of the triangle
335 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
336 */
337bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
338{
339 //Info FunctionInfo(__func__);
340 bool result = false;
341 int counter = 0;
342
343 // check all three points
344 for (int i=0;i<3;i++)
345 for (int j=i+1; j<3; j++) {
346 if (nodes[i] == NULL) {
347 LOG(1, "Node nr. " << i << " is not yet present.");
348 result = true;
349 } else if (nodes[i]->lines.find(nodes[j]->node->getNr()) != nodes[i]->lines.end()) { // there already is a line
350 LineMap::const_iterator FindLine;
351 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
352 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->getNr());
353 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
354 // If there is a line with less than two attached triangles, we don't need a new line.
355 if (FindLine->second->triangles.size() < 2) {
356 counter++;
357 break; // increase counter only once per edge
358 }
359 }
360 } else { // no line
361 LOG(1, "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle.");
362 result = true;
363 }
364 }
365 if ((!result) && (counter > 1)) {
366 LOG(1, "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used.");
367 result = true;
368 }
369 return result;
370};
371
372
373///** Sort function for the candidate list.
374// */
375//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
376//{
377// //Info FunctionInfo(__func__);
378// Vector BaseLineVector, OrthogonalVector, helper;
379// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
380// ELOG(1, "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << ".");
381// //return false;
382// exit(1);
383// }
384// // create baseline vector
385// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
386// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
387// BaseLineVector.Normalize();
388//
389// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
390// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
391// helper.SubtractVector(candidate1->point->node);
392// OrthogonalVector.CopyVector(&helper);
393// helper.VectorProduct(&BaseLineVector);
394// OrthogonalVector.SubtractVector(&helper);
395// OrthogonalVector.Normalize();
396//
397// // calculate both angles and correct with in-plane vector
398// helper.CopyVector(candidate1->point->node);
399// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
400// double phi = BaseLineVector.Angle(&helper);
401// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
402// phi = 2.*M_PI - phi;
403// }
404// helper.CopyVector(candidate2->point->node);
405// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
406// double psi = BaseLineVector.Angle(&helper);
407// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
408// psi = 2.*M_PI - psi;
409// }
410//
411// LOG(1, *candidate1->point << " has angle " << phi);
412// LOG(1, *candidate2->point << " has angle " << psi);
413//
414// // return comparison
415// return phi < psi;
416//};
417
418/**
419 * Finds the point which is second closest to the provided one.
420 *
421 * @param Point to which to find the second closest other point
422 * @param linked cell structure
423 *
424 * @return point which is second closest to the provided one
425 */
426TesselPoint* FindSecondClosestTesselPoint(const Vector& Point, const LinkedCell_deprecated* const LC)
427{
428 //Info FunctionInfo(__func__);
429 TesselPoint* closestPoint = NULL;
430 TesselPoint* secondClosestPoint = NULL;
431 double distance = 1e16;
432// double secondDistance = 1e16;
433 Vector helper;
434 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
435
436 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
437 for(int i=0;i<NDIM;i++) // store indices of this cell
438 N[i] = LC->n[i];
439 LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
440
441 LC->GetNeighbourBounds(Nlower, Nupper);
442 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
443 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
444 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
445 const TesselPointSTLList *List = LC->GetCurrentCell();
446 //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
447 if (List != NULL) {
448 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
449 helper = (Point) - ((*Runner)->getPosition());
450 double currentNorm = helper. Norm();
451 if (currentNorm < distance) {
452 // remember second point
453// secondDistance = distance;
454 secondClosestPoint = closestPoint;
455 // mark down new closest point
456 distance = currentNorm;
457 closestPoint = (*Runner);
458 //LOG(2, "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << ".");
459 }
460 }
461 } else {
462 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
463 }
464 }
465
466 return secondClosestPoint;
467};
468
469/**
470 * Finds the point which is closest to the provided one.
471 *
472 * @param Point to which to find the closest other point
473 * @param SecondPoint the second closest other point on return, NULL if none found
474 * @param linked cell structure
475 *
476 * @return point which is closest to the provided one, NULL if none found
477 */
478TesselPoint* FindClosestTesselPoint(const Vector& Point, TesselPoint *&SecondPoint, const LinkedCell_deprecated* const LC)
479{
480 //Info FunctionInfo(__func__);
481 TesselPoint* closestPoint = NULL;
482 SecondPoint = NULL;
483 double distance = 1e16;
484 double secondDistance = 1e16;
485 Vector helper;
486 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
487
488 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
489 for(int i=0;i<NDIM;i++) // store indices of this cell
490 N[i] = LC->n[i];
491 LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
492
493 LC->GetNeighbourBounds(Nlower, Nupper);
494 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
495 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
496 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
497 const TesselPointSTLList *List = LC->GetCurrentCell();
498 //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
499 if (List != NULL) {
500 for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
501 helper = (Point) - ((*Runner)->getPosition());
502 double currentNorm = helper.NormSquared();
503 if (currentNorm < distance) {
504 secondDistance = distance;
505 SecondPoint = closestPoint;
506 distance = currentNorm;
507 closestPoint = (*Runner);
508 //LOG(1, "INFO: New Nearest Neighbour is " << *closestPoint << ".");
509 } else if (currentNorm < secondDistance) {
510 secondDistance = currentNorm;
511 SecondPoint = (*Runner);
512 //LOG(1, "INFO: New Second Nearest Neighbour is " << *SecondPoint << ".");
513 }
514 }
515 } else {
516 ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
517 }
518 }
519 // output
520 if (closestPoint != NULL) {
521 if (DoLog(3)) {
522 std::stringstream output;
523 output << "Closest point is " << *closestPoint;
524 if (SecondPoint != NULL)
525 output << " and second closest is " << *SecondPoint;
526 LOG(3, "DEBUG: " << output.str() << ".");
527 }
528 }
529 return closestPoint;
530};
531
532/** Returns the closest point on \a *Base with respect to \a *OtherBase.
533 * \param *out output stream for debugging
534 * \param *Base reference line
535 * \param *OtherBase other base line
536 * \return Vector on reference line that has closest distance
537 */
538Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
539{
540 //Info FunctionInfo(__func__);
541 // construct the plane of the two baselines (i.e. take both their directional vectors)
542 Vector Baseline = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
543 Vector OtherBaseline = (OtherBase->endpoints[1]->node->getPosition()) - (OtherBase->endpoints[0]->node->getPosition());
544 Vector Normal = Baseline;
545 Normal.VectorProduct(OtherBaseline);
546 Normal.Normalize();
547 LOG(1, "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << ".");
548
549 // project one offset point of OtherBase onto this plane (and add plane offset vector)
550 Vector NewOffset = (OtherBase->endpoints[0]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
551 NewOffset.ProjectOntoPlane(Normal);
552 NewOffset += (Base->endpoints[0]->node->getPosition());
553 Vector NewDirection = NewOffset + OtherBaseline;
554
555 // calculate the intersection between this projected baseline and Base
556 Vector *Intersection = new Vector;
557 Line line1 = makeLineThrough((Base->endpoints[0]->node->getPosition()),(Base->endpoints[1]->node->getPosition()));
558 Line line2 = makeLineThrough(NewOffset, NewDirection);
559 *Intersection = line1.getIntersection(line2);
560 Normal = (*Intersection) - (Base->endpoints[0]->node->getPosition());
561 LOG(1, "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << ".");
562
563 return Intersection;
564};
565
566/** Returns the distance to the plane defined by \a *triangle
567 * \param *out output stream for debugging
568 * \param *x Vector to calculate distance to
569 * \param *triangle triangle defining plane
570 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
571 */
572double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
573{
574 //Info FunctionInfo(__func__);
575 double distance = 0.;
576 if (x == NULL) {
577 return -1;
578 }
579 distance = x->DistanceToSpace(triangle->getPlane());
580 return distance;
581};
582
583/** Creates the objects in a VRML file.
584 * \param *out output stream for debugging
585 * \param *vrmlfile output stream for tecplot data
586 * \param *Tess Tesselation structure with constructed triangles
587 * \param *mol molecule structure with atom positions
588 */
589void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, IPointCloud & cloud)
590{
591 //Info FunctionInfo(__func__);
592 TesselPoint *Walker = NULL;
593 int i;
594 Vector *center = cloud.GetCenter();
595 if (vrmlfile != NULL) {
596 LOG(1, "INFO: Writing Raster3D file ... ");
597 *vrmlfile << "#VRML V2.0 utf8" << endl;
598 *vrmlfile << "#Created by molecuilder" << endl;
599 *vrmlfile << "#All atoms as spheres" << endl;
600 cloud.GoToFirst();
601 while (!cloud.IsEnd()) {
602 Walker = cloud.GetPoint();
603 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
604 for (i=0;i<NDIM;i++)
605 *vrmlfile << Walker->at(i)-center->at(i) << " ";
606 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
607 cloud.GoToNext();
608 }
609
610 *vrmlfile << "# All tesselation triangles" << endl;
611 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
612 *vrmlfile << "1" << endl << " "; // 1 is triangle type
613 for (i=0;i<3;i++) { // print each node
614 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
615 *vrmlfile << TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j) << " ";
616 *vrmlfile << "\t";
617 }
618 *vrmlfile << "1. 0. 0." << endl; // red as colour
619 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
620 }
621 } else {
622 ELOG(1, "Given vrmlfile is " << vrmlfile << ".");
623 }
624 delete(center);
625};
626
627/** Writes additionally the current sphere (i.e. the last triangle to file).
628 * \param *out output stream for debugging
629 * \param *rasterfile output stream for tecplot data
630 * \param *Tess Tesselation structure with constructed triangles
631 * \param *mol molecule structure with atom positions
632 */
633void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
634{
635 //Info FunctionInfo(__func__);
636 Vector helper;
637
638 if (Tess->LastTriangle != NULL) {
639 // include the current position of the virtual sphere in the temporary raster3d file
640 Vector *center = cloud.GetCenter();
641 // make the circumsphere's center absolute again
642 Vector helper = (1./3.) * ((Tess->LastTriangle->endpoints[0]->node->getPosition()) +
643 (Tess->LastTriangle->endpoints[1]->node->getPosition()) +
644 (Tess->LastTriangle->endpoints[2]->node->getPosition()));
645 helper -= (*center);
646 // and add to file plus translucency object
647 *rasterfile << "# current virtual sphere\n";
648 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
649 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
650 *rasterfile << "9\n terminating special property\n";
651 delete(center);
652 }
653};
654
655/** Creates the objects in a raster3d file (renderable with a header.r3d).
656 * \param *out output stream for debugging
657 * \param *rasterfile output stream for tecplot data
658 * \param *Tess Tesselation structure with constructed triangles
659 * \param *mol molecule structure with atom positions
660 */
661void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, IPointCloud & cloud)
662{
663 //Info FunctionInfo(__func__);
664 TesselPoint *Walker = NULL;
665 int i;
666 Vector *center = cloud.GetCenter();
667 if (rasterfile != NULL) {
668 LOG(1, "INFO: Writing Raster3D file ... ");
669 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
670 *rasterfile << "@header.r3d" << endl;
671 *rasterfile << "# All atoms as spheres" << endl;
672 cloud.GoToFirst();
673 while (!cloud.IsEnd()) {
674 Walker = cloud.GetPoint();
675 *rasterfile << "2" << endl << " "; // 2 is sphere type
676 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
677 const double tmp = Walker->at(j)-center->at(j);
678 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
679 }
680 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
681 cloud.GoToNext();
682 }
683
684 *rasterfile << "# All tesselation triangles" << endl;
685 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
686 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
687 *rasterfile << "1" << endl << " "; // 1 is triangle type
688 for (i=0;i<3;i++) { // print each node
689 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
690 const double tmp = TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j);
691 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
692 }
693 *rasterfile << "\t";
694 }
695 *rasterfile << "1. 0. 0." << endl; // red as colour
696 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
697 }
698 *rasterfile << "9\n# terminating special property\n";
699 } else {
700 ELOG(1, "Given rasterfile is " << rasterfile << ".");
701 }
702 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
703 delete(center);
704};
705
706/** This function creates the tecplot file, displaying the tesselation of the hull.
707 * \param *out output stream for debugging
708 * \param *tecplot output stream for tecplot data
709 * \param N arbitrary number to differentiate various zones in the tecplot format
710 */
711void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, IPointCloud & cloud, const int N)
712{
713 //Info FunctionInfo(__func__);
714 if ((tecplot != NULL) && (TesselStruct != NULL)) {
715 // write header
716 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
717 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
718 *tecplot << "ZONE T=\"";
719 if (N < 0) {
720 *tecplot << cloud.GetName();
721 } else {
722 *tecplot << N << "-";
723 if (TesselStruct->LastTriangle != NULL) {
724 for (int i=0;i<3;i++)
725 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
726 } else {
727 *tecplot << "none";
728 }
729 }
730 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
731 const int MaxId=cloud.GetMaxId();
732 ASSERT(MaxId >= 0, "WriteTecplotFile() - negative MaxId? No atoms present?");
733 int *LookupList = new int[MaxId+1];
734 for (int i=0; i<= MaxId ; i++){
735 LookupList[i] = -1;
736 }
737
738 // print atom coordinates
739 int Counter = 1;
740 TesselPoint *Walker = NULL;
741 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
742 Walker = target->second->node;
743 ASSERT(Walker->getNr() <= MaxId, "WriteTecplotFile() - Id of particle greater than MaxId.");
744 LookupList[Walker->getNr()] = Counter++;
745 for (int i=0;i<NDIM;i++) {
746 const double tmp = Walker->at(i);
747 *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
748 }
749 *tecplot << target->second->value << endl;
750 }
751 *tecplot << endl;
752 // print connectivity
753 LOG(1, "The following triangles were created:");
754 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
755 LOG(1, " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName());
756 *tecplot << LookupList[runner->second->endpoints[0]->node->getNr()] << " " << LookupList[runner->second->endpoints[1]->node->getNr()] << " " << LookupList[runner->second->endpoints[2]->node->getNr()] << endl;
757 }
758 delete[] (LookupList);
759 }
760};
761
762/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
763 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
764 * \param *out output stream for debugging
765 * \param *TesselStruct pointer to Tesselation structure
766 */
767void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
768{
769 //Info FunctionInfo(__func__);
770 class BoundaryPointSet *point = NULL;
771 class BoundaryLineSet *line = NULL;
772 class BoundaryTriangleSet *triangle = NULL;
773 double ConcavityPerLine = 0.;
774 double ConcavityPerTriangle = 0.;
775 double area = 0.;
776 double totalarea = 0.;
777
778 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
779 point = PointRunner->second;
780 LOG(1, "INFO: Current point is " << *point << ".");
781
782 // calculate mean concavity over all connected line
783 ConcavityPerLine = 0.;
784 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
785 line = LineRunner->second;
786 //LOG(1, "INFO: Current line of point " << *point << " is " << *line << ".");
787 ConcavityPerLine -= line->CalculateConvexity();
788 }
789 ConcavityPerLine /= point->lines.size();
790
791 // weigh with total area of the surrounding triangles
792 totalarea = 0.;
793 TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
794 for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
795 totalarea += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
796 }
797 ConcavityPerLine *= totalarea;
798
799 // calculate mean concavity over all attached triangles
800 ConcavityPerTriangle = 0.;
801 for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
802 line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
803 triangle = line->GetOtherTriangle(*TriangleRunner);
804 area = CalculateAreaofGeneralTriangle(triangle->endpoints[0]->node->getPosition() , triangle->endpoints[1]->node->getPosition() , triangle->endpoints[2]->node->getPosition());
805 area += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
806 area *= -line->CalculateConvexity();
807 if (area > 0)
808 ConcavityPerTriangle += area;
809// else
810// ConcavityPerTriangle -= area;
811 }
812 ConcavityPerTriangle /= triangles->size()/totalarea;
813 delete(triangles);
814
815 // add up
816 point->value = ConcavityPerLine + ConcavityPerTriangle;
817 }
818};
819
820
821
822/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
823 * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
824 * \param *out output stream for debugging
825 * \param *TesselStruct pointer to Tesselation structure
826 * \param *Convex pointer to convex Tesselation structure as reference
827 */
828void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
829{
830 //Info FunctionInfo(__func__);
831 double distance = 0.;
832
833 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
834 ELOG(1, "INFO: Current point is " << * PointRunner->second << ".");
835
836 distance = 0.;
837 for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
838 const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(PointRunner->second->node->getPosition() , TriangleRunner->second);
839 if (CurrentDistance < distance)
840 distance = CurrentDistance;
841 }
842
843 PointRunner->second->value = distance;
844 }
845};
846
847/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
848 * \param *out output stream for debugging
849 * \param *TesselStruct
850 * \return true - all have exactly two triangles, false - some not, list is printed to screen
851 */
852bool CheckListOfBaselines(const Tesselation * const TesselStruct)
853{
854 //Info FunctionInfo(__func__);
855 LineMap::const_iterator testline;
856 bool result = false;
857 int counter = 0;
858
859 LOG(1, "Check: List of Baselines with not two connected triangles:");
860 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
861 if (testline->second->triangles.size() != 2) {
862 LOG(2, *testline->second << "\t" << testline->second->triangles.size());
863 counter++;
864 }
865 }
866 if (counter == 0) {
867 LOG(1, "None.");
868 result = true;
869 }
870 return result;
871}
872
873/** Counts the number of triangle pairs that contain the given polygon.
874 * \param *P polygon with endpoints to look for
875 * \param *T set of triangles to create pairs from containing \a *P
876 */
877int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
878{
879 //Info FunctionInfo(__func__);
880 // check number of endpoints in *P
881 if (P->endpoints.size() != 4) {
882 ELOG(1, "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!");
883 return 0;
884 }
885
886 // check number of triangles in *T
887 if (T->size() < 2) {
888 ELOG(1, "Not enough triangles to have pairs!");
889 return 0;
890 }
891
892 LOG(3, "DEBUG: Polygon is " << *P);
893 // create each pair, get the endpoints and check whether *P is contained.
894 int counter = 0;
895 PointSet Trianglenodes;
896 class BoundaryPolygonSet PairTrianglenodes;
897 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
898 for (int i=0;i<3;i++)
899 Trianglenodes.insert((*Walker)->endpoints[i]);
900
901 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
902 if (Walker != PairWalker) { // skip first
903 PairTrianglenodes.endpoints = Trianglenodes;
904 for (int i=0;i<3;i++)
905 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
906 const int size = PairTrianglenodes.endpoints.size();
907 if (size == 4) {
908 LOG(4, "DEBUG: Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes);
909 // now check
910 if (PairTrianglenodes.ContainsPresentTupel(P)) {
911 counter++;
912 LOG(5, " ACCEPT: Matches with " << *P);
913 } else {
914 LOG(5, " REJECT: No match with " << *P);
915 }
916 } else {
917 LOG(5, " REJECT: Less than four endpoints.");
918 }
919 }
920 }
921 Trianglenodes.clear();
922 }
923 return counter;
924};
925
926/** Checks whether two give polygons have two or more points in common.
927 * \param *P1 first polygon
928 * \param *P2 second polygon
929 * \return true - are connected, false = are note
930 */
931bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
932{
933 //Info FunctionInfo(__func__);
934 int counter = 0;
935 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
936 if (P2->ContainsBoundaryPoint((*Runner))) {
937 counter++;
938 LOG(5, "DEBUG: " << *(*Runner) << " of second polygon is found in the first one.");
939 return true;
940 }
941 }
942 return false;
943};
944
945/** Combines second into the first and deletes the second.
946 * \param *P1 first polygon, contains all nodes on return
947 * \param *&P2 second polygon, is deleted.
948 */
949void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
950{
951 //Info FunctionInfo(__func__);
952 pair <PointSet::iterator, bool> Tester;
953 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
954 Tester = P1->endpoints.insert((*Runner));
955 if (Tester.second)
956 LOG(4, "DEBUG: Inserting endpoint " << *(*Runner) << " into first polygon.");
957 }
958 P2->endpoints.clear();
959 delete(P2);
960};
961
Note: See TracBrowser for help on using the repository browser.