1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * tesselation.cpp
|
---|
10 | *
|
---|
11 | * Created on: Aug 3, 2009
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include <fstream>
|
---|
23 | #include <iomanip>
|
---|
24 | #include <sstream>
|
---|
25 |
|
---|
26 | #include "tesselation.hpp"
|
---|
27 |
|
---|
28 | #include "BoundaryPointSet.hpp"
|
---|
29 | #include "BoundaryLineSet.hpp"
|
---|
30 | #include "BoundaryTriangleSet.hpp"
|
---|
31 | #include "BoundaryPolygonSet.hpp"
|
---|
32 | #include "CandidateForTesselation.hpp"
|
---|
33 | #include "CodePatterns/Assert.hpp"
|
---|
34 | #include "CodePatterns/Info.hpp"
|
---|
35 | #include "CodePatterns/IteratorAdaptors.hpp"
|
---|
36 | #include "CodePatterns/Log.hpp"
|
---|
37 | #include "CodePatterns/Verbose.hpp"
|
---|
38 | #include "Helpers/helpers.hpp"
|
---|
39 | #include "LinearAlgebra/Exceptions.hpp"
|
---|
40 | #include "LinearAlgebra/Line.hpp"
|
---|
41 | #include "LinearAlgebra/Plane.hpp"
|
---|
42 | #include "LinearAlgebra/Vector.hpp"
|
---|
43 | #include "LinearAlgebra/vector_ops.hpp"
|
---|
44 | #include "LinkedCell/IPointCloud.hpp"
|
---|
45 | #include "LinkedCell/linkedcell.hpp"
|
---|
46 | #include "LinkedCell/PointCloudAdaptor.hpp"
|
---|
47 | #include "tesselationhelpers.hpp"
|
---|
48 | #include "Atom/TesselPoint.hpp"
|
---|
49 | #include "triangleintersectionlist.hpp"
|
---|
50 |
|
---|
51 | class molecule;
|
---|
52 |
|
---|
53 | const char *TecplotSuffix=".dat";
|
---|
54 | const char *Raster3DSuffix=".r3d";
|
---|
55 | const char *VRMLSUffix=".wrl";
|
---|
56 |
|
---|
57 | const double ParallelEpsilon=1e-3;
|
---|
58 | const double Tesselation::HULLEPSILON = 1e-9;
|
---|
59 |
|
---|
60 | /** Constructor of class Tesselation.
|
---|
61 | */
|
---|
62 | Tesselation::Tesselation() :
|
---|
63 | PointsOnBoundaryCount(0),
|
---|
64 | LinesOnBoundaryCount(0),
|
---|
65 | TrianglesOnBoundaryCount(0),
|
---|
66 | LastTriangle(NULL),
|
---|
67 | TriangleFilesWritten(0),
|
---|
68 | InternalPointer(PointsOnBoundary.begin())
|
---|
69 | {
|
---|
70 | //Info FunctionInfo(__func__);
|
---|
71 | }
|
---|
72 | ;
|
---|
73 |
|
---|
74 | /** Destructor of class Tesselation.
|
---|
75 | * We have to free all points, lines and triangles.
|
---|
76 | */
|
---|
77 | Tesselation::~Tesselation()
|
---|
78 | {
|
---|
79 | //Info FunctionInfo(__func__);
|
---|
80 | LOG(2, "INFO: Free'ing TesselStruct ... ");
|
---|
81 | for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
|
---|
82 | if (runner->second != NULL) {
|
---|
83 | delete (runner->second);
|
---|
84 | runner->second = NULL;
|
---|
85 | } else
|
---|
86 | ELOG(1, "The triangle " << runner->first << " has already been free'd.");
|
---|
87 | }
|
---|
88 | LOG(1, "INFO: This envelope was written to file " << TriangleFilesWritten << " times(s).");
|
---|
89 | }
|
---|
90 |
|
---|
91 | /** Performs tesselation of a given point \a cloud with rolling sphere of
|
---|
92 | * \a SPHERERADIUS.
|
---|
93 | *
|
---|
94 | * @param cloud point cloud to tesselate
|
---|
95 | * @param SPHERERADIUS radius of the rolling sphere
|
---|
96 | */
|
---|
97 | void Tesselation::operator()(IPointCloud & cloud, const double SPHERERADIUS)
|
---|
98 | {
|
---|
99 | // create linkedcell
|
---|
100 | LinkedCell_deprecated *LinkedList = new LinkedCell_deprecated(cloud, 2.*SPHERERADIUS);
|
---|
101 |
|
---|
102 | FindStartingTriangle(SPHERERADIUS, LinkedList);
|
---|
103 |
|
---|
104 | CandidateForTesselation *baseline = NULL;
|
---|
105 | BoundaryTriangleSet *T = NULL;
|
---|
106 | bool OneLoopWithoutSuccessFlag = true;
|
---|
107 | bool TesselationFailFlag = false;
|
---|
108 | while ((!OpenLines.empty()) && (OneLoopWithoutSuccessFlag)) {
|
---|
109 | // 2a. fill all new OpenLines
|
---|
110 | for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
|
---|
111 | baseline = Runner->second;
|
---|
112 | if (baseline->pointlist.empty()) {
|
---|
113 | T = (((baseline->BaseLine->triangles.begin()))->second);
|
---|
114 | //the line is there, so there is a triangle, but only one.
|
---|
115 | TesselationFailFlag = FindNextSuitableTriangle(*baseline, *T, SPHERERADIUS, LinkedList);
|
---|
116 | }
|
---|
117 | }
|
---|
118 |
|
---|
119 | // 2b. search for smallest ShortestAngle among all candidates
|
---|
120 | double ShortestAngle = 4.*M_PI;
|
---|
121 | for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
|
---|
122 | if (Runner->second->ShortestAngle < ShortestAngle) {
|
---|
123 | baseline = Runner->second;
|
---|
124 | ShortestAngle = baseline->ShortestAngle;
|
---|
125 | }
|
---|
126 | }
|
---|
127 | if ((ShortestAngle == 4.*M_PI) || (baseline->pointlist.empty()))
|
---|
128 | OneLoopWithoutSuccessFlag = false;
|
---|
129 | else {
|
---|
130 | AddCandidatePolygon(*baseline, SPHERERADIUS, LinkedList);
|
---|
131 | }
|
---|
132 | }
|
---|
133 | }
|
---|
134 |
|
---|
135 | /** Determines the volume of a tesselated convex envelope.
|
---|
136 | *
|
---|
137 | * @param IsAngstroem unit of length is angstroem or bohr radii
|
---|
138 | * \return determined volume of envelope assumed being convex
|
---|
139 | */
|
---|
140 | double Tesselation::getVolumeOfConvexEnvelope(const bool IsAngstroem) const
|
---|
141 | {
|
---|
142 | double volume = 0.;
|
---|
143 | Vector x;
|
---|
144 | Vector y;
|
---|
145 |
|
---|
146 | // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
|
---|
147 | for (TriangleMap::const_iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++)
|
---|
148 | { // go through every triangle, calculate volume of its pyramid with CoG as peak
|
---|
149 | x = runner->second->getEndpoint(0) - runner->second->getEndpoint(1);
|
---|
150 | const double G = runner->second->getArea();
|
---|
151 | x = runner->second->getPlane().getNormal();
|
---|
152 | x.Scale(runner->second->getEndpoint(1).ScalarProduct(x));
|
---|
153 | const double h = x.Norm(); // distance of CoG to triangle
|
---|
154 | const double PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
|
---|
155 | LOG(1, "INFO: Area of triangle is " << setprecision(10) << G << " "
|
---|
156 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
|
---|
157 | << h << " and the volume is " << PyramidVolume << " "
|
---|
158 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
|
---|
159 | volume += PyramidVolume;
|
---|
160 | }
|
---|
161 | LOG(0, "RESULT: The summed volume is " << setprecision(6)
|
---|
162 | << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
|
---|
163 |
|
---|
164 | return volume;
|
---|
165 | }
|
---|
166 |
|
---|
167 | /** Determines the area of a tesselated envelope.
|
---|
168 | *
|
---|
169 | * @param IsAngstroem unit of length is angstroem or bohr radii
|
---|
170 | * \return determined surface area of the envelope
|
---|
171 | */
|
---|
172 | double Tesselation::getAreaOfEnvelope(const bool IsAngstroem) const
|
---|
173 | {
|
---|
174 | double surfacearea = 0.;
|
---|
175 | Vector x;
|
---|
176 | Vector y;
|
---|
177 |
|
---|
178 | // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
|
---|
179 | for (TriangleMap::const_iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++)
|
---|
180 | { // go through every triangle, calculate volume of its pyramid with CoG as peak
|
---|
181 | const double area = runner->second->getArea();
|
---|
182 | LOG(1, "INFO: Area of triangle is " << setprecision(10) << area << " "
|
---|
183 | << (IsAngstroem ? "angstrom" : "atomiclength") << "^2.");
|
---|
184 | surfacearea += area;
|
---|
185 | }
|
---|
186 | LOG(0, "RESULT: The summed surface area is " << setprecision(6)
|
---|
187 | << surfacearea << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3.");
|
---|
188 |
|
---|
189 | return surfacearea;
|
---|
190 | }
|
---|
191 |
|
---|
192 |
|
---|
193 | /** Gueses first starting triangle of the convex envelope.
|
---|
194 | * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
|
---|
195 | * \param *out output stream for debugging
|
---|
196 | * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
|
---|
197 | */
|
---|
198 | void Tesselation::GuessStartingTriangle()
|
---|
199 | {
|
---|
200 | //Info FunctionInfo(__func__);
|
---|
201 | // 4b. create a starting triangle
|
---|
202 | // 4b1. create all distances
|
---|
203 | DistanceMultiMap DistanceMMap;
|
---|
204 | double distance, tmp;
|
---|
205 | Vector PlaneVector, TrialVector;
|
---|
206 | PointMap::iterator A, B, C; // three nodes of the first triangle
|
---|
207 | A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
|
---|
208 |
|
---|
209 | // with A chosen, take each pair B,C and sort
|
---|
210 | if (A != PointsOnBoundary.end()) {
|
---|
211 | B = A;
|
---|
212 | B++;
|
---|
213 | for (; B != PointsOnBoundary.end(); B++) {
|
---|
214 | C = B;
|
---|
215 | C++;
|
---|
216 | for (; C != PointsOnBoundary.end(); C++) {
|
---|
217 | tmp = A->second->node->DistanceSquared(B->second->node->getPosition());
|
---|
218 | distance = tmp * tmp;
|
---|
219 | tmp = A->second->node->DistanceSquared(C->second->node->getPosition());
|
---|
220 | distance += tmp * tmp;
|
---|
221 | tmp = B->second->node->DistanceSquared(C->second->node->getPosition());
|
---|
222 | distance += tmp * tmp;
|
---|
223 | DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
|
---|
224 | }
|
---|
225 | }
|
---|
226 | }
|
---|
227 | // // listing distances
|
---|
228 | // if (DoLog(1)) {
|
---|
229 | // std::stringstream output;
|
---|
230 | // output << "Listing DistanceMMap:";
|
---|
231 | // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
|
---|
232 | // output << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
|
---|
233 | // }
|
---|
234 | // LOG(1, output.str());
|
---|
235 | // }
|
---|
236 | // 4b2. pick three baselines forming a triangle
|
---|
237 | // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
238 | DistanceMultiMap::iterator baseline = DistanceMMap.begin();
|
---|
239 | for (; baseline != DistanceMMap.end(); baseline++) {
|
---|
240 | // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
|
---|
241 | // 2. next, we have to check whether all points reside on only one side of the triangle
|
---|
242 | // 3. construct plane vector
|
---|
243 | PlaneVector = Plane(A->second->node->getPosition(),
|
---|
244 | baseline->second.first->second->node->getPosition(),
|
---|
245 | baseline->second.second->second->node->getPosition()).getNormal();
|
---|
246 | LOG(2, "Plane vector of candidate triangle is " << PlaneVector);
|
---|
247 | // 4. loop over all points
|
---|
248 | double sign = 0.;
|
---|
249 | PointMap::iterator checker = PointsOnBoundary.begin();
|
---|
250 | for (; checker != PointsOnBoundary.end(); checker++) {
|
---|
251 | // (neglecting A,B,C)
|
---|
252 | if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
|
---|
253 | continue;
|
---|
254 | // 4a. project onto plane vector
|
---|
255 | TrialVector = (checker->second->node->getPosition() - A->second->node->getPosition());
|
---|
256 | distance = TrialVector.ScalarProduct(PlaneVector);
|
---|
257 | if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
|
---|
258 | continue;
|
---|
259 | LOG(2, "Projection of " << checker->second->node->getName() << " yields distance of " << distance << ".");
|
---|
260 | tmp = distance / fabs(distance);
|
---|
261 | // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
|
---|
262 | if ((sign != 0) && (tmp != sign)) {
|
---|
263 | // 4c. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
264 | LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leaves " << checker->second->node->getName() << " outside the convex hull.");
|
---|
265 | break;
|
---|
266 | } else { // note the sign for later
|
---|
267 | LOG(2, "Current candidates: " << A->second->node->getName() << "," << baseline->second.first->second->node->getName() << "," << baseline->second.second->second->node->getName() << " leave " << checker->second->node->getName() << " inside the convex hull.");
|
---|
268 | sign = tmp;
|
---|
269 | }
|
---|
270 | // 4d. Check whether the point is inside the triangle (check distance to each node
|
---|
271 | tmp = checker->second->node->DistanceSquared(A->second->node->getPosition());
|
---|
272 | int innerpoint = 0;
|
---|
273 | if ((tmp < A->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < A->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
|
---|
274 | innerpoint++;
|
---|
275 | tmp = checker->second->node->DistanceSquared(baseline->second.first->second->node->getPosition());
|
---|
276 | if ((tmp < baseline->second.first->second->node->DistanceSquared(A->second->node->getPosition())) && (tmp < baseline->second.first->second->node->DistanceSquared(baseline->second.second->second->node->getPosition())))
|
---|
277 | innerpoint++;
|
---|
278 | tmp = checker->second->node->DistanceSquared(baseline->second.second->second->node->getPosition());
|
---|
279 | if ((tmp < baseline->second.second->second->node->DistanceSquared(baseline->second.first->second->node->getPosition())) && (tmp < baseline->second.second->second->node->DistanceSquared(A->second->node->getPosition())))
|
---|
280 | innerpoint++;
|
---|
281 | // 4e. If so, break 4. loop and continue with next candidate in 1. loop
|
---|
282 | if (innerpoint == 3)
|
---|
283 | break;
|
---|
284 | }
|
---|
285 | // 5. come this far, all on same side? Then break 1. loop and construct triangle
|
---|
286 | if (checker == PointsOnBoundary.end()) {
|
---|
287 | LOG(2, "Looks like we have a candidate!");
|
---|
288 | break;
|
---|
289 | }
|
---|
290 | }
|
---|
291 | if (baseline != DistanceMMap.end()) {
|
---|
292 | BPS[0] = baseline->second.first->second;
|
---|
293 | BPS[1] = baseline->second.second->second;
|
---|
294 | BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
295 | BPS[0] = A->second;
|
---|
296 | BPS[1] = baseline->second.second->second;
|
---|
297 | BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
298 | BPS[0] = baseline->second.first->second;
|
---|
299 | BPS[1] = A->second;
|
---|
300 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
301 |
|
---|
302 | // 4b3. insert created triangle
|
---|
303 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
304 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
305 | TrianglesOnBoundaryCount++;
|
---|
306 | for (int i = 0; i < NDIM; i++) {
|
---|
307 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
|
---|
308 | LinesOnBoundaryCount++;
|
---|
309 | }
|
---|
310 |
|
---|
311 | LOG(1, "Starting triangle is " << *BTS << ".");
|
---|
312 | } else {
|
---|
313 | ELOG(0, "No starting triangle found.");
|
---|
314 | }
|
---|
315 | }
|
---|
316 | ;
|
---|
317 |
|
---|
318 | /** Tesselates the convex envelope of a cluster from a single starting triangle.
|
---|
319 | * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
|
---|
320 | * 2 triangles. Hence, we go through all current lines:
|
---|
321 | * -# if the lines contains to only one triangle
|
---|
322 | * -# We search all points in the boundary
|
---|
323 | * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
|
---|
324 | * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
|
---|
325 | * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
|
---|
326 | * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
|
---|
327 | * \param *out output stream for debugging
|
---|
328 | * \param *configuration for IsAngstroem
|
---|
329 | * \param *cloud cluster of points
|
---|
330 | */
|
---|
331 | void Tesselation::TesselateOnBoundary(IPointCloud & cloud)
|
---|
332 | {
|
---|
333 | //Info FunctionInfo(__func__);
|
---|
334 | bool flag;
|
---|
335 | PointMap::iterator winner;
|
---|
336 | class BoundaryPointSet *peak = NULL;
|
---|
337 | double SmallestAngle, TempAngle;
|
---|
338 | Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
|
---|
339 | LineMap::iterator LineChecker[2];
|
---|
340 |
|
---|
341 | Center = cloud.GetCenter();
|
---|
342 | // create a first tesselation with the given BoundaryPoints
|
---|
343 | do {
|
---|
344 | flag = false;
|
---|
345 | for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
|
---|
346 | if (baseline->second->triangles.size() == 1) {
|
---|
347 | // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
|
---|
348 | SmallestAngle = M_PI;
|
---|
349 |
|
---|
350 | // get peak point with respect to this base line's only triangle
|
---|
351 | BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
|
---|
352 | LOG(3, "DEBUG: Current baseline is between " << *(baseline->second) << ".");
|
---|
353 | for (int i = 0; i < 3; i++)
|
---|
354 | if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
|
---|
355 | peak = BTS->endpoints[i];
|
---|
356 | LOG(3, "DEBUG: and has peak " << *peak << ".");
|
---|
357 |
|
---|
358 | // prepare some auxiliary vectors
|
---|
359 | Vector BaseLineCenter, BaseLine;
|
---|
360 | BaseLineCenter = 0.5 * ((baseline->second->endpoints[0]->node->getPosition()) +
|
---|
361 | (baseline->second->endpoints[1]->node->getPosition()));
|
---|
362 | BaseLine = (baseline->second->endpoints[0]->node->getPosition()) - (baseline->second->endpoints[1]->node->getPosition());
|
---|
363 |
|
---|
364 | // offset to center of triangle
|
---|
365 | CenterVector.Zero();
|
---|
366 | for (int i = 0; i < 3; i++)
|
---|
367 | CenterVector += BTS->getEndpoint(i);
|
---|
368 | CenterVector.Scale(1. / 3.);
|
---|
369 | LOG(2, "CenterVector of base triangle is " << CenterVector);
|
---|
370 |
|
---|
371 | // normal vector of triangle
|
---|
372 | NormalVector = (*Center) - CenterVector;
|
---|
373 | BTS->GetNormalVector(NormalVector);
|
---|
374 | NormalVector = BTS->NormalVector;
|
---|
375 | LOG(4, "DEBUG: NormalVector of base triangle is " << NormalVector);
|
---|
376 |
|
---|
377 | // vector in propagation direction (out of triangle)
|
---|
378 | // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
|
---|
379 | PropagationVector = Plane(BaseLine, NormalVector,0).getNormal();
|
---|
380 | TempVector = CenterVector - (baseline->second->endpoints[0]->node->getPosition()); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
|
---|
381 | //LOG(0, "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << ".");
|
---|
382 | if (PropagationVector.ScalarProduct(TempVector) > 0) // make sure normal propagation vector points outward from baseline
|
---|
383 | PropagationVector.Scale(-1.);
|
---|
384 | LOG(4, "DEBUG: PropagationVector of base triangle is " << PropagationVector);
|
---|
385 | winner = PointsOnBoundary.end();
|
---|
386 |
|
---|
387 | // loop over all points and calculate angle between normal vector of new and present triangle
|
---|
388 | for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
|
---|
389 | if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
|
---|
390 | LOG(4, "DEBUG: Target point is " << *(target->second) << ":");
|
---|
391 |
|
---|
392 | // first check direction, so that triangles don't intersect
|
---|
393 | VirtualNormalVector = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
394 | VirtualNormalVector.ProjectOntoPlane(NormalVector);
|
---|
395 | TempAngle = VirtualNormalVector.Angle(PropagationVector);
|
---|
396 | LOG(5, "DEBUG: VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << ".");
|
---|
397 | if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
|
---|
398 | LOG(5, "DEBUG: Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!");
|
---|
399 | continue;
|
---|
400 | } else
|
---|
401 | LOG(5, "DEBUG: Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!");
|
---|
402 |
|
---|
403 | // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
|
---|
404 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
|
---|
405 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
|
---|
406 | if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
|
---|
407 | LOG(5, "DEBUG: " << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles.");
|
---|
408 | continue;
|
---|
409 | }
|
---|
410 | if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
|
---|
411 | LOG(5, "DEBUG: " << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles.");
|
---|
412 | continue;
|
---|
413 | }
|
---|
414 |
|
---|
415 | // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
|
---|
416 | if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
|
---|
417 | LOG(6, "DEBUG: Current target is peak!");
|
---|
418 | continue;
|
---|
419 | }
|
---|
420 |
|
---|
421 | // check for linear dependence
|
---|
422 | TempVector = (baseline->second->endpoints[0]->node->getPosition()) - (target->second->node->getPosition());
|
---|
423 | helper = (baseline->second->endpoints[1]->node->getPosition()) - (target->second->node->getPosition());
|
---|
424 | helper.ProjectOntoPlane(TempVector);
|
---|
425 | if (fabs(helper.NormSquared()) < MYEPSILON) {
|
---|
426 | LOG(2, "Chosen set of vectors is linear dependent.");
|
---|
427 | continue;
|
---|
428 | }
|
---|
429 |
|
---|
430 | // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
|
---|
431 | flag = true;
|
---|
432 | VirtualNormalVector = Plane((baseline->second->endpoints[0]->node->getPosition()),
|
---|
433 | (baseline->second->endpoints[1]->node->getPosition()),
|
---|
434 | (target->second->node->getPosition())).getNormal();
|
---|
435 | TempVector = (1./3.) * ((baseline->second->endpoints[0]->node->getPosition()) +
|
---|
436 | (baseline->second->endpoints[1]->node->getPosition()) +
|
---|
437 | (target->second->node->getPosition()));
|
---|
438 | TempVector -= (*Center);
|
---|
439 | // make it always point outward
|
---|
440 | if (VirtualNormalVector.ScalarProduct(TempVector) < 0)
|
---|
441 | VirtualNormalVector.Scale(-1.);
|
---|
442 | // calculate angle
|
---|
443 | TempAngle = NormalVector.Angle(VirtualNormalVector);
|
---|
444 | LOG(5, "DEBUG: NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << ".");
|
---|
445 | if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
|
---|
446 | SmallestAngle = TempAngle;
|
---|
447 | winner = target;
|
---|
448 | LOG(5, "DEBUG: New winner " << *winner->second->node << " due to smaller angle between normal vectors.");
|
---|
449 | } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
|
---|
450 | // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
|
---|
451 | helper = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
452 | helper.ProjectOntoPlane(BaseLine);
|
---|
453 | // ...the one with the smaller angle is the better candidate
|
---|
454 | TempVector = (target->second->node->getPosition()) - BaseLineCenter;
|
---|
455 | TempVector.ProjectOntoPlane(VirtualNormalVector);
|
---|
456 | TempAngle = TempVector.Angle(helper);
|
---|
457 | TempVector = (winner->second->node->getPosition()) - BaseLineCenter;
|
---|
458 | TempVector.ProjectOntoPlane(VirtualNormalVector);
|
---|
459 | if (TempAngle < TempVector.Angle(helper)) {
|
---|
460 | TempAngle = NormalVector.Angle(VirtualNormalVector);
|
---|
461 | SmallestAngle = TempAngle;
|
---|
462 | winner = target;
|
---|
463 | LOG(5, "DEBUG: New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction.");
|
---|
464 | } else
|
---|
465 | LOG(5, "DEBUG: Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction.");
|
---|
466 | } else
|
---|
467 | LOG(5, "DEBUG: Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors.");
|
---|
468 | }
|
---|
469 | } // end of loop over all boundary points
|
---|
470 |
|
---|
471 | // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
|
---|
472 | if (winner != PointsOnBoundary.end()) {
|
---|
473 | LOG(3, "DEBUG: Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << ".");
|
---|
474 | // create the lins of not yet present
|
---|
475 | BLS[0] = baseline->second;
|
---|
476 | // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
|
---|
477 | LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
|
---|
478 | LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
|
---|
479 | if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
|
---|
480 | BPS[0] = baseline->second->endpoints[0];
|
---|
481 | BPS[1] = winner->second;
|
---|
482 | BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
483 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
|
---|
484 | LinesOnBoundaryCount++;
|
---|
485 | } else
|
---|
486 | BLS[1] = LineChecker[0]->second;
|
---|
487 | if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
|
---|
488 | BPS[0] = baseline->second->endpoints[1];
|
---|
489 | BPS[1] = winner->second;
|
---|
490 | BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
491 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
|
---|
492 | LinesOnBoundaryCount++;
|
---|
493 | } else
|
---|
494 | BLS[2] = LineChecker[1]->second;
|
---|
495 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
496 | BTS->GetCenter(helper);
|
---|
497 | helper -= (*Center);
|
---|
498 | helper *= -1;
|
---|
499 | BTS->GetNormalVector(helper);
|
---|
500 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
501 | TrianglesOnBoundaryCount++;
|
---|
502 | } else {
|
---|
503 | ELOG(2, "I could not determine a winner for this baseline " << *(baseline->second) << ".");
|
---|
504 | }
|
---|
505 |
|
---|
506 | // 5d. If the set of lines is not yet empty, go to 5. and continue
|
---|
507 | } else
|
---|
508 | LOG(3, "DEBUG: Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << ".");
|
---|
509 | } while (flag);
|
---|
510 |
|
---|
511 | // exit
|
---|
512 | delete (Center);
|
---|
513 | }
|
---|
514 | ;
|
---|
515 |
|
---|
516 | /** Inserts all points outside of the tesselated surface into it by adding new triangles.
|
---|
517 | * \param *out output stream for debugging
|
---|
518 | * \param *cloud cluster of points
|
---|
519 | * \param *LC LinkedCell_deprecated structure to find nearest point quickly
|
---|
520 | * \return true - all straddling points insert, false - something went wrong
|
---|
521 | */
|
---|
522 | bool Tesselation::InsertStraddlingPoints(IPointCloud & cloud, const LinkedCell_deprecated *LC)
|
---|
523 | {
|
---|
524 | //Info FunctionInfo(__func__);
|
---|
525 | Vector Intersection, Normal;
|
---|
526 | TesselPoint *Walker = NULL;
|
---|
527 | Vector *Center = cloud.GetCenter();
|
---|
528 | TriangleList *triangles = NULL;
|
---|
529 | bool AddFlag = false;
|
---|
530 | LinkedCell_deprecated *BoundaryPoints = NULL;
|
---|
531 | bool SuccessFlag = true;
|
---|
532 |
|
---|
533 | cloud.GoToFirst();
|
---|
534 | PointCloudAdaptor< Tesselation, MapValueIterator<Tesselation::iterator> > newcloud(this, cloud.GetName());
|
---|
535 | BoundaryPoints = new LinkedCell_deprecated(newcloud, 5.);
|
---|
536 | while (!cloud.IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
|
---|
537 | if (AddFlag) {
|
---|
538 | delete (BoundaryPoints);
|
---|
539 | BoundaryPoints = new LinkedCell_deprecated(newcloud, 5.);
|
---|
540 | AddFlag = false;
|
---|
541 | }
|
---|
542 | Walker = cloud.GetPoint();
|
---|
543 | LOG(3, "DEBUG: Current point is " << *Walker << ".");
|
---|
544 | // get the next triangle
|
---|
545 | triangles = FindClosestTrianglesToVector(Walker->getPosition(), BoundaryPoints);
|
---|
546 | if (triangles != NULL)
|
---|
547 | BTS = triangles->front();
|
---|
548 | else
|
---|
549 | BTS = NULL;
|
---|
550 | delete triangles;
|
---|
551 | if ((BTS == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
|
---|
552 | LOG(3, "DEBUG: No triangles found, probably a tesselation point itself.");
|
---|
553 | cloud.GoToNext();
|
---|
554 | continue;
|
---|
555 | } else {
|
---|
556 | }
|
---|
557 | LOG(3, "DEBUG: Closest triangle is " << *BTS << ".");
|
---|
558 | // get the intersection point
|
---|
559 | if (BTS->GetIntersectionInsideTriangle(*Center, Walker->getPosition(), Intersection)) {
|
---|
560 | LOG(3, "DEBUG: We have an intersection at " << Intersection << ".");
|
---|
561 | // we have the intersection, check whether in- or outside of boundary
|
---|
562 | if ((Center->DistanceSquared(Walker->getPosition()) - Center->DistanceSquared(Intersection)) < -MYEPSILON) {
|
---|
563 | // inside, next!
|
---|
564 | LOG(3, "DEBUG: " << *Walker << " is inside wrt triangle " << *BTS << ".");
|
---|
565 | } else {
|
---|
566 | // outside!
|
---|
567 | LOG(3, "DEBUG: " << *Walker << " is outside wrt triangle " << *BTS << ".");
|
---|
568 | class BoundaryLineSet *OldLines[3], *NewLines[3];
|
---|
569 | class BoundaryPointSet *OldPoints[3], *NewPoint;
|
---|
570 | // store the three old lines and old points
|
---|
571 | for (int i = 0; i < 3; i++) {
|
---|
572 | OldLines[i] = BTS->lines[i];
|
---|
573 | OldPoints[i] = BTS->endpoints[i];
|
---|
574 | }
|
---|
575 | Normal = BTS->NormalVector;
|
---|
576 | // add Walker to boundary points
|
---|
577 | LOG(3, "DEBUG: Adding " << *Walker << " to BoundaryPoints.");
|
---|
578 | AddFlag = true;
|
---|
579 | if (AddBoundaryPoint(Walker, 0))
|
---|
580 | NewPoint = BPS[0];
|
---|
581 | else
|
---|
582 | continue;
|
---|
583 | // remove triangle
|
---|
584 | LOG(3, "DEBUG: Erasing triangle " << *BTS << ".");
|
---|
585 | TrianglesOnBoundary.erase(BTS->Nr);
|
---|
586 | delete (BTS);
|
---|
587 | // create three new boundary lines
|
---|
588 | for (int i = 0; i < 3; i++) {
|
---|
589 | BPS[0] = NewPoint;
|
---|
590 | BPS[1] = OldPoints[i];
|
---|
591 | NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
|
---|
592 | LOG(4, "DEBUG: Creating new line " << *NewLines[i] << ".");
|
---|
593 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
|
---|
594 | LinesOnBoundaryCount++;
|
---|
595 | }
|
---|
596 | // create three new triangle with new point
|
---|
597 | for (int i = 0; i < 3; i++) { // find all baselines
|
---|
598 | BLS[0] = OldLines[i];
|
---|
599 | int n = 1;
|
---|
600 | for (int j = 0; j < 3; j++) {
|
---|
601 | if (NewLines[j]->IsConnectedTo(BLS[0])) {
|
---|
602 | if (n > 2) {
|
---|
603 | ELOG(2, BLS[0] << " connects to all of the new lines?!");
|
---|
604 | return false;
|
---|
605 | } else
|
---|
606 | BLS[n++] = NewLines[j];
|
---|
607 | }
|
---|
608 | }
|
---|
609 | // create the triangle
|
---|
610 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
611 | Normal.Scale(-1.);
|
---|
612 | BTS->GetNormalVector(Normal);
|
---|
613 | Normal.Scale(-1.);
|
---|
614 | LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
|
---|
615 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
616 | TrianglesOnBoundaryCount++;
|
---|
617 | }
|
---|
618 | }
|
---|
619 | } else { // something is wrong with FindClosestTriangleToPoint!
|
---|
620 | ELOG(1, "The closest triangle did not produce an intersection!");
|
---|
621 | SuccessFlag = false;
|
---|
622 | break;
|
---|
623 | }
|
---|
624 | cloud.GoToNext();
|
---|
625 | }
|
---|
626 |
|
---|
627 | // exit
|
---|
628 | delete (Center);
|
---|
629 | delete (BoundaryPoints);
|
---|
630 | return SuccessFlag;
|
---|
631 | }
|
---|
632 | ;
|
---|
633 |
|
---|
634 | /** Adds a point to the tesselation::PointsOnBoundary list.
|
---|
635 | * \param *Walker point to add
|
---|
636 | * \param n TesselStruct::BPS index to put pointer into
|
---|
637 | * \return true - new point was added, false - point already present
|
---|
638 | */
|
---|
639 | bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
|
---|
640 | {
|
---|
641 | //Info FunctionInfo(__func__);
|
---|
642 | PointTestPair InsertUnique;
|
---|
643 | BPS[n] = new class BoundaryPointSet(Walker);
|
---|
644 | InsertUnique = PointsOnBoundary.insert(PointPair(Walker->getNr(), BPS[n]));
|
---|
645 | if (InsertUnique.second) { // if new point was not present before, increase counter
|
---|
646 | PointsOnBoundaryCount++;
|
---|
647 | return true;
|
---|
648 | } else {
|
---|
649 | delete (BPS[n]);
|
---|
650 | BPS[n] = InsertUnique.first->second;
|
---|
651 | return false;
|
---|
652 | }
|
---|
653 | }
|
---|
654 | ;
|
---|
655 |
|
---|
656 | /** Adds point to Tesselation::PointsOnBoundary if not yet present.
|
---|
657 | * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
|
---|
658 | * @param Candidate point to add
|
---|
659 | * @param n index for this point in Tesselation::TPS array
|
---|
660 | */
|
---|
661 | void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
|
---|
662 | {
|
---|
663 | //Info FunctionInfo(__func__);
|
---|
664 | PointTestPair InsertUnique;
|
---|
665 | TPS[n] = new class BoundaryPointSet(Candidate);
|
---|
666 | InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->getNr(), TPS[n]));
|
---|
667 | if (InsertUnique.second) { // if new point was not present before, increase counter
|
---|
668 | PointsOnBoundaryCount++;
|
---|
669 | } else {
|
---|
670 | delete TPS[n];
|
---|
671 | LOG(4, "DEBUG: Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary.");
|
---|
672 | TPS[n] = (InsertUnique.first)->second;
|
---|
673 | }
|
---|
674 | }
|
---|
675 | ;
|
---|
676 |
|
---|
677 | /** Sets point to a present Tesselation::PointsOnBoundary.
|
---|
678 | * Tesselation::TPS is set to the existing one or NULL if not found.
|
---|
679 | * @param Candidate point to set to
|
---|
680 | * @param n index for this point in Tesselation::TPS array
|
---|
681 | */
|
---|
682 | void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
|
---|
683 | {
|
---|
684 | //Info FunctionInfo(__func__);
|
---|
685 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->getNr());
|
---|
686 | if (FindPoint != PointsOnBoundary.end())
|
---|
687 | TPS[n] = FindPoint->second;
|
---|
688 | else
|
---|
689 | TPS[n] = NULL;
|
---|
690 | }
|
---|
691 | ;
|
---|
692 |
|
---|
693 | /** Function tries to add line from current Points in BPS to BoundaryLineSet.
|
---|
694 | * If successful it raises the line count and inserts the new line into the BLS,
|
---|
695 | * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
|
---|
696 | * @param *OptCenter desired OptCenter if there are more than one candidate line
|
---|
697 | * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
|
---|
698 | * @param *a first endpoint
|
---|
699 | * @param *b second endpoint
|
---|
700 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
701 | */
|
---|
702 | void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
|
---|
703 | {
|
---|
704 | bool insertNewLine = true;
|
---|
705 | LineMap::iterator FindLine = a->lines.find(b->node->getNr());
|
---|
706 | BoundaryLineSet *WinningLine = NULL;
|
---|
707 | if (FindLine != a->lines.end()) {
|
---|
708 | LOG(3, "DEBUG: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << ".");
|
---|
709 |
|
---|
710 | pair<LineMap::iterator, LineMap::iterator> FindPair;
|
---|
711 | FindPair = a->lines.equal_range(b->node->getNr());
|
---|
712 |
|
---|
713 | for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
|
---|
714 | LOG(3, "DEBUG: Checking line " << *(FindLine->second) << " ...");
|
---|
715 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
716 | if (FindLine->second->triangles.size() == 1) {
|
---|
717 | CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
|
---|
718 | if (!Finder->second->pointlist.empty())
|
---|
719 | LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
|
---|
720 | else
|
---|
721 | LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with no candidate.");
|
---|
722 | // get open line
|
---|
723 | for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
|
---|
724 | if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || OptCenter->DistanceSquared(Finder->second->OptCenter) < MYEPSILON )) { // stop searching if candidate matches
|
---|
725 | LOG(4, "ACCEPT: Candidate " << *(*CandidateChecker) << " has the right center " << Finder->second->OptCenter << ".");
|
---|
726 | insertNewLine = false;
|
---|
727 | WinningLine = FindLine->second;
|
---|
728 | break;
|
---|
729 | } else {
|
---|
730 | LOG(5, "REJECT: Candidate " << *(*CandidateChecker) << "'s center " << Finder->second->OptCenter << " does not match desired on " << *OptCenter << ".");
|
---|
731 | }
|
---|
732 | }
|
---|
733 | }
|
---|
734 | }
|
---|
735 | }
|
---|
736 |
|
---|
737 | if (insertNewLine) {
|
---|
738 | AddNewTesselationTriangleLine(a, b, n);
|
---|
739 | } else {
|
---|
740 | AddExistingTesselationTriangleLine(WinningLine, n);
|
---|
741 | }
|
---|
742 | }
|
---|
743 | ;
|
---|
744 |
|
---|
745 | /**
|
---|
746 | * Adds lines from each of the current points in the BPS to BoundaryLineSet.
|
---|
747 | * Raises the line count and inserts the new line into the BLS.
|
---|
748 | *
|
---|
749 | * @param *a first endpoint
|
---|
750 | * @param *b second endpoint
|
---|
751 | * @param n index of Tesselation::BLS giving the line with both endpoints
|
---|
752 | */
|
---|
753 | void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
|
---|
754 | {
|
---|
755 | //Info FunctionInfo(__func__);
|
---|
756 | LOG(2, "DEBUG: Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << ".");
|
---|
757 | BPS[0] = a;
|
---|
758 | BPS[1] = b;
|
---|
759 | BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
|
---|
760 | // add line to global map
|
---|
761 | LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
|
---|
762 | // increase counter
|
---|
763 | LinesOnBoundaryCount++;
|
---|
764 | // also add to open lines
|
---|
765 | CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
|
---|
766 | OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
|
---|
767 | }
|
---|
768 | ;
|
---|
769 |
|
---|
770 | /** Uses an existing line for a new triangle.
|
---|
771 | * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
|
---|
772 | * \param *FindLine the line to add
|
---|
773 | * \param n index of the line to set in Tesselation::BLS
|
---|
774 | */
|
---|
775 | void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
|
---|
776 | {
|
---|
777 | //Info FunctionInfo(__func__);
|
---|
778 | LOG(5, "DEBUG: Using existing line " << *Line);
|
---|
779 |
|
---|
780 | // set endpoints and line
|
---|
781 | BPS[0] = Line->endpoints[0];
|
---|
782 | BPS[1] = Line->endpoints[1];
|
---|
783 | BLS[n] = Line;
|
---|
784 | // remove existing line from OpenLines
|
---|
785 | CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
|
---|
786 | if (CandidateLine != OpenLines.end()) {
|
---|
787 | LOG(6, "DEBUG: Removing line from OpenLines.");
|
---|
788 | delete (CandidateLine->second);
|
---|
789 | OpenLines.erase(CandidateLine);
|
---|
790 | } else {
|
---|
791 | ELOG(1, "Line exists and is attached to less than two triangles, but not in OpenLines!");
|
---|
792 | }
|
---|
793 | }
|
---|
794 | ;
|
---|
795 |
|
---|
796 | /** Function adds triangle to global list.
|
---|
797 | * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
|
---|
798 | */
|
---|
799 | void Tesselation::AddTesselationTriangle()
|
---|
800 | {
|
---|
801 | //Info FunctionInfo(__func__);
|
---|
802 | LOG(4, "DEBUG: Adding triangle to global TrianglesOnBoundary map.");
|
---|
803 |
|
---|
804 | // add triangle to global map
|
---|
805 | TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
|
---|
806 | TrianglesOnBoundaryCount++;
|
---|
807 |
|
---|
808 | // set as last new triangle
|
---|
809 | LastTriangle = BTS;
|
---|
810 |
|
---|
811 | // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
|
---|
812 | }
|
---|
813 | ;
|
---|
814 |
|
---|
815 | /** Function adds triangle to global list.
|
---|
816 | * Furthermore, the triangle number is set to \a Nr.
|
---|
817 | * \param getNr() triangle number
|
---|
818 | */
|
---|
819 | void Tesselation::AddTesselationTriangle(const int nr)
|
---|
820 | {
|
---|
821 | //Info FunctionInfo(__func__);
|
---|
822 | LOG(4, "DEBUG: Adding triangle to global TrianglesOnBoundary map.");
|
---|
823 |
|
---|
824 | // add triangle to global map
|
---|
825 | TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
|
---|
826 |
|
---|
827 | // set as last new triangle
|
---|
828 | LastTriangle = BTS;
|
---|
829 |
|
---|
830 | // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
|
---|
831 | }
|
---|
832 | ;
|
---|
833 |
|
---|
834 | /** Removes a triangle from the tesselation.
|
---|
835 | * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
|
---|
836 | * Removes itself from memory.
|
---|
837 | * \param *triangle to remove
|
---|
838 | */
|
---|
839 | void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
|
---|
840 | {
|
---|
841 | //Info FunctionInfo(__func__);
|
---|
842 | if (triangle == NULL)
|
---|
843 | return;
|
---|
844 | for (int i = 0; i < 3; i++) {
|
---|
845 | if (triangle->lines[i] != NULL) {
|
---|
846 | LOG(4, "DEBUG: Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << ".");
|
---|
847 | triangle->lines[i]->triangles.erase(triangle->Nr);
|
---|
848 | std::stringstream output;
|
---|
849 | output << *triangle->lines[i] << " is ";
|
---|
850 | if (triangle->lines[i]->triangles.empty()) {
|
---|
851 | output << "no more attached to any triangle, erasing.";
|
---|
852 | RemoveTesselationLine(triangle->lines[i]);
|
---|
853 | } else {
|
---|
854 | output << "still attached to another triangle: ";
|
---|
855 | OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
|
---|
856 | for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
|
---|
857 | output << "\t[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t";
|
---|
858 | }
|
---|
859 | LOG(3, "DEBUG: " << output.str());
|
---|
860 | triangle->lines[i] = NULL; // free'd or not: disconnect
|
---|
861 | } else
|
---|
862 | ELOG(1, "This line " << i << " has already been free'd.");
|
---|
863 | }
|
---|
864 |
|
---|
865 | if (TrianglesOnBoundary.erase(triangle->Nr))
|
---|
866 | LOG(3, "DEBUG: Removing triangle Nr. " << triangle->Nr << ".");
|
---|
867 | delete (triangle);
|
---|
868 | }
|
---|
869 | ;
|
---|
870 |
|
---|
871 | /** Removes a line from the tesselation.
|
---|
872 | * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
|
---|
873 | * \param *line line to remove
|
---|
874 | */
|
---|
875 | void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
|
---|
876 | {
|
---|
877 | //Info FunctionInfo(__func__);
|
---|
878 | int Numbers[2];
|
---|
879 |
|
---|
880 | if (line == NULL)
|
---|
881 | return;
|
---|
882 | // get other endpoint number for finding copies of same line
|
---|
883 | if (line->endpoints[1] != NULL)
|
---|
884 | Numbers[0] = line->endpoints[1]->Nr;
|
---|
885 | else
|
---|
886 | Numbers[0] = -1;
|
---|
887 | if (line->endpoints[0] != NULL)
|
---|
888 | Numbers[1] = line->endpoints[0]->Nr;
|
---|
889 | else
|
---|
890 | Numbers[1] = -1;
|
---|
891 |
|
---|
892 | for (int i = 0; i < 2; i++) {
|
---|
893 | if (line->endpoints[i] != NULL) {
|
---|
894 | if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
|
---|
895 | pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
|
---|
896 | for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
|
---|
897 | if ((*Runner).second == line) {
|
---|
898 | LOG(4, "DEBUG: Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
|
---|
899 | line->endpoints[i]->lines.erase(Runner);
|
---|
900 | break;
|
---|
901 | }
|
---|
902 | } else { // there's just a single line left
|
---|
903 | if (line->endpoints[i]->lines.erase(line->Nr))
|
---|
904 | LOG(4, "DEBUG: Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << ".");
|
---|
905 | }
|
---|
906 | if (line->endpoints[i]->lines.empty()) {
|
---|
907 | LOG(4, "DEBUG: " << *line->endpoints[i] << " has no more lines it's attached to, erasing.");
|
---|
908 | RemoveTesselationPoint(line->endpoints[i]);
|
---|
909 | } else if (DoLog(0)) {
|
---|
910 | std::stringstream output;
|
---|
911 | output << "DEBUG: " << *line->endpoints[i] << " has still lines it's attached to: ";
|
---|
912 | for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
|
---|
913 | output << "[" << *(LineRunner->second) << "] \t";
|
---|
914 | LOG(4, output.str());
|
---|
915 | }
|
---|
916 | line->endpoints[i] = NULL; // free'd or not: disconnect
|
---|
917 | } else
|
---|
918 | ELOG(4, "DEBUG: Endpoint " << i << " has already been free'd.");
|
---|
919 | }
|
---|
920 | if (!line->triangles.empty())
|
---|
921 | ELOG(2, "Memory Leak! I " << *line << " am still connected to some triangles.");
|
---|
922 |
|
---|
923 | if (LinesOnBoundary.erase(line->Nr))
|
---|
924 | LOG(4, "DEBUG: Removing line Nr. " << line->Nr << ".");
|
---|
925 | delete (line);
|
---|
926 | }
|
---|
927 | ;
|
---|
928 |
|
---|
929 | /** Removes a point from the tesselation.
|
---|
930 | * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
|
---|
931 | * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
|
---|
932 | * \param *point point to remove
|
---|
933 | */
|
---|
934 | void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
|
---|
935 | {
|
---|
936 | //Info FunctionInfo(__func__);
|
---|
937 | if (point == NULL)
|
---|
938 | return;
|
---|
939 | if (PointsOnBoundary.erase(point->Nr))
|
---|
940 | LOG(4, "DEBUG: Removing point Nr. " << point->Nr << ".");
|
---|
941 | delete (point);
|
---|
942 | }
|
---|
943 | ;
|
---|
944 |
|
---|
945 | /** Checks validity of a given sphere of a candidate line.
|
---|
946 | * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
|
---|
947 | * We check CandidateForTesselation::OtherOptCenter
|
---|
948 | * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
|
---|
949 | * \param RADIUS radius of sphere
|
---|
950 | * \param *LC LinkedCell_deprecated structure with other atoms
|
---|
951 | * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
|
---|
952 | */
|
---|
953 | bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC) const
|
---|
954 | {
|
---|
955 | //Info FunctionInfo(__func__);
|
---|
956 |
|
---|
957 | LOG(3, "DEBUG: Checking whether sphere contains no others points ...");
|
---|
958 | bool flag = true;
|
---|
959 |
|
---|
960 | LOG(3, "DEBUG: Check by: draw sphere {" << CandidateLine.OtherOptCenter[0] << " " << CandidateLine.OtherOptCenter[1] << " " << CandidateLine.OtherOptCenter[2] << "} radius " << RADIUS << " resolution 30");
|
---|
961 | // get all points inside the sphere
|
---|
962 | TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
|
---|
963 |
|
---|
964 | LOG(3, "DEBUG: The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":");
|
---|
965 | for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
|
---|
966 | LOG(3, "DEBUG: " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
|
---|
967 |
|
---|
968 | // remove triangles's endpoints
|
---|
969 | for (int i = 0; i < 2; i++)
|
---|
970 | ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
|
---|
971 |
|
---|
972 | // remove other candidates
|
---|
973 | for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
|
---|
974 | ListofPoints->remove(*Runner);
|
---|
975 |
|
---|
976 | // check for other points
|
---|
977 | if (!ListofPoints->empty()) {
|
---|
978 | LOG(3, "DEBUG: CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere.");
|
---|
979 | flag = false;
|
---|
980 | LOG(3, "DEBUG: External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":");
|
---|
981 | for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
|
---|
982 | LOG(3, "DEBUG: " << *(*Runner) << " with distance " << (*Runner)->distance(CandidateLine.OtherOptCenter) << ".");
|
---|
983 | }
|
---|
984 | delete (ListofPoints);
|
---|
985 |
|
---|
986 | return flag;
|
---|
987 | }
|
---|
988 | ;
|
---|
989 |
|
---|
990 | /** Checks whether the triangle consisting of the three points is already present.
|
---|
991 | * Searches for the points in Tesselation::PointsOnBoundary and checks their
|
---|
992 | * lines. If any of the three edges already has two triangles attached, false is
|
---|
993 | * returned.
|
---|
994 | * \param *out output stream for debugging
|
---|
995 | * \param *Candidates endpoints of the triangle candidate
|
---|
996 | * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
|
---|
997 | * triangles exist which is the maximum for three points
|
---|
998 | */
|
---|
999 | int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
|
---|
1000 | {
|
---|
1001 | //Info FunctionInfo(__func__);
|
---|
1002 | int adjacentTriangleCount = 0;
|
---|
1003 | class BoundaryPointSet *Points[3];
|
---|
1004 |
|
---|
1005 | // builds a triangle point set (Points) of the end points
|
---|
1006 | for (int i = 0; i < 3; i++) {
|
---|
1007 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
|
---|
1008 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
1009 | Points[i] = FindPoint->second;
|
---|
1010 | } else {
|
---|
1011 | Points[i] = NULL;
|
---|
1012 | }
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | // checks lines between the points in the Points for their adjacent triangles
|
---|
1016 | for (int i = 0; i < 3; i++) {
|
---|
1017 | if (Points[i] != NULL) {
|
---|
1018 | for (int j = i; j < 3; j++) {
|
---|
1019 | if (Points[j] != NULL) {
|
---|
1020 | LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
|
---|
1021 | for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
|
---|
1022 | TriangleMap *triangles = &FindLine->second->triangles;
|
---|
1023 | LOG(5, "DEBUG: Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << ".");
|
---|
1024 | for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
|
---|
1025 | if (FindTriangle->second->IsPresentTupel(Points)) {
|
---|
1026 | adjacentTriangleCount++;
|
---|
1027 | }
|
---|
1028 | }
|
---|
1029 | }
|
---|
1030 | // Only one of the triangle lines must be considered for the triangle count.
|
---|
1031 | //LOG(5, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
1032 | //return adjacentTriangleCount;
|
---|
1033 | }
|
---|
1034 | }
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | LOG(3, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
1039 | return adjacentTriangleCount;
|
---|
1040 | }
|
---|
1041 | ;
|
---|
1042 |
|
---|
1043 | /** Checks whether the triangle consisting of the three points is already present.
|
---|
1044 | * Searches for the points in Tesselation::PointsOnBoundary and checks their
|
---|
1045 | * lines. If any of the three edges already has two triangles attached, false is
|
---|
1046 | * returned.
|
---|
1047 | * \param *out output stream for debugging
|
---|
1048 | * \param *Candidates endpoints of the triangle candidate
|
---|
1049 | * \return NULL - none found or pointer to triangle
|
---|
1050 | */
|
---|
1051 | class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
|
---|
1052 | {
|
---|
1053 | //Info FunctionInfo(__func__);
|
---|
1054 | class BoundaryTriangleSet *triangle = NULL;
|
---|
1055 | class BoundaryPointSet *Points[3];
|
---|
1056 |
|
---|
1057 | // builds a triangle point set (Points) of the end points
|
---|
1058 | for (int i = 0; i < 3; i++) {
|
---|
1059 | PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->getNr());
|
---|
1060 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
1061 | Points[i] = FindPoint->second;
|
---|
1062 | } else {
|
---|
1063 | Points[i] = NULL;
|
---|
1064 | }
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 | // checks lines between the points in the Points for their adjacent triangles
|
---|
1068 | for (int i = 0; i < 3; i++) {
|
---|
1069 | if (Points[i] != NULL) {
|
---|
1070 | for (int j = i; j < 3; j++) {
|
---|
1071 | if (Points[j] != NULL) {
|
---|
1072 | LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->getNr());
|
---|
1073 | for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->getNr()); FindLine++) {
|
---|
1074 | TriangleMap *triangles = &FindLine->second->triangles;
|
---|
1075 | for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
|
---|
1076 | if (FindTriangle->second->IsPresentTupel(Points)) {
|
---|
1077 | if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
|
---|
1078 | triangle = FindTriangle->second;
|
---|
1079 | }
|
---|
1080 | }
|
---|
1081 | }
|
---|
1082 | // Only one of the triangle lines must be considered for the triangle count.
|
---|
1083 | //LOG(5, "DEBUG: Found " << adjacentTriangleCount << " adjacent triangles for the point set.");
|
---|
1084 | //return adjacentTriangleCount;
|
---|
1085 | }
|
---|
1086 | }
|
---|
1087 | }
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | return triangle;
|
---|
1091 | }
|
---|
1092 | ;
|
---|
1093 |
|
---|
1094 | /** Finds the starting triangle for FindNonConvexBorder().
|
---|
1095 | * Looks at the outermost point per axis, then FindSecondPointForTesselation()
|
---|
1096 | * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
|
---|
1097 | * point are called.
|
---|
1098 | * \param *out output stream for debugging
|
---|
1099 | * \param RADIUS radius of virtual rolling sphere
|
---|
1100 | * \param *LC LinkedCell_deprecated structure with neighbouring TesselPoint's
|
---|
1101 | * \return true - a starting triangle has been created, false - no valid triple of points found
|
---|
1102 | */
|
---|
1103 | bool Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell_deprecated *LC)
|
---|
1104 | {
|
---|
1105 | //Info FunctionInfo(__func__);
|
---|
1106 | int i = 0;
|
---|
1107 | TesselPoint* MaxPoint[NDIM];
|
---|
1108 | TesselPoint* Temporary;
|
---|
1109 | double maxCoordinate[NDIM];
|
---|
1110 | BoundaryLineSet *BaseLine = NULL;
|
---|
1111 | Vector helper;
|
---|
1112 | Vector Chord;
|
---|
1113 | Vector SearchDirection;
|
---|
1114 | Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
1115 | Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
1116 | Vector SphereCenter;
|
---|
1117 | Vector NormalVector;
|
---|
1118 |
|
---|
1119 | NormalVector.Zero();
|
---|
1120 |
|
---|
1121 | for (i = 0; i < 3; i++) {
|
---|
1122 | MaxPoint[i] = NULL;
|
---|
1123 | maxCoordinate[i] = -1;
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | // 1. searching topmost point with respect to each axis
|
---|
1127 | for (int i = 0; i < NDIM; i++) { // each axis
|
---|
1128 | LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
|
---|
1129 | const int map[NDIM] = {i, (i + 1) % NDIM, (i + 2) % NDIM};
|
---|
1130 | for (LC->n[map[1]] = 0; LC->n[map[1]] < LC->N[map[1]]; LC->n[map[1]]++)
|
---|
1131 | for (LC->n[map[2]] = 0; LC->n[map[2]] < LC->N[map[2]]; LC->n[map[2]]++) {
|
---|
1132 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
1133 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
1134 | if (List != NULL) {
|
---|
1135 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
1136 | if ((*Runner)->at(map[0]) > maxCoordinate[map[0]]) {
|
---|
1137 | LOG(4, "DEBUG: New maximal for axis " << map[0] << " node is " << *(*Runner) << " at " << (*Runner)->getPosition() << ".");
|
---|
1138 | maxCoordinate[map[0]] = (*Runner)->at(map[0]);
|
---|
1139 | MaxPoint[map[0]] = (*Runner);
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 | } else {
|
---|
1143 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
1144 | }
|
---|
1145 | }
|
---|
1146 | }
|
---|
1147 |
|
---|
1148 | if (DoLog(1)) {
|
---|
1149 | std::stringstream output;
|
---|
1150 | output << "Found maximum coordinates: ";
|
---|
1151 | for (int i = 0; i < NDIM; i++)
|
---|
1152 | output << i << ": " << *MaxPoint[i] << "\t";
|
---|
1153 | LOG(3, "DEBUG: " << output.str());
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | BTS = NULL;
|
---|
1157 | for (int k = 0; k < NDIM; k++) {
|
---|
1158 | NormalVector.Zero();
|
---|
1159 | NormalVector[k] = 1.;
|
---|
1160 | BaseLine = new BoundaryLineSet();
|
---|
1161 | BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
|
---|
1162 | LOG(2, "DEBUG: Coordinates of start node at " << *BaseLine->endpoints[0]->node << ".");
|
---|
1163 |
|
---|
1164 | double ShortestAngle;
|
---|
1165 | ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
|
---|
1166 |
|
---|
1167 | Temporary = NULL;
|
---|
1168 | FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
|
---|
1169 | if (Temporary == NULL) {
|
---|
1170 | // have we found a second point?
|
---|
1171 | delete BaseLine;
|
---|
1172 | continue;
|
---|
1173 | }
|
---|
1174 | BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
|
---|
1175 | LOG(1, "INFO: Second node is at " << *Temporary << ".");
|
---|
1176 |
|
---|
1177 | // construct center of circle
|
---|
1178 | CircleCenter = 0.5 * ((BaseLine->endpoints[0]->node->getPosition()) + (BaseLine->endpoints[1]->node->getPosition()));
|
---|
1179 | LOG(1, "INFO: CircleCenter is at " << CircleCenter << ".");
|
---|
1180 |
|
---|
1181 | // construct normal vector of circle
|
---|
1182 | CirclePlaneNormal = (BaseLine->endpoints[0]->node->getPosition()) - (BaseLine->endpoints[1]->node->getPosition());
|
---|
1183 | LOG(1, "INFO: CirclePlaneNormal is at " << CirclePlaneNormal << ".");
|
---|
1184 |
|
---|
1185 | double radius = CirclePlaneNormal.NormSquared();
|
---|
1186 | double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
|
---|
1187 |
|
---|
1188 | NormalVector.ProjectOntoPlane(CirclePlaneNormal);
|
---|
1189 | NormalVector.Normalize();
|
---|
1190 | LOG(1, "INFO: NormalVector is at " << NormalVector << ".");
|
---|
1191 | ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
|
---|
1192 |
|
---|
1193 | SphereCenter = (CircleRadius * NormalVector) + CircleCenter;
|
---|
1194 | // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
|
---|
1195 |
|
---|
1196 | // look in one direction of baseline for initial candidate
|
---|
1197 | try {
|
---|
1198 | SearchDirection = Plane(CirclePlaneNormal, NormalVector,0).getNormal(); // whether we look "left" first or "right" first is not important ...
|
---|
1199 | } catch(LinearAlgebraException) {
|
---|
1200 | ELOG(1, "Vectors are linear dependent: "
|
---|
1201 | << CirclePlaneNormal << ", " << NormalVector << ".");
|
---|
1202 | delete BaseLine;
|
---|
1203 | continue;
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | // adding point 1 and point 2 and add the line between them
|
---|
1207 | LOG(2, "DEBUG: Found second point is at " << *BaseLine->endpoints[1]->node << ".");
|
---|
1208 |
|
---|
1209 | //LOG(1, "INFO: OldSphereCenter is at " << helper << ".");
|
---|
1210 | CandidateForTesselation OptCandidates(BaseLine);
|
---|
1211 | FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
|
---|
1212 | {
|
---|
1213 | std::stringstream output;
|
---|
1214 | for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++)
|
---|
1215 | output << *(*it);
|
---|
1216 | LOG(2, "DEBUG: List of third Points is: " << output.str());
|
---|
1217 | }
|
---|
1218 | if (!OptCandidates.pointlist.empty()) {
|
---|
1219 | BTS = NULL;
|
---|
1220 | AddCandidatePolygon(OptCandidates, RADIUS, LC);
|
---|
1221 | } else {
|
---|
1222 | delete BaseLine;
|
---|
1223 | continue;
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | if (BTS != NULL) { // we have created one starting triangle
|
---|
1227 | delete BaseLine;
|
---|
1228 | break;
|
---|
1229 | } else {
|
---|
1230 | // remove all candidates from the list and then the list itself
|
---|
1231 | OptCandidates.pointlist.clear();
|
---|
1232 | }
|
---|
1233 | delete BaseLine;
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 | return (BTS != NULL);
|
---|
1237 | }
|
---|
1238 | ;
|
---|
1239 |
|
---|
1240 | /** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
|
---|
1241 | * This is supposed to prevent early closing of the tesselation.
|
---|
1242 | * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
|
---|
1243 | * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
|
---|
1244 | * \param RADIUS radius of sphere
|
---|
1245 | * \param *LC LinkedCell_deprecated structure
|
---|
1246 | * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
|
---|
1247 | */
|
---|
1248 | //bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell_deprecated * const LC) const
|
---|
1249 | //{
|
---|
1250 | // //Info FunctionInfo(__func__);
|
---|
1251 | // bool result = false;
|
---|
1252 | // Vector CircleCenter;
|
---|
1253 | // Vector CirclePlaneNormal;
|
---|
1254 | // Vector OldSphereCenter;
|
---|
1255 | // Vector SearchDirection;
|
---|
1256 | // Vector helper;
|
---|
1257 | // TesselPoint *OtherOptCandidate = NULL;
|
---|
1258 | // double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
|
---|
1259 | // double radius, CircleRadius;
|
---|
1260 | // BoundaryLineSet *Line = NULL;
|
---|
1261 | // BoundaryTriangleSet *T = NULL;
|
---|
1262 | //
|
---|
1263 | // // check both other lines
|
---|
1264 | // PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->getNr());
|
---|
1265 | // if (FindPoint != PointsOnBoundary.end()) {
|
---|
1266 | // for (int i=0;i<2;i++) {
|
---|
1267 | // LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->getNr());
|
---|
1268 | // if (FindLine != (FindPoint->second)->lines.end()) {
|
---|
1269 | // Line = FindLine->second;
|
---|
1270 | // LOG(0, "Found line " << *Line << ".");
|
---|
1271 | // if (Line->triangles.size() == 1) {
|
---|
1272 | // T = Line->triangles.begin()->second;
|
---|
1273 | // // construct center of circle
|
---|
1274 | // CircleCenter.CopyVector(Line->endpoints[0]->node->node);
|
---|
1275 | // CircleCenter.AddVector(Line->endpoints[1]->node->node);
|
---|
1276 | // CircleCenter.Scale(0.5);
|
---|
1277 | //
|
---|
1278 | // // construct normal vector of circle
|
---|
1279 | // CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
|
---|
1280 | // CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
|
---|
1281 | //
|
---|
1282 | // // calculate squared radius of circle
|
---|
1283 | // radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
|
---|
1284 | // if (radius/4. < RADIUS*RADIUS) {
|
---|
1285 | // CircleRadius = RADIUS*RADIUS - radius/4.;
|
---|
1286 | // CirclePlaneNormal.Normalize();
|
---|
1287 | // //LOG(1, "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
1288 | //
|
---|
1289 | // // construct old center
|
---|
1290 | // GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
|
---|
1291 | // helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
|
---|
1292 | // radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
|
---|
1293 | // helper.Scale(sqrt(RADIUS*RADIUS - radius));
|
---|
1294 | // OldSphereCenter.AddVector(&helper);
|
---|
1295 | // OldSphereCenter.SubtractVector(&CircleCenter);
|
---|
1296 | // //LOG(1, "INFO: OldSphereCenter is at " << OldSphereCenter << ".");
|
---|
1297 | //
|
---|
1298 | // // construct SearchDirection
|
---|
1299 | // SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
|
---|
1300 | // helper.CopyVector(Line->endpoints[0]->node->node);
|
---|
1301 | // helper.SubtractVector(ThirdNode->node);
|
---|
1302 | // if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
|
---|
1303 | // SearchDirection.Scale(-1.);
|
---|
1304 | // SearchDirection.ProjectOntoPlane(&OldSphereCenter);
|
---|
1305 | // SearchDirection.Normalize();
|
---|
1306 | // LOG(1, "INFO: SearchDirection is " << SearchDirection << ".");
|
---|
1307 | // if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
|
---|
1308 | // // rotated the wrong way!
|
---|
1309 | // ELOG(1, "SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
|
---|
1310 | // }
|
---|
1311 | //
|
---|
1312 | // // add third point
|
---|
1313 | // FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
|
---|
1314 | // for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
|
---|
1315 | // if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
|
---|
1316 | // continue;
|
---|
1317 | // LOG(1, "INFO: Third point candidate is " << (*it)
|
---|
1318 | // << " with circumsphere's center at " << (*it)->OptCenter << ".");
|
---|
1319 | // LOG(1, "INFO: Baseline is " << *BaseRay);
|
---|
1320 | //
|
---|
1321 | // // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
|
---|
1322 | // TesselPoint *PointCandidates[3];
|
---|
1323 | // PointCandidates[0] = (*it);
|
---|
1324 | // PointCandidates[1] = BaseRay->endpoints[0]->node;
|
---|
1325 | // PointCandidates[2] = BaseRay->endpoints[1]->node;
|
---|
1326 | // bool check=false;
|
---|
1327 | // int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
|
---|
1328 | // // If there is no triangle, add it regularly.
|
---|
1329 | // if (existentTrianglesCount == 0) {
|
---|
1330 | // SetTesselationPoint((*it), 0);
|
---|
1331 | // SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
|
---|
1332 | // SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
|
---|
1333 | //
|
---|
1334 | // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
|
---|
1335 | // OtherOptCandidate = (*it);
|
---|
1336 | // check = true;
|
---|
1337 | // }
|
---|
1338 | // } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
|
---|
1339 | // SetTesselationPoint((*it), 0);
|
---|
1340 | // SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
|
---|
1341 | // SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
|
---|
1342 | //
|
---|
1343 | // // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
|
---|
1344 | // // i.e. at least one of the three lines must be present with TriangleCount <= 1
|
---|
1345 | // if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
|
---|
1346 | // OtherOptCandidate = (*it);
|
---|
1347 | // check = true;
|
---|
1348 | // }
|
---|
1349 | // }
|
---|
1350 | //
|
---|
1351 | // if (check) {
|
---|
1352 | // if (ShortestAngle > OtherShortestAngle) {
|
---|
1353 | // LOG(0, "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << ".");
|
---|
1354 | // result = true;
|
---|
1355 | // break;
|
---|
1356 | // }
|
---|
1357 | // }
|
---|
1358 | // }
|
---|
1359 | // delete(OptCandidates);
|
---|
1360 | // if (result)
|
---|
1361 | // break;
|
---|
1362 | // } else {
|
---|
1363 | // LOG(0, "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!");
|
---|
1364 | // }
|
---|
1365 | // } else {
|
---|
1366 | // ELOG(2, "Baseline is connected to two triangles already?");
|
---|
1367 | // }
|
---|
1368 | // } else {
|
---|
1369 | // LOG(1, "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << ".");
|
---|
1370 | // }
|
---|
1371 | // }
|
---|
1372 | // } else {
|
---|
1373 | // ELOG(1, "Could not find the TesselPoint " << *ThirdNode << ".");
|
---|
1374 | // }
|
---|
1375 | //
|
---|
1376 | // return result;
|
---|
1377 | //};
|
---|
1378 |
|
---|
1379 | /** This function finds a triangle to a line, adjacent to an existing one.
|
---|
1380 | * @param out output stream for debugging
|
---|
1381 | * @param CandidateLine current cadndiate baseline to search from
|
---|
1382 | * @param T current triangle which \a Line is edge of
|
---|
1383 | * @param RADIUS radius of the rolling ball
|
---|
1384 | * @param N number of found triangles
|
---|
1385 | * @param *LC LinkedCell_deprecated structure with neighbouring points
|
---|
1386 | */
|
---|
1387 | bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell_deprecated *LC)
|
---|
1388 | {
|
---|
1389 | //Info FunctionInfo(__func__);
|
---|
1390 | Vector CircleCenter;
|
---|
1391 | Vector CirclePlaneNormal;
|
---|
1392 | Vector RelativeSphereCenter;
|
---|
1393 | Vector SearchDirection;
|
---|
1394 | Vector helper;
|
---|
1395 | BoundaryPointSet *ThirdPoint = NULL;
|
---|
1396 | LineMap::iterator testline;
|
---|
1397 | double radius, CircleRadius;
|
---|
1398 |
|
---|
1399 | for (int i = 0; i < 3; i++)
|
---|
1400 | if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
|
---|
1401 | ThirdPoint = T.endpoints[i];
|
---|
1402 | break;
|
---|
1403 | }
|
---|
1404 | LOG(3, "DEBUG: Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << ".");
|
---|
1405 |
|
---|
1406 | CandidateLine.T = &T;
|
---|
1407 |
|
---|
1408 | // construct center of circle
|
---|
1409 | CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
|
---|
1410 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
|
---|
1411 |
|
---|
1412 | // construct normal vector of circle
|
---|
1413 | CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
|
---|
1414 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
1415 |
|
---|
1416 | // calculate squared radius of circle
|
---|
1417 | radius = CirclePlaneNormal.ScalarProduct(CirclePlaneNormal);
|
---|
1418 | if (radius / 4. < RADIUS * RADIUS) {
|
---|
1419 | // construct relative sphere center with now known CircleCenter
|
---|
1420 | RelativeSphereCenter = T.SphereCenter - CircleCenter;
|
---|
1421 |
|
---|
1422 | CircleRadius = RADIUS * RADIUS - radius / 4.;
|
---|
1423 | CirclePlaneNormal.Normalize();
|
---|
1424 | LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
1425 |
|
---|
1426 | LOG(3, "DEBUG: OldSphereCenter is at " << T.SphereCenter << ".");
|
---|
1427 |
|
---|
1428 | // construct SearchDirection and an "outward pointer"
|
---|
1429 | SearchDirection = Plane(RelativeSphereCenter, CirclePlaneNormal,0).getNormal();
|
---|
1430 | helper = CircleCenter - (ThirdPoint->node->getPosition());
|
---|
1431 | if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
|
---|
1432 | SearchDirection.Scale(-1.);
|
---|
1433 | LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
|
---|
1434 | if (fabs(RelativeSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) {
|
---|
1435 | // rotated the wrong way!
|
---|
1436 | ELOG(3, "DEBUG: SearchDirection and RelativeOldSphereCenter are still not orthogonal!");
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | // add third point
|
---|
1440 | FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
|
---|
1441 |
|
---|
1442 | } else {
|
---|
1443 | LOG(3, "DEBUG: Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!");
|
---|
1444 | }
|
---|
1445 |
|
---|
1446 | if (CandidateLine.pointlist.empty()) {
|
---|
1447 | ELOG(4, "DEBUG: Could not find a suitable candidate.");
|
---|
1448 | return false;
|
---|
1449 | }
|
---|
1450 | {
|
---|
1451 | std::stringstream output;
|
---|
1452 | for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it)
|
---|
1453 | output << " " << *(*it);
|
---|
1454 | LOG(3, "DEBUG: Third Points are: " << output.str());
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 | return true;
|
---|
1458 | }
|
---|
1459 | ;
|
---|
1460 |
|
---|
1461 | /** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
|
---|
1462 | * \param *&LCList atoms in LinkedCell_deprecated list
|
---|
1463 | * \param RADIUS radius of the virtual sphere
|
---|
1464 | * \return true - for all open lines without candidates so far, a candidate has been found,
|
---|
1465 | * false - at least one open line without candidate still
|
---|
1466 | */
|
---|
1467 | bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell_deprecated *&LCList)
|
---|
1468 | {
|
---|
1469 | bool TesselationFailFlag = true;
|
---|
1470 | CandidateForTesselation *baseline = NULL;
|
---|
1471 | BoundaryTriangleSet *T = NULL;
|
---|
1472 |
|
---|
1473 | for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
|
---|
1474 | baseline = Runner->second;
|
---|
1475 | if (baseline->pointlist.empty()) {
|
---|
1476 | ASSERT((baseline->BaseLine->triangles.size() == 1),"Open line without exactly one attached triangle");
|
---|
1477 | T = (((baseline->BaseLine->triangles.begin()))->second);
|
---|
1478 | LOG(4, "DEBUG: Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T);
|
---|
1479 | TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
|
---|
1480 | }
|
---|
1481 | }
|
---|
1482 | return TesselationFailFlag;
|
---|
1483 | }
|
---|
1484 | ;
|
---|
1485 |
|
---|
1486 | /** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
|
---|
1487 | * \param CandidateLine triangle to add
|
---|
1488 | * \param RADIUS Radius of sphere
|
---|
1489 | * \param *LC LinkedCell_deprecated structure
|
---|
1490 | * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
|
---|
1491 | * AddTesselationLine() in AddCandidateTriangle()
|
---|
1492 | */
|
---|
1493 | void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC)
|
---|
1494 | {
|
---|
1495 | //Info FunctionInfo(__func__);
|
---|
1496 | Vector Center;
|
---|
1497 | TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
|
---|
1498 | TesselPointList::iterator Runner;
|
---|
1499 | TesselPointList::iterator Sprinter;
|
---|
1500 |
|
---|
1501 | // fill the set of neighbours
|
---|
1502 | TesselPointSet SetOfNeighbours;
|
---|
1503 |
|
---|
1504 | SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
|
---|
1505 | for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
|
---|
1506 | SetOfNeighbours.insert(*Runner);
|
---|
1507 | TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
1508 |
|
---|
1509 | {
|
---|
1510 | std::stringstream output;
|
---|
1511 | for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
|
---|
1512 | output << **TesselRunner;
|
---|
1513 | LOG(3, "DEBUG: List of Candidates for Turning Point " << *TurningPoint << ":");
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 | // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
|
---|
1517 | Runner = connectedClosestPoints->begin();
|
---|
1518 | Sprinter = Runner;
|
---|
1519 | Sprinter++;
|
---|
1520 | while (Sprinter != connectedClosestPoints->end()) {
|
---|
1521 | LOG(3, "DEBUG: Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << ".");
|
---|
1522 |
|
---|
1523 | AddTesselationPoint(TurningPoint, 0);
|
---|
1524 | AddTesselationPoint(*Runner, 1);
|
---|
1525 | AddTesselationPoint(*Sprinter, 2);
|
---|
1526 |
|
---|
1527 | AddCandidateTriangle(CandidateLine, Opt);
|
---|
1528 |
|
---|
1529 | Runner = Sprinter;
|
---|
1530 | Sprinter++;
|
---|
1531 | if (Sprinter != connectedClosestPoints->end()) {
|
---|
1532 | // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
|
---|
1533 | FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle
|
---|
1534 | LOG(2, "DEBUG: There are still more triangles to add.");
|
---|
1535 | }
|
---|
1536 | // pick candidates for other open lines as well
|
---|
1537 | FindCandidatesforOpenLines(RADIUS, LC);
|
---|
1538 |
|
---|
1539 | // check whether we add a degenerate or a normal triangle
|
---|
1540 | if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
|
---|
1541 | // add normal and degenerate triangles
|
---|
1542 | LOG(3, "DEBUG: Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides.");
|
---|
1543 | AddCandidateTriangle(CandidateLine, OtherOpt);
|
---|
1544 |
|
---|
1545 | if (Sprinter != connectedClosestPoints->end()) {
|
---|
1546 | // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
|
---|
1547 | FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
|
---|
1548 | }
|
---|
1549 | // pick candidates for other open lines as well
|
---|
1550 | FindCandidatesforOpenLines(RADIUS, LC);
|
---|
1551 | }
|
---|
1552 | }
|
---|
1553 | delete (connectedClosestPoints);
|
---|
1554 | };
|
---|
1555 |
|
---|
1556 | /** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
|
---|
1557 | * \param *Sprinter next candidate to which internal open lines are set
|
---|
1558 | * \param *OptCenter OptCenter for this candidate
|
---|
1559 | */
|
---|
1560 | void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
|
---|
1561 | {
|
---|
1562 | //Info FunctionInfo(__func__);
|
---|
1563 |
|
---|
1564 | pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->getNr());
|
---|
1565 | for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
|
---|
1566 | LOG(4, "DEBUG: Checking line " << *(FindLine->second) << " ...");
|
---|
1567 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
1568 | if (FindLine->second->triangles.size() == 1) {
|
---|
1569 | CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
|
---|
1570 | if (!Finder->second->pointlist.empty())
|
---|
1571 | LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << ".");
|
---|
1572 | else {
|
---|
1573 | LOG(4, "DEBUG: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter));
|
---|
1574 | Finder->second->T = BTS; // is last triangle
|
---|
1575 | Finder->second->pointlist.push_back(Sprinter);
|
---|
1576 | Finder->second->ShortestAngle = 0.;
|
---|
1577 | Finder->second->OptCenter = *OptCenter;
|
---|
1578 | }
|
---|
1579 | }
|
---|
1580 | }
|
---|
1581 | };
|
---|
1582 |
|
---|
1583 | /** If a given \a *triangle is degenerated, this adds both sides.
|
---|
1584 | * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
|
---|
1585 | * Note that endpoints are stored in Tesselation::TPS
|
---|
1586 | * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
|
---|
1587 | * \param RADIUS radius of sphere
|
---|
1588 | * \param *LC pointer to LinkedCell_deprecated structure
|
---|
1589 | */
|
---|
1590 | void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell_deprecated *LC)
|
---|
1591 | {
|
---|
1592 | //Info FunctionInfo(__func__);
|
---|
1593 | Vector Center;
|
---|
1594 | CandidateMap::const_iterator CandidateCheck = OpenLines.end();
|
---|
1595 | BoundaryTriangleSet *triangle = NULL;
|
---|
1596 |
|
---|
1597 | /// 1. Create or pick the lines for the first triangle
|
---|
1598 | LOG(3, "DEBUG: Creating/Picking lines for first triangle ...");
|
---|
1599 | for (int i = 0; i < 3; i++) {
|
---|
1600 | BLS[i] = NULL;
|
---|
1601 | LOG(3, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1602 | AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
|
---|
1603 | }
|
---|
1604 |
|
---|
1605 | /// 2. create the first triangle and NormalVector and so on
|
---|
1606 | LOG(3, "DEBUG: Adding first triangle with center at " << CandidateLine.OptCenter << " ...");
|
---|
1607 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1608 | AddTesselationTriangle();
|
---|
1609 |
|
---|
1610 | // create normal vector
|
---|
1611 | BTS->GetCenter(Center);
|
---|
1612 | Center -= CandidateLine.OptCenter;
|
---|
1613 | BTS->SphereCenter = CandidateLine.OptCenter;
|
---|
1614 | BTS->GetNormalVector(Center);
|
---|
1615 | // give some verbose output about the whole procedure
|
---|
1616 | if (CandidateLine.T != NULL)
|
---|
1617 | LOG(2, "DEBUG: --> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1618 | else
|
---|
1619 | LOG(2, "DEBUG: --> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1620 | triangle = BTS;
|
---|
1621 |
|
---|
1622 | /// 3. Gather candidates for each new line
|
---|
1623 | LOG(3, "DEBUG: Adding candidates to new lines ...");
|
---|
1624 | for (int i = 0; i < 3; i++) {
|
---|
1625 | LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1626 | CandidateCheck = OpenLines.find(BLS[i]);
|
---|
1627 | if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
|
---|
1628 | if (CandidateCheck->second->T == NULL)
|
---|
1629 | CandidateCheck->second->T = triangle;
|
---|
1630 | FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
|
---|
1631 | }
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 | /// 4. Create or pick the lines for the second triangle
|
---|
1635 | LOG(3, "DEBUG: Creating/Picking lines for second triangle ...");
|
---|
1636 | for (int i = 0; i < 3; i++) {
|
---|
1637 | LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1638 | AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
|
---|
1639 | }
|
---|
1640 |
|
---|
1641 | /// 5. create the second triangle and NormalVector and so on
|
---|
1642 | LOG(3, "DEBUG: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ...");
|
---|
1643 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1644 | AddTesselationTriangle();
|
---|
1645 |
|
---|
1646 | BTS->SphereCenter = CandidateLine.OtherOptCenter;
|
---|
1647 | // create normal vector in other direction
|
---|
1648 | BTS->GetNormalVector(triangle->NormalVector);
|
---|
1649 | BTS->NormalVector.Scale(-1.);
|
---|
1650 | // give some verbose output about the whole procedure
|
---|
1651 | if (CandidateLine.T != NULL)
|
---|
1652 | LOG(2, "DEBUG: --> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1653 | else
|
---|
1654 | LOG(2, "DEBUG: --> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1655 |
|
---|
1656 | /// 6. Adding triangle to new lines
|
---|
1657 | LOG(3, "DEBUG: Adding second triangles to new lines ...");
|
---|
1658 | for (int i = 0; i < 3; i++) {
|
---|
1659 | LOG(4, "DEBUG: Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":");
|
---|
1660 | CandidateCheck = OpenLines.find(BLS[i]);
|
---|
1661 | if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
|
---|
1662 | if (CandidateCheck->second->T == NULL)
|
---|
1663 | CandidateCheck->second->T = BTS;
|
---|
1664 | }
|
---|
1665 | }
|
---|
1666 | }
|
---|
1667 | ;
|
---|
1668 |
|
---|
1669 | /** Adds a triangle to the Tesselation structure from three given TesselPoint's.
|
---|
1670 | * Note that endpoints are in Tesselation::TPS.
|
---|
1671 | * \param CandidateLine CandidateForTesselation structure contains other information
|
---|
1672 | * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
|
---|
1673 | */
|
---|
1674 | void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
|
---|
1675 | {
|
---|
1676 | //Info FunctionInfo(__func__);
|
---|
1677 | Vector Center;
|
---|
1678 | Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
|
---|
1679 |
|
---|
1680 | // add the lines
|
---|
1681 | AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
|
---|
1682 | AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
|
---|
1683 | AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
|
---|
1684 |
|
---|
1685 | // add the triangles
|
---|
1686 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
1687 | AddTesselationTriangle();
|
---|
1688 |
|
---|
1689 | // create normal vector
|
---|
1690 | BTS->GetCenter(Center);
|
---|
1691 | Center.SubtractVector(*OptCenter);
|
---|
1692 | BTS->SphereCenter = *OptCenter;
|
---|
1693 | BTS->GetNormalVector(Center);
|
---|
1694 |
|
---|
1695 | // give some verbose output about the whole procedure
|
---|
1696 | if (CandidateLine.T != NULL)
|
---|
1697 | LOG(2, "INFO: --> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << ".");
|
---|
1698 | else
|
---|
1699 | LOG(2, "INFO: --> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle.");
|
---|
1700 | }
|
---|
1701 | ;
|
---|
1702 |
|
---|
1703 | /** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
|
---|
1704 | * We look whether the closest point on \a *Base with respect to the other baseline is outside
|
---|
1705 | * of the segment formed by both endpoints (concave) or not (convex).
|
---|
1706 | * \param *out output stream for debugging
|
---|
1707 | * \param *Base line to be flipped
|
---|
1708 | * \return NULL - convex, otherwise endpoint that makes it concave
|
---|
1709 | */
|
---|
1710 | class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
|
---|
1711 | {
|
---|
1712 | //Info FunctionInfo(__func__);
|
---|
1713 | class BoundaryPointSet *Spot = NULL;
|
---|
1714 | class BoundaryLineSet *OtherBase;
|
---|
1715 | Vector *ClosestPoint;
|
---|
1716 |
|
---|
1717 | int m = 0;
|
---|
1718 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1719 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1720 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1721 | BPS[m++] = runner->second->endpoints[j];
|
---|
1722 | OtherBase = new class BoundaryLineSet(BPS, -1);
|
---|
1723 |
|
---|
1724 | LOG(3, "DEBUG: Current base line is " << *Base << ".");
|
---|
1725 | LOG(3, "DEBUG: Other base line is " << *OtherBase << ".");
|
---|
1726 |
|
---|
1727 | // get the closest point on each line to the other line
|
---|
1728 | ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
|
---|
1729 |
|
---|
1730 | // delete the temporary other base line
|
---|
1731 | delete (OtherBase);
|
---|
1732 |
|
---|
1733 | // get the distance vector from Base line to OtherBase line
|
---|
1734 | Vector DistanceToIntersection[2], BaseLine;
|
---|
1735 | double distance[2];
|
---|
1736 | BaseLine = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
|
---|
1737 | for (int i = 0; i < 2; i++) {
|
---|
1738 | DistanceToIntersection[i] = (*ClosestPoint) - (Base->endpoints[i]->node->getPosition());
|
---|
1739 | distance[i] = BaseLine.ScalarProduct(DistanceToIntersection[i]);
|
---|
1740 | }
|
---|
1741 | delete (ClosestPoint);
|
---|
1742 | if ((distance[0] * distance[1]) > 0) { // have same sign?
|
---|
1743 | LOG(4, "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave.");
|
---|
1744 | if (distance[0] < distance[1]) {
|
---|
1745 | Spot = Base->endpoints[0];
|
---|
1746 | } else {
|
---|
1747 | Spot = Base->endpoints[1];
|
---|
1748 | }
|
---|
1749 | return Spot;
|
---|
1750 | } else { // different sign, i.e. we are in between
|
---|
1751 | LOG(3, "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex.");
|
---|
1752 | return NULL;
|
---|
1753 | }
|
---|
1754 |
|
---|
1755 | }
|
---|
1756 | ;
|
---|
1757 |
|
---|
1758 | void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
|
---|
1759 | {
|
---|
1760 | //Info FunctionInfo(__func__);
|
---|
1761 | // print all lines
|
---|
1762 | std::stringstream output;
|
---|
1763 | for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
|
---|
1764 | output << " " << *(PointRunner->second);
|
---|
1765 | LOG(3, "DEBUG: Printing all boundary points for debugging:" << output.str());
|
---|
1766 | }
|
---|
1767 | ;
|
---|
1768 |
|
---|
1769 | void Tesselation::PrintAllBoundaryLines(ofstream *out) const
|
---|
1770 | {
|
---|
1771 | //Info FunctionInfo(__func__);
|
---|
1772 | // print all lines
|
---|
1773 | std::stringstream output;
|
---|
1774 | for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
|
---|
1775 | output << " " << *(LineRunner->second);
|
---|
1776 | LOG(3, "DEBUG: Printing all boundary lines for debugging:" << output.str());
|
---|
1777 | }
|
---|
1778 | ;
|
---|
1779 |
|
---|
1780 | void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
|
---|
1781 | {
|
---|
1782 | //Info FunctionInfo(__func__);
|
---|
1783 | // print all triangles
|
---|
1784 | std::stringstream output;
|
---|
1785 | for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
|
---|
1786 | output << " " << *(TriangleRunner->second);
|
---|
1787 | LOG(3, "DEBUG: Printing all boundary triangles for debugging:" << output.str());
|
---|
1788 | }
|
---|
1789 | ;
|
---|
1790 |
|
---|
1791 | /** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
|
---|
1792 | * \param *out output stream for debugging
|
---|
1793 | * \param *Base line to be flipped
|
---|
1794 | * \return volume change due to flipping (0 - then no flipped occured)
|
---|
1795 | */
|
---|
1796 | double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
|
---|
1797 | {
|
---|
1798 | //Info FunctionInfo(__func__);
|
---|
1799 | class BoundaryLineSet *OtherBase;
|
---|
1800 | Vector *ClosestPoint[2];
|
---|
1801 | double volume;
|
---|
1802 |
|
---|
1803 | int m = 0;
|
---|
1804 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1805 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1806 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1807 | BPS[m++] = runner->second->endpoints[j];
|
---|
1808 | OtherBase = new class BoundaryLineSet(BPS, -1);
|
---|
1809 |
|
---|
1810 | LOG(3, "DEBUG: Current base line is " << *Base << ".");
|
---|
1811 | LOG(3, "DEBUG: Other base line is " << *OtherBase << ".");
|
---|
1812 |
|
---|
1813 | // get the closest point on each line to the other line
|
---|
1814 | ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
|
---|
1815 | ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
|
---|
1816 |
|
---|
1817 | // get the distance vector from Base line to OtherBase line
|
---|
1818 | Vector Distance = (*ClosestPoint[1]) - (*ClosestPoint[0]);
|
---|
1819 |
|
---|
1820 | // calculate volume
|
---|
1821 | volume = CalculateVolumeofGeneralTetraeder(Base->endpoints[1]->node->getPosition(), OtherBase->endpoints[0]->node->getPosition(), OtherBase->endpoints[1]->node->getPosition(), Base->endpoints[0]->node->getPosition());
|
---|
1822 |
|
---|
1823 | // delete the temporary other base line and the closest points
|
---|
1824 | delete (ClosestPoint[0]);
|
---|
1825 | delete (ClosestPoint[1]);
|
---|
1826 | delete (OtherBase);
|
---|
1827 |
|
---|
1828 | if (Distance.NormSquared() < MYEPSILON) { // check for intersection
|
---|
1829 | LOG(3, "REJECT: Both lines have an intersection: Nothing to do.");
|
---|
1830 | return false;
|
---|
1831 | } else { // check for sign against BaseLineNormal
|
---|
1832 | Vector BaseLineNormal;
|
---|
1833 | BaseLineNormal.Zero();
|
---|
1834 | if (Base->triangles.size() < 2) {
|
---|
1835 | ELOG(1, "Less than two triangles are attached to this baseline!");
|
---|
1836 | return 0.;
|
---|
1837 | }
|
---|
1838 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
|
---|
1839 | LOG(4, "DEBUG: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
|
---|
1840 | BaseLineNormal += (runner->second->NormalVector);
|
---|
1841 | }
|
---|
1842 | BaseLineNormal.Scale(1. / 2.);
|
---|
1843 |
|
---|
1844 | if (Distance.ScalarProduct(BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
|
---|
1845 | LOG(3, "ACCEPT: Other base line would be higher: Flipping baseline.");
|
---|
1846 | // calculate volume summand as a general tetraeder
|
---|
1847 | return volume;
|
---|
1848 | } else { // Base higher than OtherBase -> do nothing
|
---|
1849 | LOG(3, "REJECT: Base line is higher: Nothing to do.");
|
---|
1850 | return 0.;
|
---|
1851 | }
|
---|
1852 | }
|
---|
1853 | }
|
---|
1854 | ;
|
---|
1855 |
|
---|
1856 | /** For a given baseline and its two connected triangles, flips the baseline.
|
---|
1857 | * I.e. we create the new baseline between the other two endpoints of these four
|
---|
1858 | * endpoints and reconstruct the two triangles accordingly.
|
---|
1859 | * \param *out output stream for debugging
|
---|
1860 | * \param *Base line to be flipped
|
---|
1861 | * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
|
---|
1862 | */
|
---|
1863 | class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
|
---|
1864 | {
|
---|
1865 | //Info FunctionInfo(__func__);
|
---|
1866 | class BoundaryLineSet *OldLines[4], *NewLine;
|
---|
1867 | class BoundaryPointSet *OldPoints[2];
|
---|
1868 | Vector BaseLineNormal;
|
---|
1869 | int OldTriangleNrs[2], OldBaseLineNr;
|
---|
1870 | int i, m;
|
---|
1871 |
|
---|
1872 | // calculate NormalVector for later use
|
---|
1873 | BaseLineNormal.Zero();
|
---|
1874 | if (Base->triangles.size() < 2) {
|
---|
1875 | ELOG(1, "Less than two triangles are attached to this baseline!");
|
---|
1876 | return NULL;
|
---|
1877 | }
|
---|
1878 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
|
---|
1879 | LOG(1, "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << ".");
|
---|
1880 | BaseLineNormal += (runner->second->NormalVector);
|
---|
1881 | }
|
---|
1882 | BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
|
---|
1883 |
|
---|
1884 | // get the two triangles
|
---|
1885 | // gather four endpoints and four lines
|
---|
1886 | for (int j = 0; j < 4; j++)
|
---|
1887 | OldLines[j] = NULL;
|
---|
1888 | for (int j = 0; j < 2; j++)
|
---|
1889 | OldPoints[j] = NULL;
|
---|
1890 | i = 0;
|
---|
1891 | m = 0;
|
---|
1892 |
|
---|
1893 | // print OldLines and OldPoints for debugging
|
---|
1894 | if (DoLog(3)) {
|
---|
1895 | std::stringstream output;
|
---|
1896 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1897 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1898 | if (runner->second->lines[j] != Base) // pick not the central baseline
|
---|
1899 | output << *runner->second->lines[j] << "\t";
|
---|
1900 | LOG(3, "DEBUG: The four old lines are: " << output.str());
|
---|
1901 | }
|
---|
1902 | if (DoLog(3)) {
|
---|
1903 | std::stringstream output;
|
---|
1904 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1905 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1906 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1907 | output << *runner->second->endpoints[j] << "\t";
|
---|
1908 | LOG(3, "DEBUG: The two old points are: " << output.str());
|
---|
1909 | }
|
---|
1910 |
|
---|
1911 | // index OldLines and OldPoints
|
---|
1912 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1913 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1914 | if (runner->second->lines[j] != Base) // pick not the central baseline
|
---|
1915 | OldLines[i++] = runner->second->lines[j];
|
---|
1916 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
|
---|
1917 | for (int j = 0; j < 3; j++) // all of their endpoints and baselines
|
---|
1918 | if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
|
---|
1919 | OldPoints[m++] = runner->second->endpoints[j];
|
---|
1920 |
|
---|
1921 | // check whether everything is in place to create new lines and triangles
|
---|
1922 | if (i < 4) {
|
---|
1923 | ELOG(1, "We have not gathered enough baselines!");
|
---|
1924 | return NULL;
|
---|
1925 | }
|
---|
1926 | for (int j = 0; j < 4; j++)
|
---|
1927 | if (OldLines[j] == NULL) {
|
---|
1928 | ELOG(1, "We have not gathered enough baselines!");
|
---|
1929 | return NULL;
|
---|
1930 | }
|
---|
1931 | for (int j = 0; j < 2; j++)
|
---|
1932 | if (OldPoints[j] == NULL) {
|
---|
1933 | ELOG(1, "We have not gathered enough endpoints!");
|
---|
1934 | return NULL;
|
---|
1935 | }
|
---|
1936 |
|
---|
1937 | // remove triangles and baseline removes itself
|
---|
1938 | LOG(3, "DEBUG: Deleting baseline " << *Base << " from global list.");
|
---|
1939 | OldBaseLineNr = Base->Nr;
|
---|
1940 | m = 0;
|
---|
1941 | // first obtain all triangle to delete ... (otherwise we pull the carpet (Base) from under the for-loop's feet)
|
---|
1942 | list <BoundaryTriangleSet *> TrianglesOfBase;
|
---|
1943 | for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); ++runner)
|
---|
1944 | TrianglesOfBase.push_back(runner->second);
|
---|
1945 | // .. then delete each triangle (which deletes the line as well)
|
---|
1946 | for (list <BoundaryTriangleSet *>::iterator runner = TrianglesOfBase.begin(); !TrianglesOfBase.empty(); runner = TrianglesOfBase.begin()) {
|
---|
1947 | LOG(3, "DEBUG: Deleting triangle " << *(*runner) << ".");
|
---|
1948 | OldTriangleNrs[m++] = (*runner)->Nr;
|
---|
1949 | RemoveTesselationTriangle((*runner));
|
---|
1950 | TrianglesOfBase.erase(runner);
|
---|
1951 | }
|
---|
1952 |
|
---|
1953 | // construct new baseline (with same number as old one)
|
---|
1954 | BPS[0] = OldPoints[0];
|
---|
1955 | BPS[1] = OldPoints[1];
|
---|
1956 | NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
|
---|
1957 | LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
|
---|
1958 | LOG(3, "DEBUG: Created new baseline " << *NewLine << ".");
|
---|
1959 |
|
---|
1960 | // construct new triangles with flipped baseline
|
---|
1961 | i = -1;
|
---|
1962 | if (OldLines[0]->IsConnectedTo(OldLines[2]))
|
---|
1963 | i = 2;
|
---|
1964 | if (OldLines[0]->IsConnectedTo(OldLines[3]))
|
---|
1965 | i = 3;
|
---|
1966 | if (i != -1) {
|
---|
1967 | BLS[0] = OldLines[0];
|
---|
1968 | BLS[1] = OldLines[i];
|
---|
1969 | BLS[2] = NewLine;
|
---|
1970 | BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
|
---|
1971 | BTS->GetNormalVector(BaseLineNormal);
|
---|
1972 | AddTesselationTriangle(OldTriangleNrs[0]);
|
---|
1973 | LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
|
---|
1974 |
|
---|
1975 | BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
|
---|
1976 | BLS[1] = OldLines[1];
|
---|
1977 | BLS[2] = NewLine;
|
---|
1978 | BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
|
---|
1979 | BTS->GetNormalVector(BaseLineNormal);
|
---|
1980 | AddTesselationTriangle(OldTriangleNrs[1]);
|
---|
1981 | LOG(3, "DEBUG: Created new triangle " << *BTS << ".");
|
---|
1982 | } else {
|
---|
1983 | ELOG(0, "The four old lines do not connect, something's utterly wrong here!");
|
---|
1984 | return NULL;
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 | return NewLine;
|
---|
1988 | }
|
---|
1989 | ;
|
---|
1990 |
|
---|
1991 | /** Finds the second point of starting triangle.
|
---|
1992 | * \param *a first node
|
---|
1993 | * \param Oben vector indicating the outside
|
---|
1994 | * \param OptCandidate reference to recommended candidate on return
|
---|
1995 | * \param Storage[3] array storing angles and other candidate information
|
---|
1996 | * \param RADIUS radius of virtual sphere
|
---|
1997 | * \param *LC LinkedCell_deprecated structure with neighbouring points
|
---|
1998 | */
|
---|
1999 | void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell_deprecated *LC)
|
---|
2000 | {
|
---|
2001 | //Info FunctionInfo(__func__);
|
---|
2002 | Vector AngleCheck;
|
---|
2003 | class TesselPoint* Candidate = NULL;
|
---|
2004 | double norm = -1.;
|
---|
2005 | double angle = 0.;
|
---|
2006 | int N[NDIM];
|
---|
2007 | int Nlower[NDIM];
|
---|
2008 | int Nupper[NDIM];
|
---|
2009 |
|
---|
2010 | if (LC->SetIndexToNode(a)) { // get cell for the starting point
|
---|
2011 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
2012 | N[i] = LC->n[i];
|
---|
2013 | } else {
|
---|
2014 | ELOG(1, "Point " << *a << " is not found in cell " << LC->index << ".");
|
---|
2015 | return;
|
---|
2016 | }
|
---|
2017 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
2018 | for (int i = 0; i < NDIM; i++) {
|
---|
2019 | Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
|
---|
2020 | Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
|
---|
2021 | }
|
---|
2022 | LOG(3, "DEBUG: LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], ");
|
---|
2023 |
|
---|
2024 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2025 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2026 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2027 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
2028 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
2029 | if (List != NULL) {
|
---|
2030 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2031 | Candidate = (*Runner);
|
---|
2032 | // check if we only have one unique point yet ...
|
---|
2033 | if (a != Candidate) {
|
---|
2034 | // Calculate center of the circle with radius RADIUS through points a and Candidate
|
---|
2035 | Vector OrthogonalizedOben, aCandidate, Center;
|
---|
2036 | double distance, scaleFactor;
|
---|
2037 |
|
---|
2038 | OrthogonalizedOben = Oben;
|
---|
2039 | aCandidate = (a->getPosition()) - (Candidate->getPosition());
|
---|
2040 | OrthogonalizedOben.ProjectOntoPlane(aCandidate);
|
---|
2041 | OrthogonalizedOben.Normalize();
|
---|
2042 | distance = 0.5 * aCandidate.Norm();
|
---|
2043 | scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
|
---|
2044 | OrthogonalizedOben.Scale(scaleFactor);
|
---|
2045 |
|
---|
2046 | Center = 0.5 * ((Candidate->getPosition()) + (a->getPosition()));
|
---|
2047 | Center += OrthogonalizedOben;
|
---|
2048 |
|
---|
2049 | AngleCheck = Center - (a->getPosition());
|
---|
2050 | norm = aCandidate.Norm();
|
---|
2051 | // second point shall have smallest angle with respect to Oben vector
|
---|
2052 | if (norm < RADIUS * 2.) {
|
---|
2053 | angle = AngleCheck.Angle(Oben);
|
---|
2054 | if (angle < Storage[0]) {
|
---|
2055 | //LOG(1, "INFO: Old values of Storage is " << Storage[0] << ", " << Storage[1]);
|
---|
2056 | LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".");
|
---|
2057 | OptCandidate = Candidate;
|
---|
2058 | Storage[0] = angle;
|
---|
2059 | //LOG(4, "DEBUG: Changing something in Storage is " << Storage[0] << ", " << Storage[1]);
|
---|
2060 | } else {
|
---|
2061 | //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate);
|
---|
2062 | }
|
---|
2063 | } else {
|
---|
2064 | //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Refused due to Radius " << norm);
|
---|
2065 | }
|
---|
2066 | } else {
|
---|
2067 | //LOG(4, "DEBUG: Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << ".");
|
---|
2068 | }
|
---|
2069 | }
|
---|
2070 | } else {
|
---|
2071 | LOG(4, "DEBUG: Linked cell list is empty.");
|
---|
2072 | }
|
---|
2073 | }
|
---|
2074 | }
|
---|
2075 | ;
|
---|
2076 |
|
---|
2077 | /** This recursive function finds a third point, to form a triangle with two given ones.
|
---|
2078 | * Note that this function is for the starting triangle.
|
---|
2079 | * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
|
---|
2080 | * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
|
---|
2081 | * the center of the sphere is still fixed up to a single parameter. The band of possible values
|
---|
2082 | * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
|
---|
2083 | * us the "null" on this circle, the new center of the candidate point will be some way along this
|
---|
2084 | * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
|
---|
2085 | * by the normal vector of the base triangle that always points outwards by construction.
|
---|
2086 | * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
|
---|
2087 | * We construct the normal vector that defines the plane this circle lies in, it is just in the
|
---|
2088 | * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
|
---|
2089 | * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
|
---|
2090 | * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
|
---|
2091 | * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
|
---|
2092 | * both.
|
---|
2093 | * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
|
---|
2094 | * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
|
---|
2095 | * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
|
---|
2096 | * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
|
---|
2097 | * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
|
---|
2098 | * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
|
---|
2099 | * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
|
---|
2100 | * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
|
---|
2101 | * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
|
---|
2102 | * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
|
---|
2103 | * @param ThirdPoint third point to avoid in search
|
---|
2104 | * @param RADIUS radius of sphere
|
---|
2105 | * @param *LC LinkedCell_deprecated structure with neighbouring points
|
---|
2106 | */
|
---|
2107 | void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell_deprecated *LC) const
|
---|
2108 | {
|
---|
2109 | //Info FunctionInfo(__func__);
|
---|
2110 | Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
|
---|
2111 | Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
|
---|
2112 | Vector SphereCenter;
|
---|
2113 | Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
|
---|
2114 | Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
|
---|
2115 | Vector NewNormalVector; // normal vector of the Candidate's triangle
|
---|
2116 | Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
|
---|
2117 | Vector RelativeOldSphereCenter;
|
---|
2118 | Vector NewPlaneCenter;
|
---|
2119 | double CircleRadius; // radius of this circle
|
---|
2120 | double radius;
|
---|
2121 | double otherradius;
|
---|
2122 | double alpha, Otheralpha; // angles (i.e. parameter for the circle).
|
---|
2123 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2124 | TesselPoint *Candidate = NULL;
|
---|
2125 |
|
---|
2126 | LOG(3, "DEBUG: NormalVector of BaseTriangle is " << NormalVector << ".");
|
---|
2127 |
|
---|
2128 | // copy old center
|
---|
2129 | CandidateLine.OldCenter = OldSphereCenter;
|
---|
2130 | CandidateLine.ThirdPoint = ThirdPoint;
|
---|
2131 | CandidateLine.pointlist.clear();
|
---|
2132 |
|
---|
2133 | // construct center of circle
|
---|
2134 | CircleCenter = 0.5 * ((CandidateLine.BaseLine->endpoints[0]->node->getPosition()) +
|
---|
2135 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()));
|
---|
2136 |
|
---|
2137 | // construct normal vector of circle
|
---|
2138 | CirclePlaneNormal = (CandidateLine.BaseLine->endpoints[0]->node->getPosition()) -
|
---|
2139 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition());
|
---|
2140 |
|
---|
2141 | RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
|
---|
2142 |
|
---|
2143 | // calculate squared radius TesselPoint *ThirdPoint,f circle
|
---|
2144 | radius = CirclePlaneNormal.NormSquared() / 4.;
|
---|
2145 | if (radius < RADIUS * RADIUS) {
|
---|
2146 | CircleRadius = RADIUS * RADIUS - radius;
|
---|
2147 | CirclePlaneNormal.Normalize();
|
---|
2148 | LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
2149 |
|
---|
2150 | // test whether old center is on the band's plane
|
---|
2151 | if (fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
|
---|
2152 | ELOG(1, "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(CirclePlaneNormal)) << "!");
|
---|
2153 | RelativeOldSphereCenter.ProjectOntoPlane(CirclePlaneNormal);
|
---|
2154 | }
|
---|
2155 | radius = RelativeOldSphereCenter.NormSquared();
|
---|
2156 | if (fabs(radius - CircleRadius) < HULLEPSILON) {
|
---|
2157 | LOG(3, "DEBUG: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << ".");
|
---|
2158 |
|
---|
2159 | // check SearchDirection
|
---|
2160 | LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
|
---|
2161 | if (fabs(RelativeOldSphereCenter.ScalarProduct(SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
|
---|
2162 | ELOG(1, "SearchDirection and RelativeOldSphereCenter are not orthogonal!");
|
---|
2163 | }
|
---|
2164 |
|
---|
2165 | // get cell for the starting point
|
---|
2166 | if (LC->SetIndexToVector(CircleCenter)) {
|
---|
2167 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
2168 | N[i] = LC->n[i];
|
---|
2169 | //LOG(1, "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
2170 | } else {
|
---|
2171 | ELOG(1, "Vector " << CircleCenter << " is outside of LinkedCell's bounding box.");
|
---|
2172 | return;
|
---|
2173 | }
|
---|
2174 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
2175 | // if (DoLog(3)) {
|
---|
2176 | // std::stringstream output;
|
---|
2177 | // output << "LC Intervals:";
|
---|
2178 | // for (int i = 0; i < NDIM; i++)
|
---|
2179 | // output << " [" << Nlower[i] << "," << Nupper[i] << "] ";
|
---|
2180 | // LOG(0, output.str());
|
---|
2181 | // }
|
---|
2182 | for (int i = 0; i < NDIM; i++) {
|
---|
2183 | Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
|
---|
2184 | Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
|
---|
2185 | }
|
---|
2186 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2187 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2188 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2189 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
2190 | //LOG(1, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << ".");
|
---|
2191 | if (List != NULL) {
|
---|
2192 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2193 | Candidate = (*Runner);
|
---|
2194 |
|
---|
2195 | // check for three unique points
|
---|
2196 | LOG(4, "DEBUG: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << ".");
|
---|
2197 | if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
|
---|
2198 |
|
---|
2199 | // find center on the plane
|
---|
2200 | GetCenterofCircumcircle(NewPlaneCenter, CandidateLine.BaseLine->endpoints[0]->node->getPosition(), CandidateLine.BaseLine->endpoints[1]->node->getPosition(), Candidate->getPosition());
|
---|
2201 | LOG(3, "DEBUG: NewPlaneCenter is " << NewPlaneCenter << ".");
|
---|
2202 |
|
---|
2203 | try {
|
---|
2204 | NewNormalVector = Plane((CandidateLine.BaseLine->endpoints[0]->node->getPosition()),
|
---|
2205 | (CandidateLine.BaseLine->endpoints[1]->node->getPosition()),
|
---|
2206 | (Candidate->getPosition())).getNormal();
|
---|
2207 | LOG(3, "DEBUG: NewNormalVector is " << NewNormalVector << ".");
|
---|
2208 | radius = CandidateLine.BaseLine->endpoints[0]->node->DistanceSquared(NewPlaneCenter);
|
---|
2209 | LOG(3, "DEBUG: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << ".");
|
---|
2210 | LOG(3, "DEBUG: SearchDirection is " << SearchDirection << ".");
|
---|
2211 | LOG(3, "DEBUG: Radius of CircumCenterCircle is " << radius << ".");
|
---|
2212 | if (radius < RADIUS * RADIUS) {
|
---|
2213 | otherradius = CandidateLine.BaseLine->endpoints[1]->node->DistanceSquared(NewPlaneCenter);
|
---|
2214 | if (fabs(radius - otherradius) < HULLEPSILON) {
|
---|
2215 | // construct both new centers
|
---|
2216 | NewSphereCenter = NewPlaneCenter;
|
---|
2217 | OtherNewSphereCenter= NewPlaneCenter;
|
---|
2218 | helper = NewNormalVector;
|
---|
2219 | helper.Scale(sqrt(RADIUS * RADIUS - radius));
|
---|
2220 | LOG(4, "DEBUG: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << ".");
|
---|
2221 | NewSphereCenter += helper;
|
---|
2222 | LOG(4, "DEBUG: NewSphereCenter is at " << NewSphereCenter << ".");
|
---|
2223 | // OtherNewSphereCenter is created by the same vector just in the other direction
|
---|
2224 | helper.Scale(-1.);
|
---|
2225 | OtherNewSphereCenter += helper;
|
---|
2226 | LOG(4, "DEBUG: OtherNewSphereCenter is at " << OtherNewSphereCenter << ".");
|
---|
2227 | alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
|
---|
2228 | Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection, HULLEPSILON);
|
---|
2229 | if ((ThirdPoint != NULL) && (Candidate == ThirdPoint->node)) { // in that case only the other circlecenter is valid
|
---|
2230 | if (OldSphereCenter.DistanceSquared(NewSphereCenter) < OldSphereCenter.DistanceSquared(OtherNewSphereCenter))
|
---|
2231 | alpha = Otheralpha;
|
---|
2232 | } else
|
---|
2233 | alpha = min(alpha, Otheralpha);
|
---|
2234 | // if there is a better candidate, drop the current list and add the new candidate
|
---|
2235 | // otherwise ignore the new candidate and keep the list
|
---|
2236 | if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
|
---|
2237 | if (fabs(alpha - Otheralpha) > MYEPSILON) {
|
---|
2238 | CandidateLine.OptCenter = NewSphereCenter;
|
---|
2239 | CandidateLine.OtherOptCenter = OtherNewSphereCenter;
|
---|
2240 | } else {
|
---|
2241 | CandidateLine.OptCenter = OtherNewSphereCenter;
|
---|
2242 | CandidateLine.OtherOptCenter = NewSphereCenter;
|
---|
2243 | }
|
---|
2244 | // if there is an equal candidate, add it to the list without clearing the list
|
---|
2245 | if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
|
---|
2246 | CandidateLine.pointlist.push_back(Candidate);
|
---|
2247 | LOG(2, "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
|
---|
2248 | } else {
|
---|
2249 | // remove all candidates from the list and then the list itself
|
---|
2250 | CandidateLine.pointlist.clear();
|
---|
2251 | CandidateLine.pointlist.push_back(Candidate);
|
---|
2252 | LOG(2, "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << ".");
|
---|
2253 | }
|
---|
2254 | CandidateLine.ShortestAngle = alpha;
|
---|
2255 | LOG(2, "DEBUG: There are " << CandidateLine.pointlist.size() << " candidates in the list now.");
|
---|
2256 | } else {
|
---|
2257 | if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
|
---|
2258 | LOG(3, "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " .");
|
---|
2259 | } else {
|
---|
2260 | LOG(3, "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected.");
|
---|
2261 | }
|
---|
2262 | }
|
---|
2263 | } else {
|
---|
2264 | ELOG(0, "REJECT: Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius));
|
---|
2265 | }
|
---|
2266 | } else {
|
---|
2267 | LOG(3, "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << ".");
|
---|
2268 | }
|
---|
2269 | }
|
---|
2270 | catch (LinearDependenceException &excp){
|
---|
2271 | LOG(3, boost::diagnostic_information(excp));
|
---|
2272 | LOG(3, "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent.");
|
---|
2273 | }
|
---|
2274 | } else {
|
---|
2275 | if (ThirdPoint != NULL) {
|
---|
2276 | LOG(3, "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << ".");
|
---|
2277 | } else {
|
---|
2278 | LOG(3, "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << ".");
|
---|
2279 | }
|
---|
2280 | }
|
---|
2281 | }
|
---|
2282 | }
|
---|
2283 | }
|
---|
2284 | } else {
|
---|
2285 | ELOG(1, "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << ".");
|
---|
2286 | }
|
---|
2287 | } else {
|
---|
2288 | if (ThirdPoint != NULL)
|
---|
2289 | LOG(3, "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!");
|
---|
2290 | else
|
---|
2291 | LOG(3, "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!");
|
---|
2292 | }
|
---|
2293 |
|
---|
2294 | LOG(2, "DEBUG: Sorting candidate list ...");
|
---|
2295 | if (CandidateLine.pointlist.size() > 1) {
|
---|
2296 | CandidateLine.pointlist.unique();
|
---|
2297 | CandidateLine.pointlist.sort(); //SortCandidates);
|
---|
2298 | }
|
---|
2299 |
|
---|
2300 | if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
|
---|
2301 | ELOG(0, "There were other points contained in the rolling sphere as well!");
|
---|
2302 | performCriticalExit();
|
---|
2303 | }
|
---|
2304 | }
|
---|
2305 | ;
|
---|
2306 |
|
---|
2307 | /** Finds the endpoint two lines are sharing.
|
---|
2308 | * \param *line1 first line
|
---|
2309 | * \param *line2 second line
|
---|
2310 | * \return point which is shared or NULL if none
|
---|
2311 | */
|
---|
2312 | class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
|
---|
2313 | {
|
---|
2314 | //Info FunctionInfo(__func__);
|
---|
2315 | const BoundaryLineSet * lines[2] = { line1, line2 };
|
---|
2316 | class BoundaryPointSet *node = NULL;
|
---|
2317 | PointMap OrderMap;
|
---|
2318 | PointTestPair OrderTest;
|
---|
2319 | for (int i = 0; i < 2; i++)
|
---|
2320 | // for both lines
|
---|
2321 | for (int j = 0; j < 2; j++) { // for both endpoints
|
---|
2322 | OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
|
---|
2323 | if (!OrderTest.second) { // if insertion fails, we have common endpoint
|
---|
2324 | node = OrderTest.first->second;
|
---|
2325 | LOG(1, "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << ".");
|
---|
2326 | j = 2;
|
---|
2327 | i = 2;
|
---|
2328 | break;
|
---|
2329 | }
|
---|
2330 | }
|
---|
2331 | return node;
|
---|
2332 | }
|
---|
2333 | ;
|
---|
2334 |
|
---|
2335 | /** Finds the boundary points that are closest to a given Vector \a *x.
|
---|
2336 | * \param *out output stream for debugging
|
---|
2337 | * \param *x Vector to look from
|
---|
2338 | * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
|
---|
2339 | */
|
---|
2340 | DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector &x, const LinkedCell_deprecated* LC) const
|
---|
2341 | {
|
---|
2342 | //Info FunctionInfo(__func__);
|
---|
2343 | PointMap::const_iterator FindPoint;
|
---|
2344 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
2345 |
|
---|
2346 | if (LinesOnBoundary.empty()) {
|
---|
2347 | ELOG(1, "There is no tesselation structure to compare the point with, please create one first.");
|
---|
2348 | return NULL;
|
---|
2349 | }
|
---|
2350 |
|
---|
2351 | // gather all points close to the desired one
|
---|
2352 | LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
|
---|
2353 | for (int i = 0; i < NDIM; i++) // store indices of this cell
|
---|
2354 | N[i] = LC->n[i];
|
---|
2355 | LOG(2, "DEBUG: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << ".");
|
---|
2356 | DistanceToPointMap * points = new DistanceToPointMap;
|
---|
2357 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
2358 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
2359 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
2360 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
2361 | const TesselPointSTLList *List = LC->GetCurrentCell();
|
---|
2362 | //LOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2]);
|
---|
2363 | if (List != NULL) {
|
---|
2364 | for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
2365 | FindPoint = PointsOnBoundary.find((*Runner)->getNr());
|
---|
2366 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
2367 | points->insert(DistanceToPointPair(FindPoint->second->node->DistanceSquared(x), FindPoint->second));
|
---|
2368 | LOG(3, "DEBUG: Putting " << *FindPoint->second << " into the list.");
|
---|
2369 | }
|
---|
2370 | }
|
---|
2371 | } else {
|
---|
2372 | ELOG(1, "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!");
|
---|
2373 | }
|
---|
2374 | }
|
---|
2375 |
|
---|
2376 | // check whether we found some points
|
---|
2377 | if (points->empty()) {
|
---|
2378 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2379 | delete (points);
|
---|
2380 | return NULL;
|
---|
2381 | }
|
---|
2382 | return points;
|
---|
2383 | }
|
---|
2384 | ;
|
---|
2385 |
|
---|
2386 | /** Finds the boundary line that is closest to a given Vector \a *x.
|
---|
2387 | * \param *out output stream for debugging
|
---|
2388 | * \param *x Vector to look from
|
---|
2389 | * \return closest BoundaryLineSet or NULL in degenerate case.
|
---|
2390 | */
|
---|
2391 | BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector &x, const LinkedCell_deprecated* LC) const
|
---|
2392 | {
|
---|
2393 | //Info FunctionInfo(__func__);
|
---|
2394 | // get closest points
|
---|
2395 | DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
|
---|
2396 | if (points == NULL) {
|
---|
2397 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2398 | return NULL;
|
---|
2399 | }
|
---|
2400 |
|
---|
2401 | // for each point, check its lines, remember closest
|
---|
2402 | LOG(1, "Finding closest BoundaryLine to " << x << " ... ");
|
---|
2403 | BoundaryLineSet *ClosestLine = NULL;
|
---|
2404 | double MinDistance = -1.;
|
---|
2405 | Vector helper;
|
---|
2406 | Vector Center;
|
---|
2407 | Vector BaseLine;
|
---|
2408 | for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
|
---|
2409 | for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
|
---|
2410 | // calculate closest point on line to desired point
|
---|
2411 | helper = 0.5 * (((LineRunner->second)->endpoints[0]->node->getPosition()) +
|
---|
2412 | ((LineRunner->second)->endpoints[1]->node->getPosition()));
|
---|
2413 | Center = (x) - helper;
|
---|
2414 | BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
|
---|
2415 | ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2416 | Center.ProjectOntoPlane(BaseLine);
|
---|
2417 | const double distance = Center.NormSquared();
|
---|
2418 | if ((ClosestLine == NULL) || (distance < MinDistance)) {
|
---|
2419 | // additionally calculate intersection on line (whether it's on the line section or not)
|
---|
2420 | helper = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition()) - Center;
|
---|
2421 | const double lengthA = helper.ScalarProduct(BaseLine);
|
---|
2422 | helper = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition()) - Center;
|
---|
2423 | const double lengthB = helper.ScalarProduct(BaseLine);
|
---|
2424 | if (lengthB * lengthA < 0) { // if have different sign
|
---|
2425 | ClosestLine = LineRunner->second;
|
---|
2426 | MinDistance = distance;
|
---|
2427 | LOG(1, "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << ".");
|
---|
2428 | } else {
|
---|
2429 | LOG(1, "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << ".");
|
---|
2430 | }
|
---|
2431 | } else {
|
---|
2432 | LOG(1, "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << ".");
|
---|
2433 | }
|
---|
2434 | }
|
---|
2435 | }
|
---|
2436 | delete (points);
|
---|
2437 | // check whether closest line is "too close" :), then it's inside
|
---|
2438 | if (ClosestLine == NULL) {
|
---|
2439 | LOG(2, "DEBUG: Is the only point, no one else is closeby.");
|
---|
2440 | return NULL;
|
---|
2441 | }
|
---|
2442 | return ClosestLine;
|
---|
2443 | }
|
---|
2444 | ;
|
---|
2445 |
|
---|
2446 | /** Finds the triangle that is closest to a given Vector \a *x.
|
---|
2447 | * \param *out output stream for debugging
|
---|
2448 | * \param *x Vector to look from
|
---|
2449 | * \return BoundaryTriangleSet of nearest triangle or NULL.
|
---|
2450 | */
|
---|
2451 | TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector &x, const LinkedCell_deprecated* LC) const
|
---|
2452 | {
|
---|
2453 | //Info FunctionInfo(__func__);
|
---|
2454 | // get closest points
|
---|
2455 | DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
|
---|
2456 | if (points == NULL) {
|
---|
2457 | ELOG(1, "There is no nearest point: too far away from the surface.");
|
---|
2458 | return NULL;
|
---|
2459 | }
|
---|
2460 |
|
---|
2461 | // for each point, check its lines, remember closest
|
---|
2462 | LOG(1, "Finding closest BoundaryTriangle to " << x << " ... ");
|
---|
2463 | LineSet ClosestLines;
|
---|
2464 | double MinDistance = 1e+16;
|
---|
2465 | Vector BaseLineIntersection;
|
---|
2466 | Vector Center;
|
---|
2467 | Vector BaseLine;
|
---|
2468 | Vector BaseLineCenter;
|
---|
2469 | for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
|
---|
2470 | for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
|
---|
2471 |
|
---|
2472 | BaseLine = ((LineRunner->second)->endpoints[0]->node->getPosition()) -
|
---|
2473 | ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2474 | const double lengthBase = BaseLine.NormSquared();
|
---|
2475 |
|
---|
2476 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[0]->node->getPosition());
|
---|
2477 | const double lengthEndA = BaseLineIntersection.NormSquared();
|
---|
2478 |
|
---|
2479 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2480 | const double lengthEndB = BaseLineIntersection.NormSquared();
|
---|
2481 |
|
---|
2482 | if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
|
---|
2483 | const double lengthEnd = std::min(lengthEndA, lengthEndB);
|
---|
2484 | if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
|
---|
2485 | ClosestLines.clear();
|
---|
2486 | ClosestLines.insert(LineRunner->second);
|
---|
2487 | MinDistance = lengthEnd;
|
---|
2488 | LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << ".");
|
---|
2489 | } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
|
---|
2490 | ClosestLines.insert(LineRunner->second);
|
---|
2491 | LOG(1, "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << ".");
|
---|
2492 | } else { // line is worse
|
---|
2493 | LOG(1, "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << ".");
|
---|
2494 | }
|
---|
2495 | } else { // intersection is closer, calculate
|
---|
2496 | // calculate closest point on line to desired point
|
---|
2497 | BaseLineIntersection = (x) - ((LineRunner->second)->endpoints[1]->node->getPosition());
|
---|
2498 | Center = BaseLineIntersection;
|
---|
2499 | Center.ProjectOntoPlane(BaseLine);
|
---|
2500 | BaseLineIntersection -= Center;
|
---|
2501 | const double distance = BaseLineIntersection.NormSquared();
|
---|
2502 | if (Center.NormSquared() > BaseLine.NormSquared()) {
|
---|
2503 | ELOG(0, "Algorithmic error: In second case we have intersection outside of baseline!");
|
---|
2504 | }
|
---|
2505 | if ((ClosestLines.empty()) || (distance < MinDistance)) {
|
---|
2506 | ClosestLines.insert(LineRunner->second);
|
---|
2507 | MinDistance = distance;
|
---|
2508 | LOG(1, "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << ".");
|
---|
2509 | } else {
|
---|
2510 | LOG(2, "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << ".");
|
---|
2511 | }
|
---|
2512 | }
|
---|
2513 | }
|
---|
2514 | }
|
---|
2515 | delete (points);
|
---|
2516 |
|
---|
2517 | // check whether closest line is "too close" :), then it's inside
|
---|
2518 | if (ClosestLines.empty()) {
|
---|
2519 | LOG(2, "DEBUG: Is the only point, no one else is closeby.");
|
---|
2520 | return NULL;
|
---|
2521 | }
|
---|
2522 | TriangleList * candidates = new TriangleList;
|
---|
2523 | for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
|
---|
2524 | for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
|
---|
2525 | candidates->push_back(Runner->second);
|
---|
2526 | }
|
---|
2527 | return candidates;
|
---|
2528 | }
|
---|
2529 | ;
|
---|
2530 |
|
---|
2531 | /** Finds closest triangle to a point.
|
---|
2532 | * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
|
---|
2533 | * \param *out output stream for debugging
|
---|
2534 | * \param *x Vector to look from
|
---|
2535 | * \param &distance contains found distance on return
|
---|
2536 | * \return list of BoundaryTriangleSet of nearest triangles or NULL.
|
---|
2537 | */
|
---|
2538 | class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector &x, const LinkedCell_deprecated* LC) const
|
---|
2539 | {
|
---|
2540 | //Info FunctionInfo(__func__);
|
---|
2541 | class BoundaryTriangleSet *result = NULL;
|
---|
2542 | TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
|
---|
2543 | TriangleList candidates;
|
---|
2544 | Vector Center;
|
---|
2545 | Vector helper;
|
---|
2546 |
|
---|
2547 | if ((triangles == NULL) || (triangles->empty()))
|
---|
2548 | return NULL;
|
---|
2549 |
|
---|
2550 | // go through all and pick the one with the best alignment to x
|
---|
2551 | double MinAlignment = 2. * M_PI;
|
---|
2552 | for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
|
---|
2553 | (*Runner)->GetCenter(Center);
|
---|
2554 | helper = (x) - Center;
|
---|
2555 | const double Alignment = helper.Angle((*Runner)->NormalVector);
|
---|
2556 | if (Alignment < MinAlignment) {
|
---|
2557 | result = *Runner;
|
---|
2558 | MinAlignment = Alignment;
|
---|
2559 | LOG(1, "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << ".");
|
---|
2560 | } else {
|
---|
2561 | LOG(1, "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << ".");
|
---|
2562 | }
|
---|
2563 | }
|
---|
2564 | delete (triangles);
|
---|
2565 |
|
---|
2566 | return result;
|
---|
2567 | }
|
---|
2568 | ;
|
---|
2569 |
|
---|
2570 | /** Checks whether the provided Vector is within the Tesselation structure.
|
---|
2571 | * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
|
---|
2572 | * @param point of which to check the position
|
---|
2573 | * @param *LC LinkedCell_deprecated structure
|
---|
2574 | *
|
---|
2575 | * @return true if the point is inside the Tesselation structure, false otherwise
|
---|
2576 | */
|
---|
2577 | bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell_deprecated* const LC) const
|
---|
2578 | {
|
---|
2579 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2580 | return Intersections.IsInside();
|
---|
2581 | }
|
---|
2582 |
|
---|
2583 | /** Returns the distance to the surface given by the tesselation.
|
---|
2584 | * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
|
---|
2585 | * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
|
---|
2586 | * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
|
---|
2587 | * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
|
---|
2588 | * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
|
---|
2589 | * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
|
---|
2590 | * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
|
---|
2591 | * -# If inside, take it to calculate closest distance
|
---|
2592 | * -# If not, take intersection with BoundaryLine as distance
|
---|
2593 | *
|
---|
2594 | * @note distance is squared despite it still contains a sign to determine in-/outside!
|
---|
2595 | *
|
---|
2596 | * @param point of which to check the position
|
---|
2597 | * @param *LC LinkedCell_deprecated structure
|
---|
2598 | *
|
---|
2599 | * @return >0 if outside, ==0 if on surface, <0 if inside
|
---|
2600 | */
|
---|
2601 | double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
|
---|
2602 | {
|
---|
2603 | //Info FunctionInfo(__func__);
|
---|
2604 | Vector Center;
|
---|
2605 | Vector helper;
|
---|
2606 | Vector DistanceToCenter;
|
---|
2607 | Vector Intersection;
|
---|
2608 | double distance = 0.;
|
---|
2609 |
|
---|
2610 | if (triangle == NULL) {// is boundary point or only point in point cloud?
|
---|
2611 | LOG(1, "No triangle given!");
|
---|
2612 | return -1.;
|
---|
2613 | } else {
|
---|
2614 | LOG(1, "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << ".");
|
---|
2615 | }
|
---|
2616 |
|
---|
2617 | triangle->GetCenter(Center);
|
---|
2618 | LOG(2, "INFO: Central point of the triangle is " << Center << ".");
|
---|
2619 | DistanceToCenter = Center - Point;
|
---|
2620 | LOG(2, "INFO: Vector from point to test to center is " << DistanceToCenter << ".");
|
---|
2621 |
|
---|
2622 | // check whether we are on boundary
|
---|
2623 | if (fabs(DistanceToCenter.ScalarProduct(triangle->NormalVector)) < MYEPSILON) {
|
---|
2624 | // calculate whether inside of triangle
|
---|
2625 | DistanceToCenter = Point + triangle->NormalVector; // points outside
|
---|
2626 | Center = Point - triangle->NormalVector; // points towards MolCenter
|
---|
2627 | LOG(1, "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << ".");
|
---|
2628 | if (triangle->GetIntersectionInsideTriangle(Center, DistanceToCenter, Intersection)) {
|
---|
2629 | LOG(1, Point << " is inner point: sufficiently close to boundary, " << Intersection << ".");
|
---|
2630 | return 0.;
|
---|
2631 | } else {
|
---|
2632 | LOG(1, Point << " is NOT an inner point: on triangle plane but outside of triangle bounds.");
|
---|
2633 | return false;
|
---|
2634 | }
|
---|
2635 | } else {
|
---|
2636 | // calculate smallest distance
|
---|
2637 | distance = triangle->GetClosestPointInsideTriangle(Point, Intersection);
|
---|
2638 | LOG(1, "Closest point on triangle is " << Intersection << ".");
|
---|
2639 |
|
---|
2640 | // then check direction to boundary
|
---|
2641 | if (DistanceToCenter.ScalarProduct(triangle->NormalVector) > MYEPSILON) {
|
---|
2642 | LOG(1, Point << " is an inner point, " << distance << " below surface.");
|
---|
2643 | return -distance;
|
---|
2644 | } else {
|
---|
2645 | LOG(1, Point << " is NOT an inner point, " << distance << " above surface.");
|
---|
2646 | return +distance;
|
---|
2647 | }
|
---|
2648 | }
|
---|
2649 | }
|
---|
2650 | ;
|
---|
2651 |
|
---|
2652 | /** Calculates minimum distance from \a&Point to a tesselated surface.
|
---|
2653 | * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
|
---|
2654 | * \param &Point point to calculate distance from
|
---|
2655 | * \param *LC needed for finding closest points fast
|
---|
2656 | * \return distance squared to closest point on surface
|
---|
2657 | */
|
---|
2658 | double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell_deprecated* const LC) const
|
---|
2659 | {
|
---|
2660 | //Info FunctionInfo(__func__);
|
---|
2661 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2662 |
|
---|
2663 | return Intersections.GetSmallestDistance();
|
---|
2664 | }
|
---|
2665 | ;
|
---|
2666 |
|
---|
2667 | /** Calculates minimum distance from \a&Point to a tesselated surface.
|
---|
2668 | * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
|
---|
2669 | * \param &Point point to calculate distance from
|
---|
2670 | * \param *LC needed for finding closest points fast
|
---|
2671 | * \return distance squared to closest point on surface
|
---|
2672 | */
|
---|
2673 | BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell_deprecated* const LC) const
|
---|
2674 | {
|
---|
2675 | //Info FunctionInfo(__func__);
|
---|
2676 | TriangleIntersectionList Intersections(Point, this, LC);
|
---|
2677 |
|
---|
2678 | return Intersections.GetClosestTriangle();
|
---|
2679 | }
|
---|
2680 | ;
|
---|
2681 |
|
---|
2682 | /** Gets all points connected to the provided point by triangulation lines.
|
---|
2683 | *
|
---|
2684 | * @param *Point of which get all connected points
|
---|
2685 | *
|
---|
2686 | * @return set of the all points linked to the provided one
|
---|
2687 | */
|
---|
2688 | TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
|
---|
2689 | {
|
---|
2690 | //Info FunctionInfo(__func__);
|
---|
2691 | TesselPointSet *connectedPoints = new TesselPointSet;
|
---|
2692 | class BoundaryPointSet *ReferencePoint = NULL;
|
---|
2693 | TesselPoint* current;
|
---|
2694 | bool takePoint = false;
|
---|
2695 | // find the respective boundary point
|
---|
2696 | PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
|
---|
2697 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
2698 | ReferencePoint = PointRunner->second;
|
---|
2699 | } else {
|
---|
2700 | ELOG(2, "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
|
---|
2701 | ReferencePoint = NULL;
|
---|
2702 | }
|
---|
2703 |
|
---|
2704 | // little trick so that we look just through lines connect to the BoundaryPoint
|
---|
2705 | // OR fall-back to look through all lines if there is no such BoundaryPoint
|
---|
2706 | const LineMap *Lines;
|
---|
2707 | ;
|
---|
2708 | if (ReferencePoint != NULL)
|
---|
2709 | Lines = &(ReferencePoint->lines);
|
---|
2710 | else
|
---|
2711 | Lines = &LinesOnBoundary;
|
---|
2712 | LineMap::const_iterator findLines = Lines->begin();
|
---|
2713 | while (findLines != Lines->end()) {
|
---|
2714 | takePoint = false;
|
---|
2715 |
|
---|
2716 | if (findLines->second->endpoints[0]->Nr == Point->getNr()) {
|
---|
2717 | takePoint = true;
|
---|
2718 | current = findLines->second->endpoints[1]->node;
|
---|
2719 | } else if (findLines->second->endpoints[1]->Nr == Point->getNr()) {
|
---|
2720 | takePoint = true;
|
---|
2721 | current = findLines->second->endpoints[0]->node;
|
---|
2722 | }
|
---|
2723 |
|
---|
2724 | if (takePoint) {
|
---|
2725 | LOG(1, "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted.");
|
---|
2726 | connectedPoints->insert(current);
|
---|
2727 | }
|
---|
2728 |
|
---|
2729 | findLines++;
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | if (connectedPoints->empty()) { // if have not found any points
|
---|
2733 | ELOG(1, "We have not found any connected points to " << *Point << ".");
|
---|
2734 | return NULL;
|
---|
2735 | }
|
---|
2736 |
|
---|
2737 | return connectedPoints;
|
---|
2738 | }
|
---|
2739 | ;
|
---|
2740 |
|
---|
2741 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
|
---|
2742 | * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
|
---|
2743 | * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
|
---|
2744 | * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
|
---|
2745 | * triangle we are looking for.
|
---|
2746 | *
|
---|
2747 | * @param *out output stream for debugging
|
---|
2748 | * @param *SetOfNeighbours all points for which the angle should be calculated
|
---|
2749 | * @param *Point of which get all connected points
|
---|
2750 | * @param *Reference Reference vector for zero angle or NULL for no preference
|
---|
2751 | * @return list of the all points linked to the provided one
|
---|
2752 | */
|
---|
2753 | TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
|
---|
2754 | {
|
---|
2755 | //Info FunctionInfo(__func__);
|
---|
2756 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2757 | TesselPointList *connectedCircle = new TesselPointList;
|
---|
2758 | Vector PlaneNormal;
|
---|
2759 | Vector AngleZero;
|
---|
2760 | Vector OrthogonalVector;
|
---|
2761 | Vector helper;
|
---|
2762 | const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
|
---|
2763 | TriangleList *triangles = NULL;
|
---|
2764 |
|
---|
2765 | if (SetOfNeighbours == NULL) {
|
---|
2766 | ELOG(2, "Could not find any connected points!");
|
---|
2767 | delete (connectedCircle);
|
---|
2768 | return NULL;
|
---|
2769 | }
|
---|
2770 |
|
---|
2771 | // calculate central point
|
---|
2772 | triangles = FindTriangles(TrianglePoints);
|
---|
2773 | if ((triangles != NULL) && (!triangles->empty())) {
|
---|
2774 | for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
|
---|
2775 | PlaneNormal += (*Runner)->NormalVector;
|
---|
2776 | } else {
|
---|
2777 | ELOG(0, "Could not find any triangles for point " << *Point << ".");
|
---|
2778 | performCriticalExit();
|
---|
2779 | }
|
---|
2780 | PlaneNormal.Scale(1.0 / triangles->size());
|
---|
2781 | LOG(4, "DEBUG: Calculated PlaneNormal of all circle points is " << PlaneNormal << ".");
|
---|
2782 | PlaneNormal.Normalize();
|
---|
2783 |
|
---|
2784 | // construct one orthogonal vector
|
---|
2785 | AngleZero = (Reference) - (Point->getPosition());
|
---|
2786 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2787 | if ((AngleZero.NormSquared() < MYEPSILON)) {
|
---|
2788 | LOG(4, "DEBUG: Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
|
---|
2789 | AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
|
---|
2790 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2791 | if (AngleZero.NormSquared() < MYEPSILON) {
|
---|
2792 | ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
|
---|
2793 | performCriticalExit();
|
---|
2794 | }
|
---|
2795 | }
|
---|
2796 | LOG(4, "DEBUG: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
|
---|
2797 | if (AngleZero.NormSquared() > MYEPSILON)
|
---|
2798 | OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
|
---|
2799 | else
|
---|
2800 | OrthogonalVector.MakeNormalTo(PlaneNormal);
|
---|
2801 | LOG(4, "DEBUG: OrthogonalVector on plane is " << OrthogonalVector << ".");
|
---|
2802 |
|
---|
2803 | // go through all connected points and calculate angle
|
---|
2804 | for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
|
---|
2805 | helper = ((*listRunner)->getPosition()) - (Point->getPosition());
|
---|
2806 | helper.ProjectOntoPlane(PlaneNormal);
|
---|
2807 | double angle = GetAngle(helper, AngleZero, OrthogonalVector);
|
---|
2808 | LOG(4, "DEBUG" << angle << " for point " << **listRunner << ".");
|
---|
2809 | anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
|
---|
2810 | }
|
---|
2811 |
|
---|
2812 | for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
|
---|
2813 | connectedCircle->push_back(AngleRunner->second);
|
---|
2814 | }
|
---|
2815 |
|
---|
2816 | return connectedCircle;
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
|
---|
2820 | * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
|
---|
2821 | * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
|
---|
2822 | * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
|
---|
2823 | * triangle we are looking for.
|
---|
2824 | *
|
---|
2825 | * @param *SetOfNeighbours all points for which the angle should be calculated
|
---|
2826 | * @param *Point of which get all connected points
|
---|
2827 | * @param *Reference Reference vector for zero angle or (0,0,0) for no preference
|
---|
2828 | * @return list of the all points linked to the provided one
|
---|
2829 | */
|
---|
2830 | TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector &Reference) const
|
---|
2831 | {
|
---|
2832 | //Info FunctionInfo(__func__);
|
---|
2833 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2834 | TesselPointList *connectedCircle = new TesselPointList;
|
---|
2835 | Vector center;
|
---|
2836 | Vector PlaneNormal;
|
---|
2837 | Vector AngleZero;
|
---|
2838 | Vector OrthogonalVector;
|
---|
2839 | Vector helper;
|
---|
2840 |
|
---|
2841 | if (SetOfNeighbours == NULL) {
|
---|
2842 | ELOG(2, "Could not find any connected points!");
|
---|
2843 | delete (connectedCircle);
|
---|
2844 | return NULL;
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 | // check whether there's something to do
|
---|
2848 | if (SetOfNeighbours->size() < 3) {
|
---|
2849 | for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
|
---|
2850 | connectedCircle->push_back(*TesselRunner);
|
---|
2851 | return connectedCircle;
|
---|
2852 | }
|
---|
2853 |
|
---|
2854 | LOG(1, "INFO: Point is " << *Point << " and Reference is " << Reference << ".");
|
---|
2855 | // calculate central point
|
---|
2856 | TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
|
---|
2857 | TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
|
---|
2858 | TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
|
---|
2859 | TesselB++;
|
---|
2860 | TesselC++;
|
---|
2861 | TesselC++;
|
---|
2862 | int counter = 0;
|
---|
2863 | while (TesselC != SetOfNeighbours->end()) {
|
---|
2864 | helper = Plane(((*TesselA)->getPosition()),
|
---|
2865 | ((*TesselB)->getPosition()),
|
---|
2866 | ((*TesselC)->getPosition())).getNormal();
|
---|
2867 | LOG(5, "DEBUG: Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper);
|
---|
2868 | counter++;
|
---|
2869 | TesselA++;
|
---|
2870 | TesselB++;
|
---|
2871 | TesselC++;
|
---|
2872 | PlaneNormal += helper;
|
---|
2873 | }
|
---|
2874 | //LOG(0, "Summed vectors " << center << "; number of points " << connectedPoints.size() << "; scale factor " << counter);
|
---|
2875 | PlaneNormal.Scale(1.0 / (double) counter);
|
---|
2876 | // LOG(1, "INFO: Calculated center of all circle points is " << center << ".");
|
---|
2877 | //
|
---|
2878 | // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
|
---|
2879 | // PlaneNormal.CopyVector(Point->node);
|
---|
2880 | // PlaneNormal.SubtractVector(¢er);
|
---|
2881 | // PlaneNormal.Normalize();
|
---|
2882 | LOG(4, "DEBUG: Calculated plane normal of circle is " << PlaneNormal << ".");
|
---|
2883 |
|
---|
2884 | // construct one orthogonal vector
|
---|
2885 | if (!Reference.IsZero()) {
|
---|
2886 | AngleZero = (Reference) - (Point->getPosition());
|
---|
2887 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2888 | }
|
---|
2889 | if ((Reference.IsZero()) || (AngleZero.NormSquared() < MYEPSILON )) {
|
---|
2890 | LOG(4, "DEBUG: Using alternatively " << (*SetOfNeighbours->begin())->getPosition() << " as angle 0 referencer.");
|
---|
2891 | AngleZero = ((*SetOfNeighbours->begin())->getPosition()) - (Point->getPosition());
|
---|
2892 | AngleZero.ProjectOntoPlane(PlaneNormal);
|
---|
2893 | if (AngleZero.NormSquared() < MYEPSILON) {
|
---|
2894 | ELOG(0, "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!");
|
---|
2895 | performCriticalExit();
|
---|
2896 | }
|
---|
2897 | }
|
---|
2898 | LOG(4, "DEBUG: Reference vector on this plane representing angle 0 is " << AngleZero << ".");
|
---|
2899 | if (AngleZero.NormSquared() > MYEPSILON)
|
---|
2900 | OrthogonalVector = Plane(PlaneNormal, AngleZero,0).getNormal();
|
---|
2901 | else
|
---|
2902 | OrthogonalVector.MakeNormalTo(PlaneNormal);
|
---|
2903 | LOG(4, "DEBUG: OrthogonalVector on plane is " << OrthogonalVector << ".");
|
---|
2904 |
|
---|
2905 | // go through all connected points and calculate angle
|
---|
2906 | pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
|
---|
2907 | for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
|
---|
2908 | helper = ((*listRunner)->getPosition()) - (Point->getPosition());
|
---|
2909 | helper.ProjectOntoPlane(PlaneNormal);
|
---|
2910 | double angle = GetAngle(helper, AngleZero, OrthogonalVector);
|
---|
2911 | if (angle > M_PI) // the correction is of no use here (and not desired)
|
---|
2912 | angle = 2. * M_PI - angle;
|
---|
2913 | LOG(4, "DEBUG: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << ".");
|
---|
2914 | InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
|
---|
2915 | if (!InserterTest.second) {
|
---|
2916 | ELOG(0, "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner));
|
---|
2917 | performCriticalExit();
|
---|
2918 | }
|
---|
2919 | }
|
---|
2920 |
|
---|
2921 | for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
|
---|
2922 | connectedCircle->push_back(AngleRunner->second);
|
---|
2923 | }
|
---|
2924 |
|
---|
2925 | return connectedCircle;
|
---|
2926 | }
|
---|
2927 |
|
---|
2928 | /** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
|
---|
2929 | *
|
---|
2930 | * @param *out output stream for debugging
|
---|
2931 | * @param *Point of which get all connected points
|
---|
2932 | * @return list of the all points linked to the provided one
|
---|
2933 | */
|
---|
2934 | ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
|
---|
2935 | {
|
---|
2936 | //Info FunctionInfo(__func__);
|
---|
2937 | map<double, TesselPoint*> anglesOfPoints;
|
---|
2938 | list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
|
---|
2939 | TesselPointList *connectedPath = NULL;
|
---|
2940 | Vector center;
|
---|
2941 | Vector PlaneNormal;
|
---|
2942 | Vector AngleZero;
|
---|
2943 | Vector OrthogonalVector;
|
---|
2944 | Vector helper;
|
---|
2945 | class BoundaryPointSet *ReferencePoint = NULL;
|
---|
2946 | class BoundaryPointSet *CurrentPoint = NULL;
|
---|
2947 | class BoundaryTriangleSet *triangle = NULL;
|
---|
2948 | class BoundaryLineSet *CurrentLine = NULL;
|
---|
2949 | class BoundaryLineSet *StartLine = NULL;
|
---|
2950 | // find the respective boundary point
|
---|
2951 | PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->getNr());
|
---|
2952 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
2953 | ReferencePoint = PointRunner->second;
|
---|
2954 | } else {
|
---|
2955 | ELOG(1, "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << ".");
|
---|
2956 | return NULL;
|
---|
2957 | }
|
---|
2958 |
|
---|
2959 | map<class BoundaryLineSet *, bool> TouchedLine;
|
---|
2960 | map<class BoundaryTriangleSet *, bool> TouchedTriangle;
|
---|
2961 | map<class BoundaryLineSet *, bool>::iterator LineRunner;
|
---|
2962 | map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
|
---|
2963 | for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
|
---|
2964 | TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
|
---|
2965 | for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
|
---|
2966 | TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
|
---|
2967 | }
|
---|
2968 | if (!ReferencePoint->lines.empty()) {
|
---|
2969 | for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
|
---|
2970 | LineRunner = TouchedLine.find(runner->second);
|
---|
2971 | if (LineRunner == TouchedLine.end()) {
|
---|
2972 | ELOG(1, "I could not find " << *runner->second << " in the touched list.");
|
---|
2973 | } else if (!LineRunner->second) {
|
---|
2974 | LineRunner->second = true;
|
---|
2975 | connectedPath = new TesselPointList;
|
---|
2976 | triangle = NULL;
|
---|
2977 | CurrentLine = runner->second;
|
---|
2978 | StartLine = CurrentLine;
|
---|
2979 | CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
|
---|
2980 | LOG(1, "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << ".");
|
---|
2981 | do {
|
---|
2982 | // push current one
|
---|
2983 | LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
|
---|
2984 | connectedPath->push_back(CurrentPoint->node);
|
---|
2985 |
|
---|
2986 | // find next triangle
|
---|
2987 | for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
|
---|
2988 | LOG(1, "INFO: Inspecting triangle " << *Runner->second << ".");
|
---|
2989 | if ((Runner->second != triangle)) { // look for first triangle not equal to old one
|
---|
2990 | triangle = Runner->second;
|
---|
2991 | TriangleRunner = TouchedTriangle.find(triangle);
|
---|
2992 | if (TriangleRunner != TouchedTriangle.end()) {
|
---|
2993 | if (!TriangleRunner->second) {
|
---|
2994 | TriangleRunner->second = true;
|
---|
2995 | LOG(1, "INFO: Connecting triangle is " << *triangle << ".");
|
---|
2996 | break;
|
---|
2997 | } else {
|
---|
2998 | LOG(1, "INFO: Skipping " << *triangle << ", as we have already visited it.");
|
---|
2999 | triangle = NULL;
|
---|
3000 | }
|
---|
3001 | } else {
|
---|
3002 | ELOG(1, "I could not find " << *triangle << " in the touched list.");
|
---|
3003 | triangle = NULL;
|
---|
3004 | }
|
---|
3005 | }
|
---|
3006 | }
|
---|
3007 | if (triangle == NULL)
|
---|
3008 | break;
|
---|
3009 | // find next line
|
---|
3010 | for (int i = 0; i < 3; i++) {
|
---|
3011 | if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
|
---|
3012 | CurrentLine = triangle->lines[i];
|
---|
3013 | LOG(1, "INFO: Connecting line is " << *CurrentLine << ".");
|
---|
3014 | break;
|
---|
3015 | }
|
---|
3016 | }
|
---|
3017 | LineRunner = TouchedLine.find(CurrentLine);
|
---|
3018 | if (LineRunner == TouchedLine.end())
|
---|
3019 | ELOG(1, "I could not find " << *CurrentLine << " in the touched list.");
|
---|
3020 | else
|
---|
3021 | LineRunner->second = true;
|
---|
3022 | // find next point
|
---|
3023 | CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
|
---|
3024 |
|
---|
3025 | } while (CurrentLine != StartLine);
|
---|
3026 | // last point is missing, as it's on start line
|
---|
3027 | LOG(1, "INFO: Putting " << *CurrentPoint << " at end of path.");
|
---|
3028 | if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
|
---|
3029 | connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
|
---|
3030 |
|
---|
3031 | ListOfPaths->push_back(connectedPath);
|
---|
3032 | } else {
|
---|
3033 | LOG(1, "INFO: Skipping " << *runner->second << ", as we have already visited it.");
|
---|
3034 | }
|
---|
3035 | }
|
---|
3036 | } else {
|
---|
3037 | ELOG(1, "There are no lines attached to " << *ReferencePoint << ".");
|
---|
3038 | }
|
---|
3039 |
|
---|
3040 | return ListOfPaths;
|
---|
3041 | }
|
---|
3042 |
|
---|
3043 | /** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
|
---|
3044 | * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
|
---|
3045 | * @param *out output stream for debugging
|
---|
3046 | * @param *Point of which get all connected points
|
---|
3047 | * @return list of the closed paths
|
---|
3048 | */
|
---|
3049 | ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
|
---|
3050 | {
|
---|
3051 | //Info FunctionInfo(__func__);
|
---|
3052 | list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
|
---|
3053 | list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
|
---|
3054 | TesselPointList *connectedPath = NULL;
|
---|
3055 | TesselPointList *newPath = NULL;
|
---|
3056 | int count = 0;
|
---|
3057 | TesselPointList::iterator CircleRunner;
|
---|
3058 | TesselPointList::iterator CircleStart;
|
---|
3059 |
|
---|
3060 | for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
|
---|
3061 | connectedPath = *ListRunner;
|
---|
3062 |
|
---|
3063 | LOG(1, "INFO: Current path is " << connectedPath << ".");
|
---|
3064 |
|
---|
3065 | // go through list, look for reappearance of starting Point and count
|
---|
3066 | CircleStart = connectedPath->begin();
|
---|
3067 | // go through list, look for reappearance of starting Point and create list
|
---|
3068 | TesselPointList::iterator Marker = CircleStart;
|
---|
3069 | for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
|
---|
3070 | if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
|
---|
3071 | // we have a closed circle from Marker to new Marker
|
---|
3072 | if (DoLog(1)) {
|
---|
3073 | std::stringstream output;
|
---|
3074 | output << count + 1 << ". closed path consists of: ";
|
---|
3075 | for (TesselPointList::iterator CircleSprinter = Marker;
|
---|
3076 | CircleSprinter != CircleRunner;
|
---|
3077 | CircleSprinter++)
|
---|
3078 | output << (**CircleSprinter) << " <-> ";
|
---|
3079 | LOG(1, output.str());
|
---|
3080 | }
|
---|
3081 | newPath = new TesselPointList;
|
---|
3082 | TesselPointList::iterator CircleSprinter = Marker;
|
---|
3083 | for (; CircleSprinter != CircleRunner; CircleSprinter++)
|
---|
3084 | newPath->push_back(*CircleSprinter);
|
---|
3085 | count++;
|
---|
3086 | Marker = CircleRunner;
|
---|
3087 |
|
---|
3088 | // add to list
|
---|
3089 | ListofClosedPaths->push_back(newPath);
|
---|
3090 | }
|
---|
3091 | }
|
---|
3092 | }
|
---|
3093 | LOG(1, "INFO: " << count << " closed additional path(s) have been created.");
|
---|
3094 |
|
---|
3095 | // delete list of paths
|
---|
3096 | while (!ListofPaths->empty()) {
|
---|
3097 | connectedPath = *(ListofPaths->begin());
|
---|
3098 | ListofPaths->remove(connectedPath);
|
---|
3099 | delete (connectedPath);
|
---|
3100 | }
|
---|
3101 | delete (ListofPaths);
|
---|
3102 |
|
---|
3103 | // exit
|
---|
3104 | return ListofClosedPaths;
|
---|
3105 | }
|
---|
3106 | ;
|
---|
3107 |
|
---|
3108 | /** Gets all belonging triangles for a given BoundaryPointSet.
|
---|
3109 | * \param *out output stream for debugging
|
---|
3110 | * \param *Point BoundaryPoint
|
---|
3111 | * \return pointer to allocated list of triangles
|
---|
3112 | */
|
---|
3113 | TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
|
---|
3114 | {
|
---|
3115 | //Info FunctionInfo(__func__);
|
---|
3116 | TriangleSet *connectedTriangles = new TriangleSet;
|
---|
3117 |
|
---|
3118 | if (Point == NULL) {
|
---|
3119 | ELOG(1, "Point given is NULL.");
|
---|
3120 | } else {
|
---|
3121 | // go through its lines and insert all triangles
|
---|
3122 | for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
|
---|
3123 | for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
|
---|
3124 | connectedTriangles->insert(TriangleRunner->second);
|
---|
3125 | }
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 | return connectedTriangles;
|
---|
3129 | }
|
---|
3130 | ;
|
---|
3131 |
|
---|
3132 | /** Removes a boundary point from the envelope while keeping it closed.
|
---|
3133 | * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
|
---|
3134 | * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
|
---|
3135 | * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
|
---|
3136 | * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
|
---|
3137 | * -# the surface is closed, when the path is empty
|
---|
3138 | * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
|
---|
3139 | * \param *out output stream for debugging
|
---|
3140 | * \param *point point to be removed
|
---|
3141 | * \return volume added to the volume inside the tesselated surface by the removal
|
---|
3142 | */
|
---|
3143 | double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
|
---|
3144 | {
|
---|
3145 | class BoundaryLineSet *line = NULL;
|
---|
3146 | class BoundaryTriangleSet *triangle = NULL;
|
---|
3147 | Vector OldPoint, NormalVector;
|
---|
3148 | double volume = 0;
|
---|
3149 | int count = 0;
|
---|
3150 |
|
---|
3151 | if (point == NULL) {
|
---|
3152 | ELOG(1, "Cannot remove the point " << point << ", it's NULL!");
|
---|
3153 | return 0.;
|
---|
3154 | } else
|
---|
3155 | LOG(4, "DEBUG: Removing point " << *point << " from tesselated boundary ...");
|
---|
3156 |
|
---|
3157 | // copy old location for the volume
|
---|
3158 | OldPoint = (point->node->getPosition());
|
---|
3159 |
|
---|
3160 | // get list of connected points
|
---|
3161 | if (point->lines.empty()) {
|
---|
3162 | ELOG(1, "Cannot remove the point " << *point << ", it's connected to no lines!");
|
---|
3163 | return 0.;
|
---|
3164 | }
|
---|
3165 |
|
---|
3166 | list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
|
---|
3167 | TesselPointList *connectedPath = NULL;
|
---|
3168 |
|
---|
3169 | // gather all triangles
|
---|
3170 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
|
---|
3171 | count += LineRunner->second->triangles.size();
|
---|
3172 | TriangleMap Candidates;
|
---|
3173 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
3174 | line = LineRunner->second;
|
---|
3175 | for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
|
---|
3176 | triangle = TriangleRunner->second;
|
---|
3177 | Candidates.insert(TrianglePair(triangle->Nr, triangle));
|
---|
3178 | }
|
---|
3179 | }
|
---|
3180 |
|
---|
3181 | // remove all triangles
|
---|
3182 | count = 0;
|
---|
3183 | NormalVector.Zero();
|
---|
3184 | for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
|
---|
3185 | LOG(1, "INFO: Removing triangle " << *(Runner->second) << ".");
|
---|
3186 | NormalVector -= Runner->second->NormalVector; // has to point inward
|
---|
3187 | RemoveTesselationTriangle(Runner->second);
|
---|
3188 | count++;
|
---|
3189 | }
|
---|
3190 | LOG(1, count << " triangles were removed.");
|
---|
3191 |
|
---|
3192 | list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
|
---|
3193 | list<TesselPointList *>::iterator ListRunner = ListAdvance;
|
---|
3194 | TriangleMap::iterator NumberRunner = Candidates.begin();
|
---|
3195 | TesselPointList::iterator StartNode, MiddleNode, EndNode;
|
---|
3196 | double angle;
|
---|
3197 | double smallestangle;
|
---|
3198 | Vector Point, Reference, OrthogonalVector;
|
---|
3199 | if (count > 2) { // less than three triangles, then nothing will be created
|
---|
3200 | class TesselPoint *TriangleCandidates[3];
|
---|
3201 | count = 0;
|
---|
3202 | for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
|
---|
3203 | if (ListAdvance != ListOfClosedPaths->end())
|
---|
3204 | ListAdvance++;
|
---|
3205 |
|
---|
3206 | connectedPath = *ListRunner;
|
---|
3207 | // re-create all triangles by going through connected points list
|
---|
3208 | LineList NewLines;
|
---|
3209 | for (; !connectedPath->empty();) {
|
---|
3210 | // search middle node with widest angle to next neighbours
|
---|
3211 | EndNode = connectedPath->end();
|
---|
3212 | smallestangle = 0.;
|
---|
3213 | for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
|
---|
3214 | LOG(1, "INFO: MiddleNode is " << **MiddleNode << ".");
|
---|
3215 | // construct vectors to next and previous neighbour
|
---|
3216 | StartNode = MiddleNode;
|
---|
3217 | if (StartNode == connectedPath->begin())
|
---|
3218 | StartNode = connectedPath->end();
|
---|
3219 | StartNode--;
|
---|
3220 | //LOG(3, "INFO: StartNode is " << **StartNode << ".");
|
---|
3221 | Point = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
|
---|
3222 | StartNode = MiddleNode;
|
---|
3223 | StartNode++;
|
---|
3224 | if (StartNode == connectedPath->end())
|
---|
3225 | StartNode = connectedPath->begin();
|
---|
3226 | //LOG(3, "INFO: EndNode is " << **StartNode << ".");
|
---|
3227 | Reference = ((*StartNode)->getPosition()) - ((*MiddleNode)->getPosition());
|
---|
3228 | OrthogonalVector = ((*MiddleNode)->getPosition()) - OldPoint;
|
---|
3229 | OrthogonalVector.MakeNormalTo(Reference);
|
---|
3230 | angle = GetAngle(Point, Reference, OrthogonalVector);
|
---|
3231 | //if (angle < M_PI) // no wrong-sided triangles, please?
|
---|
3232 | if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
|
---|
3233 | smallestangle = angle;
|
---|
3234 | EndNode = MiddleNode;
|
---|
3235 | }
|
---|
3236 | }
|
---|
3237 | MiddleNode = EndNode;
|
---|
3238 | if (MiddleNode == connectedPath->end()) {
|
---|
3239 | ELOG(0, "CRITICAL: Could not find a smallest angle!");
|
---|
3240 | performCriticalExit();
|
---|
3241 | }
|
---|
3242 | StartNode = MiddleNode;
|
---|
3243 | if (StartNode == connectedPath->begin())
|
---|
3244 | StartNode = connectedPath->end();
|
---|
3245 | StartNode--;
|
---|
3246 | EndNode++;
|
---|
3247 | if (EndNode == connectedPath->end())
|
---|
3248 | EndNode = connectedPath->begin();
|
---|
3249 | LOG(2, "INFO: StartNode is " << **StartNode << ".");
|
---|
3250 | LOG(2, "INFO: MiddleNode is " << **MiddleNode << ".");
|
---|
3251 | LOG(2, "INFO: EndNode is " << **EndNode << ".");
|
---|
3252 | LOG(1, "INFO: Attempting to create triangle " << (*StartNode)->getName() << ", " << (*MiddleNode)->getName() << " and " << (*EndNode)->getName() << ".");
|
---|
3253 | TriangleCandidates[0] = *StartNode;
|
---|
3254 | TriangleCandidates[1] = *MiddleNode;
|
---|
3255 | TriangleCandidates[2] = *EndNode;
|
---|
3256 | triangle = GetPresentTriangle(TriangleCandidates);
|
---|
3257 | if (triangle != NULL) {
|
---|
3258 | ELOG(0, "New triangle already present, skipping!");
|
---|
3259 | StartNode++;
|
---|
3260 | MiddleNode++;
|
---|
3261 | EndNode++;
|
---|
3262 | if (StartNode == connectedPath->end())
|
---|
3263 | StartNode = connectedPath->begin();
|
---|
3264 | if (MiddleNode == connectedPath->end())
|
---|
3265 | MiddleNode = connectedPath->begin();
|
---|
3266 | if (EndNode == connectedPath->end())
|
---|
3267 | EndNode = connectedPath->begin();
|
---|
3268 | continue;
|
---|
3269 | }
|
---|
3270 | LOG(3, "Adding new triangle points.");
|
---|
3271 | AddTesselationPoint(*StartNode, 0);
|
---|
3272 | AddTesselationPoint(*MiddleNode, 1);
|
---|
3273 | AddTesselationPoint(*EndNode, 2);
|
---|
3274 | LOG(3, "Adding new triangle lines.");
|
---|
3275 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3276 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3277 | NewLines.push_back(BLS[1]);
|
---|
3278 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3279 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3280 | BTS->GetNormalVector(NormalVector);
|
---|
3281 | AddTesselationTriangle();
|
---|
3282 | // calculate volume summand as a general tetraeder
|
---|
3283 | volume += CalculateVolumeofGeneralTetraeder(TPS[0]->node->getPosition(), TPS[1]->node->getPosition(), TPS[2]->node->getPosition(), OldPoint);
|
---|
3284 | // advance number
|
---|
3285 | count++;
|
---|
3286 |
|
---|
3287 | // prepare nodes for next triangle
|
---|
3288 | StartNode = EndNode;
|
---|
3289 | LOG(2, "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << ".");
|
---|
3290 | connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
|
---|
3291 | if (connectedPath->size() == 2) { // we are done
|
---|
3292 | connectedPath->remove(*StartNode); // remove the start node
|
---|
3293 | connectedPath->remove(*EndNode); // remove the end node
|
---|
3294 | break;
|
---|
3295 | } else if (connectedPath->size() < 2) { // something's gone wrong!
|
---|
3296 | ELOG(0, "CRITICAL: There are only two endpoints left!");
|
---|
3297 | performCriticalExit();
|
---|
3298 | } else {
|
---|
3299 | MiddleNode = StartNode;
|
---|
3300 | MiddleNode++;
|
---|
3301 | if (MiddleNode == connectedPath->end())
|
---|
3302 | MiddleNode = connectedPath->begin();
|
---|
3303 | EndNode = MiddleNode;
|
---|
3304 | EndNode++;
|
---|
3305 | if (EndNode == connectedPath->end())
|
---|
3306 | EndNode = connectedPath->begin();
|
---|
3307 | }
|
---|
3308 | }
|
---|
3309 | // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
|
---|
3310 | if (NewLines.size() > 1) {
|
---|
3311 | LineList::iterator Candidate;
|
---|
3312 | class BoundaryLineSet *OtherBase = NULL;
|
---|
3313 | double tmp, maxgain;
|
---|
3314 | do {
|
---|
3315 | maxgain = 0;
|
---|
3316 | for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
|
---|
3317 | tmp = PickFarthestofTwoBaselines(*Runner);
|
---|
3318 | if (maxgain < tmp) {
|
---|
3319 | maxgain = tmp;
|
---|
3320 | Candidate = Runner;
|
---|
3321 | }
|
---|
3322 | }
|
---|
3323 | if (maxgain != 0) {
|
---|
3324 | volume += maxgain;
|
---|
3325 | LOG(1, "Flipping baseline with highest volume" << **Candidate << ".");
|
---|
3326 | OtherBase = FlipBaseline(*Candidate);
|
---|
3327 | NewLines.erase(Candidate);
|
---|
3328 | NewLines.push_back(OtherBase);
|
---|
3329 | }
|
---|
3330 | } while (maxgain != 0.);
|
---|
3331 | }
|
---|
3332 |
|
---|
3333 | ListOfClosedPaths->remove(connectedPath);
|
---|
3334 | delete (connectedPath);
|
---|
3335 | }
|
---|
3336 | LOG(1, "INFO: " << count << " triangles were created.");
|
---|
3337 | } else {
|
---|
3338 | while (!ListOfClosedPaths->empty()) {
|
---|
3339 | ListRunner = ListOfClosedPaths->begin();
|
---|
3340 | connectedPath = *ListRunner;
|
---|
3341 | ListOfClosedPaths->remove(connectedPath);
|
---|
3342 | delete (connectedPath);
|
---|
3343 | }
|
---|
3344 | LOG(3, "DEBUG: No need to create any triangles.");
|
---|
3345 | }
|
---|
3346 | delete (ListOfClosedPaths);
|
---|
3347 |
|
---|
3348 | LOG(1, "INFO: Removed volume is " << volume << ".");
|
---|
3349 |
|
---|
3350 | return volume;
|
---|
3351 | }
|
---|
3352 | ;
|
---|
3353 |
|
---|
3354 | /**
|
---|
3355 | * Finds triangles belonging to the three provided points.
|
---|
3356 | *
|
---|
3357 | * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
|
---|
3358 | *
|
---|
3359 | * @return triangles which belong to the provided points, will be empty if there are none,
|
---|
3360 | * will usually be one, in case of degeneration, there will be two
|
---|
3361 | */
|
---|
3362 | TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
|
---|
3363 | {
|
---|
3364 | //Info FunctionInfo(__func__);
|
---|
3365 | TriangleList *result = new TriangleList;
|
---|
3366 | LineMap::const_iterator FindLine;
|
---|
3367 | TriangleMap::const_iterator FindTriangle;
|
---|
3368 | class BoundaryPointSet *TrianglePoints[3];
|
---|
3369 | size_t NoOfWildcards = 0;
|
---|
3370 |
|
---|
3371 | for (int i = 0; i < 3; i++) {
|
---|
3372 | if (Points[i] == NULL) {
|
---|
3373 | NoOfWildcards++;
|
---|
3374 | TrianglePoints[i] = NULL;
|
---|
3375 | } else {
|
---|
3376 | PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->getNr());
|
---|
3377 | if (FindPoint != PointsOnBoundary.end()) {
|
---|
3378 | TrianglePoints[i] = FindPoint->second;
|
---|
3379 | } else {
|
---|
3380 | TrianglePoints[i] = NULL;
|
---|
3381 | }
|
---|
3382 | }
|
---|
3383 | }
|
---|
3384 |
|
---|
3385 | switch (NoOfWildcards) {
|
---|
3386 | case 0: // checks lines between the points in the Points for their adjacent triangles
|
---|
3387 | for (int i = 0; i < 3; i++) {
|
---|
3388 | if (TrianglePoints[i] != NULL) {
|
---|
3389 | for (int j = i + 1; j < 3; j++) {
|
---|
3390 | if (TrianglePoints[j] != NULL) {
|
---|
3391 | for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->getNr()); // is a multimap!
|
---|
3392 | (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->getNr()); FindLine++) {
|
---|
3393 | for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
|
---|
3394 | if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
|
---|
3395 | result->push_back(FindTriangle->second);
|
---|
3396 | }
|
---|
3397 | }
|
---|
3398 | }
|
---|
3399 | // Is it sufficient to consider one of the triangle lines for this.
|
---|
3400 | return result;
|
---|
3401 | }
|
---|
3402 | }
|
---|
3403 | }
|
---|
3404 | }
|
---|
3405 | break;
|
---|
3406 | case 1: // copy all triangles of the respective line
|
---|
3407 | {
|
---|
3408 | int i = 0;
|
---|
3409 | for (; i < 3; i++)
|
---|
3410 | if (TrianglePoints[i] == NULL)
|
---|
3411 | break;
|
---|
3412 | for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->getNr()); // is a multimap!
|
---|
3413 | (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->getNr()); FindLine++) {
|
---|
3414 | for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
|
---|
3415 | if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
|
---|
3416 | result->push_back(FindTriangle->second);
|
---|
3417 | }
|
---|
3418 | }
|
---|
3419 | }
|
---|
3420 | break;
|
---|
3421 | }
|
---|
3422 | case 2: // copy all triangles of the respective point
|
---|
3423 | {
|
---|
3424 | int i = 0;
|
---|
3425 | for (; i < 3; i++)
|
---|
3426 | if (TrianglePoints[i] != NULL)
|
---|
3427 | break;
|
---|
3428 | for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
|
---|
3429 | for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
|
---|
3430 | result->push_back(triangle->second);
|
---|
3431 | result->sort();
|
---|
3432 | result->unique();
|
---|
3433 | break;
|
---|
3434 | }
|
---|
3435 | case 3: // copy all triangles
|
---|
3436 | {
|
---|
3437 | for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
|
---|
3438 | result->push_back(triangle->second);
|
---|
3439 | break;
|
---|
3440 | }
|
---|
3441 | default:
|
---|
3442 | ELOG(0, "Number of wildcards is greater than 3, cannot happen!");
|
---|
3443 | performCriticalExit();
|
---|
3444 | break;
|
---|
3445 | }
|
---|
3446 |
|
---|
3447 | return result;
|
---|
3448 | }
|
---|
3449 |
|
---|
3450 | struct BoundaryLineSetCompare
|
---|
3451 | {
|
---|
3452 | bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
|
---|
3453 | {
|
---|
3454 | int lowerNra = -1;
|
---|
3455 | int lowerNrb = -1;
|
---|
3456 |
|
---|
3457 | if (a->endpoints[0] < a->endpoints[1])
|
---|
3458 | lowerNra = 0;
|
---|
3459 | else
|
---|
3460 | lowerNra = 1;
|
---|
3461 |
|
---|
3462 | if (b->endpoints[0] < b->endpoints[1])
|
---|
3463 | lowerNrb = 0;
|
---|
3464 | else
|
---|
3465 | lowerNrb = 1;
|
---|
3466 |
|
---|
3467 | if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
|
---|
3468 | return true;
|
---|
3469 | else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
|
---|
3470 | return false;
|
---|
3471 | else { // both lower-numbered endpoints are the same ...
|
---|
3472 | if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
|
---|
3473 | return true;
|
---|
3474 | else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
|
---|
3475 | return false;
|
---|
3476 | }
|
---|
3477 | return false;
|
---|
3478 | }
|
---|
3479 | ;
|
---|
3480 | };
|
---|
3481 |
|
---|
3482 | #define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
|
---|
3483 |
|
---|
3484 | /**
|
---|
3485 | * Finds all degenerated lines within the tesselation structure.
|
---|
3486 | *
|
---|
3487 | * @return map of keys of degenerated line pairs, each line occurs twice
|
---|
3488 | * in the list, once as key and once as value
|
---|
3489 | */
|
---|
3490 | IndexToIndex * Tesselation::FindAllDegeneratedLines()
|
---|
3491 | {
|
---|
3492 | //Info FunctionInfo(__func__);
|
---|
3493 | UniqueLines AllLines;
|
---|
3494 | IndexToIndex * DegeneratedLines = new IndexToIndex;
|
---|
3495 |
|
---|
3496 | // sanity check
|
---|
3497 | if (LinesOnBoundary.empty()) {
|
---|
3498 | ELOG(2, "FindAllDegeneratedTriangles() was called without any tesselation structure.");
|
---|
3499 | return DegeneratedLines;
|
---|
3500 | }
|
---|
3501 | LineMap::iterator LineRunner1;
|
---|
3502 | pair<UniqueLines::iterator, bool> tester;
|
---|
3503 | for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
|
---|
3504 | tester = AllLines.insert(LineRunner1->second);
|
---|
3505 | if (!tester.second) { // found degenerated line
|
---|
3506 | DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
|
---|
3507 | DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
|
---|
3508 | }
|
---|
3509 | }
|
---|
3510 |
|
---|
3511 | AllLines.clear();
|
---|
3512 |
|
---|
3513 | LOG(2, "DEBUG: FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines.");
|
---|
3514 | IndexToIndex::iterator it;
|
---|
3515 | for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
|
---|
3516 | const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
|
---|
3517 | const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
|
---|
3518 | if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
|
---|
3519 | LOG(3, "DEBUG: " << *Line1->second << " => " << *Line2->second);
|
---|
3520 | else
|
---|
3521 | ELOG(1, "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!");
|
---|
3522 | }
|
---|
3523 |
|
---|
3524 | return DegeneratedLines;
|
---|
3525 | }
|
---|
3526 |
|
---|
3527 | /**
|
---|
3528 | * Finds all degenerated triangles within the tesselation structure.
|
---|
3529 | *
|
---|
3530 | * @return map of keys of degenerated triangle pairs, each triangle occurs twice
|
---|
3531 | * in the list, once as key and once as value
|
---|
3532 | */
|
---|
3533 | IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
|
---|
3534 | {
|
---|
3535 | //Info FunctionInfo(__func__);
|
---|
3536 | IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
|
---|
3537 | IndexToIndex * DegeneratedTriangles = new IndexToIndex;
|
---|
3538 | TriangleMap::iterator TriangleRunner1, TriangleRunner2;
|
---|
3539 | LineMap::iterator Liner;
|
---|
3540 | class BoundaryLineSet *line1 = NULL, *line2 = NULL;
|
---|
3541 |
|
---|
3542 | for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
|
---|
3543 | // run over both lines' triangles
|
---|
3544 | Liner = LinesOnBoundary.find(LineRunner->first);
|
---|
3545 | if (Liner != LinesOnBoundary.end())
|
---|
3546 | line1 = Liner->second;
|
---|
3547 | Liner = LinesOnBoundary.find(LineRunner->second);
|
---|
3548 | if (Liner != LinesOnBoundary.end())
|
---|
3549 | line2 = Liner->second;
|
---|
3550 | for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
|
---|
3551 | for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
|
---|
3552 | if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
|
---|
3553 | DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
|
---|
3554 | DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
|
---|
3555 | }
|
---|
3556 | }
|
---|
3557 | }
|
---|
3558 | }
|
---|
3559 | delete (DegeneratedLines);
|
---|
3560 |
|
---|
3561 | LOG(3, "DEBUG: FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:");
|
---|
3562 | for (IndexToIndex::iterator it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
|
---|
3563 | LOG(3, "DEBUG: " << (*it).first << " => " << (*it).second);
|
---|
3564 |
|
---|
3565 | return DegeneratedTriangles;
|
---|
3566 | }
|
---|
3567 |
|
---|
3568 | /**
|
---|
3569 | * Purges degenerated triangles from the tesselation structure if they are not
|
---|
3570 | * necessary to keep a single point within the structure.
|
---|
3571 | */
|
---|
3572 | void Tesselation::RemoveDegeneratedTriangles()
|
---|
3573 | {
|
---|
3574 | //Info FunctionInfo(__func__);
|
---|
3575 | IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3576 | TriangleMap::iterator finder;
|
---|
3577 | BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
|
---|
3578 | int count = 0;
|
---|
3579 |
|
---|
3580 | // iterate over all degenerated triangles
|
---|
3581 | for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); !DegeneratedTriangles->empty(); TriangleKeyRunner = DegeneratedTriangles->begin()) {
|
---|
3582 | LOG(3, "DEBUG: Checking presence of triangles " << TriangleKeyRunner->first << " and " << TriangleKeyRunner->second << ".");
|
---|
3583 | // both ways are stored in the map, only use one
|
---|
3584 | if (TriangleKeyRunner->first > TriangleKeyRunner->second)
|
---|
3585 | continue;
|
---|
3586 |
|
---|
3587 | // determine from the keys in the map the two _present_ triangles
|
---|
3588 | finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
|
---|
3589 | if (finder != TrianglesOnBoundary.end())
|
---|
3590 | triangle = finder->second;
|
---|
3591 | else
|
---|
3592 | continue;
|
---|
3593 | finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
|
---|
3594 | if (finder != TrianglesOnBoundary.end())
|
---|
3595 | partnerTriangle = finder->second;
|
---|
3596 | else
|
---|
3597 | continue;
|
---|
3598 |
|
---|
3599 | // determine which lines are shared by the two triangles
|
---|
3600 | bool trianglesShareLine = false;
|
---|
3601 | for (int i = 0; i < 3; ++i)
|
---|
3602 | for (int j = 0; j < 3; ++j)
|
---|
3603 | trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
|
---|
3604 |
|
---|
3605 | if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
|
---|
3606 | // check whether we have to fix lines
|
---|
3607 | BoundaryTriangleSet *Othertriangle = NULL;
|
---|
3608 | BoundaryTriangleSet *OtherpartnerTriangle = NULL;
|
---|
3609 | TriangleMap::iterator TriangleRunner;
|
---|
3610 | for (int i = 0; i < 3; ++i)
|
---|
3611 | for (int j = 0; j < 3; ++j)
|
---|
3612 | if (triangle->lines[i] != partnerTriangle->lines[j]) {
|
---|
3613 | // get the other two triangles
|
---|
3614 | for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
|
---|
3615 | if (TriangleRunner->second != triangle) {
|
---|
3616 | Othertriangle = TriangleRunner->second;
|
---|
3617 | }
|
---|
3618 | for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
|
---|
3619 | if (TriangleRunner->second != partnerTriangle) {
|
---|
3620 | OtherpartnerTriangle = TriangleRunner->second;
|
---|
3621 | }
|
---|
3622 | /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
|
---|
3623 | // the line of triangle receives the degenerated ones
|
---|
3624 | triangle->lines[i]->triangles.erase(Othertriangle->Nr);
|
---|
3625 | triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
|
---|
3626 | for (int k = 0; k < 3; k++)
|
---|
3627 | if (triangle->lines[i] == Othertriangle->lines[k]) {
|
---|
3628 | Othertriangle->lines[k] = partnerTriangle->lines[j];
|
---|
3629 | break;
|
---|
3630 | }
|
---|
3631 | // the line of partnerTriangle receives the non-degenerated ones
|
---|
3632 | partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
|
---|
3633 | partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
|
---|
3634 | partnerTriangle->lines[j] = triangle->lines[i];
|
---|
3635 | }
|
---|
3636 |
|
---|
3637 | // erase the pair
|
---|
3638 | count += (int) DegeneratedTriangles->erase(triangle->Nr);
|
---|
3639 | LOG(4, "DEBUG: RemoveDegeneratedTriangles() removes triangle " << *triangle << ".");
|
---|
3640 | RemoveTesselationTriangle(triangle);
|
---|
3641 | count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
|
---|
3642 | LOG(4, "DEBUG: RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << ".");
|
---|
3643 | RemoveTesselationTriangle(partnerTriangle);
|
---|
3644 | } else {
|
---|
3645 | LOG(4, "DEBUG: RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure.");
|
---|
3646 | }
|
---|
3647 | }
|
---|
3648 | delete (DegeneratedTriangles);
|
---|
3649 | if (count > 0)
|
---|
3650 | LastTriangle = NULL;
|
---|
3651 |
|
---|
3652 | LOG(2, "INFO: RemoveDegeneratedTriangles() removed " << count << " triangles:");
|
---|
3653 | }
|
---|
3654 |
|
---|
3655 | /** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
|
---|
3656 | * We look for the closest point on the boundary, we look through its connected boundary lines and
|
---|
3657 | * seek the one with the minimum angle between its center point and the new point and this base line.
|
---|
3658 | * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
|
---|
3659 | * \param *out output stream for debugging
|
---|
3660 | * \param *point point to add
|
---|
3661 | * \param *LC Linked Cell structure to find nearest point
|
---|
3662 | */
|
---|
3663 | void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell_deprecated *LC)
|
---|
3664 | {
|
---|
3665 | //Info FunctionInfo(__func__);
|
---|
3666 | // find nearest boundary point
|
---|
3667 | class TesselPoint *BackupPoint = NULL;
|
---|
3668 | class TesselPoint *NearestPoint = FindClosestTesselPoint(point->getPosition(), BackupPoint, LC);
|
---|
3669 | class BoundaryPointSet *NearestBoundaryPoint = NULL;
|
---|
3670 | PointMap::iterator PointRunner;
|
---|
3671 |
|
---|
3672 | if (NearestPoint == point)
|
---|
3673 | NearestPoint = BackupPoint;
|
---|
3674 | PointRunner = PointsOnBoundary.find(NearestPoint->getNr());
|
---|
3675 | if (PointRunner != PointsOnBoundary.end()) {
|
---|
3676 | NearestBoundaryPoint = PointRunner->second;
|
---|
3677 | } else {
|
---|
3678 | ELOG(1, "I cannot find the boundary point.");
|
---|
3679 | return;
|
---|
3680 | }
|
---|
3681 | LOG(3, "DEBUG: Nearest point on boundary is " << NearestPoint->getName() << ".");
|
---|
3682 |
|
---|
3683 | // go through its lines and find the best one to split
|
---|
3684 | Vector CenterToPoint;
|
---|
3685 | Vector BaseLine;
|
---|
3686 | double angle, BestAngle = 0.;
|
---|
3687 | class BoundaryLineSet *BestLine = NULL;
|
---|
3688 | for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
|
---|
3689 | BaseLine = (Runner->second->endpoints[0]->node->getPosition()) -
|
---|
3690 | (Runner->second->endpoints[1]->node->getPosition());
|
---|
3691 | CenterToPoint = 0.5 * ((Runner->second->endpoints[0]->node->getPosition()) +
|
---|
3692 | (Runner->second->endpoints[1]->node->getPosition()));
|
---|
3693 | CenterToPoint -= (point->getPosition());
|
---|
3694 | angle = CenterToPoint.Angle(BaseLine);
|
---|
3695 | if (fabs(angle - M_PI/2.) < fabs(BestAngle - M_PI/2.)) {
|
---|
3696 | BestAngle = angle;
|
---|
3697 | BestLine = Runner->second;
|
---|
3698 | }
|
---|
3699 | }
|
---|
3700 |
|
---|
3701 | // remove one triangle from the chosen line
|
---|
3702 | class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
|
---|
3703 | BestLine->triangles.erase(TempTriangle->Nr);
|
---|
3704 | int nr = -1;
|
---|
3705 | for (int i = 0; i < 3; i++) {
|
---|
3706 | if (TempTriangle->lines[i] == BestLine) {
|
---|
3707 | nr = i;
|
---|
3708 | break;
|
---|
3709 | }
|
---|
3710 | }
|
---|
3711 |
|
---|
3712 | // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
|
---|
3713 | LOG(2, "Adding new triangle points.");
|
---|
3714 | AddTesselationPoint((BestLine->endpoints[0]->node), 0);
|
---|
3715 | AddTesselationPoint((BestLine->endpoints[1]->node), 1);
|
---|
3716 | AddTesselationPoint(point, 2);
|
---|
3717 | LOG(2, "Adding new triangle lines.");
|
---|
3718 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3719 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3720 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3721 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3722 | BTS->GetNormalVector(TempTriangle->NormalVector);
|
---|
3723 | BTS->NormalVector.Scale(-1.);
|
---|
3724 | LOG(1, "INFO: NormalVector of new triangle is " << BTS->NormalVector << ".");
|
---|
3725 | AddTesselationTriangle();
|
---|
3726 |
|
---|
3727 | // create other side of this triangle and close both new sides of the first created triangle
|
---|
3728 | LOG(2, "Adding new triangle points.");
|
---|
3729 | AddTesselationPoint((BestLine->endpoints[0]->node), 0);
|
---|
3730 | AddTesselationPoint((BestLine->endpoints[1]->node), 1);
|
---|
3731 | AddTesselationPoint(point, 2);
|
---|
3732 | LOG(2, "Adding new triangle lines.");
|
---|
3733 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3734 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3735 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3736 | BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
|
---|
3737 | BTS->GetNormalVector(TempTriangle->NormalVector);
|
---|
3738 | LOG(1, "INFO: NormalVector of other new triangle is " << BTS->NormalVector << ".");
|
---|
3739 | AddTesselationTriangle();
|
---|
3740 |
|
---|
3741 | // add removed triangle to the last open line of the second triangle
|
---|
3742 | for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
|
---|
3743 | if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
|
---|
3744 | if (BestLine == BTS->lines[i]) {
|
---|
3745 | ELOG(0, "BestLine is same as found line, something's wrong here!");
|
---|
3746 | performCriticalExit();
|
---|
3747 | }
|
---|
3748 | BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
|
---|
3749 | TempTriangle->lines[nr] = BTS->lines[i];
|
---|
3750 | break;
|
---|
3751 | }
|
---|
3752 | }
|
---|
3753 | }
|
---|
3754 | ;
|
---|
3755 |
|
---|
3756 | /** Writes the envelope to file.
|
---|
3757 | * \param *out otuput stream for debugging
|
---|
3758 | * \param *filename basename of output file
|
---|
3759 | * \param *cloud IPointCloud structure with all nodes
|
---|
3760 | */
|
---|
3761 | void Tesselation::Output(const char *filename, IPointCloud & cloud)
|
---|
3762 | {
|
---|
3763 | //Info FunctionInfo(__func__);
|
---|
3764 | ofstream *tempstream = NULL;
|
---|
3765 | string NameofTempFile;
|
---|
3766 | string NumberName;
|
---|
3767 |
|
---|
3768 | if (LastTriangle != NULL) {
|
---|
3769 | stringstream sstr;
|
---|
3770 | sstr << "-"<< TrianglesOnBoundary.size() << "-" << LastTriangle->getEndpointName(0) << "_" << LastTriangle->getEndpointName(1) << "_" << LastTriangle->getEndpointName(2);
|
---|
3771 | NumberName = sstr.str();
|
---|
3772 | if (DoTecplotOutput) {
|
---|
3773 | string NameofTempFile(filename);
|
---|
3774 | NameofTempFile.append(NumberName);
|
---|
3775 | for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
|
---|
3776 | NameofTempFile.erase(npos, 1);
|
---|
3777 | NameofTempFile.append(TecplotSuffix);
|
---|
3778 | LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
|
---|
3779 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3780 | WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
|
---|
3781 | tempstream->close();
|
---|
3782 | tempstream->flush();
|
---|
3783 | delete (tempstream);
|
---|
3784 | }
|
---|
3785 |
|
---|
3786 | if (DoRaster3DOutput) {
|
---|
3787 | string NameofTempFile(filename);
|
---|
3788 | NameofTempFile.append(NumberName);
|
---|
3789 | for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
|
---|
3790 | NameofTempFile.erase(npos, 1);
|
---|
3791 | NameofTempFile.append(Raster3DSuffix);
|
---|
3792 | LOG(1, "INFO: Writing temporary non convex hull to file " << NameofTempFile << ".");
|
---|
3793 | tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
|
---|
3794 | WriteRaster3dFile(tempstream, this, cloud);
|
---|
3795 | IncludeSphereinRaster3D(tempstream, this, cloud);
|
---|
3796 | tempstream->close();
|
---|
3797 | tempstream->flush();
|
---|
3798 | delete (tempstream);
|
---|
3799 | }
|
---|
3800 | }
|
---|
3801 | if (DoTecplotOutput || DoRaster3DOutput)
|
---|
3802 | TriangleFilesWritten++;
|
---|
3803 | }
|
---|
3804 | ;
|
---|
3805 |
|
---|
3806 | struct BoundaryPolygonSetCompare
|
---|
3807 | {
|
---|
3808 | bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
|
---|
3809 | {
|
---|
3810 | if (s1->endpoints.size() < s2->endpoints.size())
|
---|
3811 | return true;
|
---|
3812 | else if (s1->endpoints.size() > s2->endpoints.size())
|
---|
3813 | return false;
|
---|
3814 | else { // equality of number of endpoints
|
---|
3815 | PointSet::const_iterator Walker1 = s1->endpoints.begin();
|
---|
3816 | PointSet::const_iterator Walker2 = s2->endpoints.begin();
|
---|
3817 | while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
|
---|
3818 | if ((*Walker1)->Nr < (*Walker2)->Nr)
|
---|
3819 | return true;
|
---|
3820 | else if ((*Walker1)->Nr > (*Walker2)->Nr)
|
---|
3821 | return false;
|
---|
3822 | Walker1++;
|
---|
3823 | Walker2++;
|
---|
3824 | }
|
---|
3825 | return false;
|
---|
3826 | }
|
---|
3827 | }
|
---|
3828 | };
|
---|
3829 |
|
---|
3830 | #define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
|
---|
3831 |
|
---|
3832 | /** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
|
---|
3833 | * \return number of polygons found
|
---|
3834 | */
|
---|
3835 | int Tesselation::CorrectAllDegeneratedPolygons()
|
---|
3836 | {
|
---|
3837 | //Info FunctionInfo(__func__);
|
---|
3838 | /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
|
---|
3839 | IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3840 | set<BoundaryPointSet *> EndpointCandidateList;
|
---|
3841 | pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
|
---|
3842 | pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
|
---|
3843 | for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
|
---|
3844 | LOG(3, "DEBUG: Current point is " << *Runner->second << ".");
|
---|
3845 | map<int, Vector *> TriangleVectors;
|
---|
3846 | // gather all NormalVectors
|
---|
3847 | LOG(4, "DEBUG: Gathering triangles ...");
|
---|
3848 | for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
|
---|
3849 | for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
|
---|
3850 | if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
|
---|
3851 | TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
|
---|
3852 | if (TriangleInsertionTester.second)
|
---|
3853 | LOG(5, "DEBUG: Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list.");
|
---|
3854 | } else {
|
---|
3855 | LOG(5, "DEBUG: NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one.");
|
---|
3856 | }
|
---|
3857 | }
|
---|
3858 | // check whether there are two that are parallel
|
---|
3859 | LOG(3, "DEBUG: Finding two parallel triangles ...");
|
---|
3860 | for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
|
---|
3861 | for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
|
---|
3862 | if (VectorWalker != VectorRunner) { // skip equals
|
---|
3863 | const double SCP = VectorWalker->second->ScalarProduct(*VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
|
---|
3864 | LOG(4, "DEBUG: Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP);
|
---|
3865 | if (fabs(SCP + 1.) < ParallelEpsilon) {
|
---|
3866 | InsertionTester = EndpointCandidateList.insert((Runner->second));
|
---|
3867 | if (InsertionTester.second)
|
---|
3868 | LOG(4, "DEBUG: Adding " << *Runner->second << " to endpoint candidate list.");
|
---|
3869 | // and break out of both loops
|
---|
3870 | VectorWalker = TriangleVectors.end();
|
---|
3871 | VectorRunner = TriangleVectors.end();
|
---|
3872 | break;
|
---|
3873 | }
|
---|
3874 | }
|
---|
3875 | }
|
---|
3876 | delete DegeneratedTriangles;
|
---|
3877 |
|
---|
3878 | /// 3. Find connected endpoint candidates and put them into a polygon
|
---|
3879 | UniquePolygonSet ListofDegeneratedPolygons;
|
---|
3880 | BoundaryPointSet *Walker = NULL;
|
---|
3881 | BoundaryPointSet *OtherWalker = NULL;
|
---|
3882 | BoundaryPolygonSet *Current = NULL;
|
---|
3883 | stack<BoundaryPointSet*> ToCheckConnecteds;
|
---|
3884 | while (!EndpointCandidateList.empty()) {
|
---|
3885 | Walker = *(EndpointCandidateList.begin());
|
---|
3886 | if (Current == NULL) { // create a new polygon with current candidate
|
---|
3887 | LOG(3, "DEBUG: Starting new polygon set at point " << *Walker);
|
---|
3888 | Current = new BoundaryPolygonSet;
|
---|
3889 | Current->endpoints.insert(Walker);
|
---|
3890 | EndpointCandidateList.erase(Walker);
|
---|
3891 | ToCheckConnecteds.push(Walker);
|
---|
3892 | }
|
---|
3893 |
|
---|
3894 | // go through to-check stack
|
---|
3895 | while (!ToCheckConnecteds.empty()) {
|
---|
3896 | Walker = ToCheckConnecteds.top(); // fetch ...
|
---|
3897 | ToCheckConnecteds.pop(); // ... and remove
|
---|
3898 | for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
|
---|
3899 | OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
|
---|
3900 | LOG(4, "DEBUG: Checking " << *OtherWalker);
|
---|
3901 | set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
|
---|
3902 | if (Finder != EndpointCandidateList.end()) { // found a connected partner
|
---|
3903 | LOG(5, "DEBUG: Adding to polygon.");
|
---|
3904 | Current->endpoints.insert(OtherWalker);
|
---|
3905 | EndpointCandidateList.erase(Finder); // remove from candidates
|
---|
3906 | ToCheckConnecteds.push(OtherWalker); // but check its partners too
|
---|
3907 | } else {
|
---|
3908 | LOG(5, "DEBUG: is not connected to " << *Walker);
|
---|
3909 | }
|
---|
3910 | }
|
---|
3911 | }
|
---|
3912 |
|
---|
3913 | LOG(3, "DEBUG: Final polygon is " << *Current);
|
---|
3914 | ListofDegeneratedPolygons.insert(Current);
|
---|
3915 | Current = NULL;
|
---|
3916 | }
|
---|
3917 |
|
---|
3918 | const int counter = ListofDegeneratedPolygons.size();
|
---|
3919 |
|
---|
3920 | if (DoLog(0)) {
|
---|
3921 | std::stringstream output;
|
---|
3922 | output << "The following " << counter << " degenerated polygons have been found: ";
|
---|
3923 | for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
|
---|
3924 | output << " " << **PolygonRunner;
|
---|
3925 | LOG(3, "DEBUG: " << output.str());
|
---|
3926 | }
|
---|
3927 |
|
---|
3928 | /// 4. Go through all these degenerated polygons
|
---|
3929 | for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
|
---|
3930 | stack<int> TriangleNrs;
|
---|
3931 | Vector NormalVector;
|
---|
3932 | /// 4a. Gather all triangles of this polygon
|
---|
3933 | TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
|
---|
3934 |
|
---|
3935 | // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
|
---|
3936 | if (T->size() == 2) {
|
---|
3937 | LOG(4, "DEBUG: Skipping degenerated polygon, is just a (already simply degenerated) triangle.");
|
---|
3938 | delete (T);
|
---|
3939 | continue;
|
---|
3940 | }
|
---|
3941 |
|
---|
3942 | // check whether number is even
|
---|
3943 | // If this case occurs, we have to think about it!
|
---|
3944 | // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
|
---|
3945 | // connections to either polygon ...
|
---|
3946 | if (T->size() % 2 != 0) {
|
---|
3947 | ELOG(0, " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!");
|
---|
3948 | performCriticalExit();
|
---|
3949 | }
|
---|
3950 | TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
|
---|
3951 | /// 4a. Get NormalVector for one side (this is "front")
|
---|
3952 | NormalVector = (*TriangleWalker)->NormalVector;
|
---|
3953 | LOG(4, "DEBUG: \"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector);
|
---|
3954 | TriangleWalker++;
|
---|
3955 | TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
|
---|
3956 | /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
|
---|
3957 | BoundaryTriangleSet *triangle = NULL;
|
---|
3958 | while (TriangleSprinter != T->end()) {
|
---|
3959 | TriangleWalker = TriangleSprinter;
|
---|
3960 | triangle = *TriangleWalker;
|
---|
3961 | TriangleSprinter++;
|
---|
3962 | LOG(4, "DEBUG: Current triangle to test for removal: " << *triangle);
|
---|
3963 | if (triangle->NormalVector.ScalarProduct(NormalVector) < 0) { // if from other side, then delete and remove from list
|
---|
3964 | LOG(5, "DEBUG: Removing ... ");
|
---|
3965 | TriangleNrs.push(triangle->Nr);
|
---|
3966 | T->erase(TriangleWalker);
|
---|
3967 | RemoveTesselationTriangle(triangle);
|
---|
3968 | } else
|
---|
3969 | LOG(5, "DEBUG: Keeping ... ");
|
---|
3970 | }
|
---|
3971 | /// 4c. Copy all "front" triangles but with inverse NormalVector
|
---|
3972 | TriangleWalker = T->begin();
|
---|
3973 | while (TriangleWalker != T->end()) { // go through all front triangles
|
---|
3974 | LOG(4, "DEBUG: Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector);
|
---|
3975 | for (int i = 0; i < 3; i++)
|
---|
3976 | AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
|
---|
3977 | AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
|
---|
3978 | AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
|
---|
3979 | AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
|
---|
3980 | if (TriangleNrs.empty())
|
---|
3981 | ELOG(0, "No more free triangle numbers!");
|
---|
3982 | BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
|
---|
3983 | AddTesselationTriangle(); // ... and add
|
---|
3984 | TriangleNrs.pop();
|
---|
3985 | BTS->NormalVector = -1 * (*TriangleWalker)->NormalVector;
|
---|
3986 | TriangleWalker++;
|
---|
3987 | }
|
---|
3988 | if (!TriangleNrs.empty()) {
|
---|
3989 | ELOG(0, "There have been less triangles created than removed!");
|
---|
3990 | }
|
---|
3991 | delete (T); // remove the triangleset
|
---|
3992 | }
|
---|
3993 | IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
|
---|
3994 | LOG(2, "DEBUG: Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:");
|
---|
3995 | IndexToIndex::iterator it;
|
---|
3996 | for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
|
---|
3997 | LOG(2, "DEBUG: " << (*it).first << " => " << (*it).second);
|
---|
3998 | delete (SimplyDegeneratedTriangles);
|
---|
3999 | /// 5. exit
|
---|
4000 | UniquePolygonSet::iterator PolygonRunner;
|
---|
4001 | while (!ListofDegeneratedPolygons.empty()) {
|
---|
4002 | PolygonRunner = ListofDegeneratedPolygons.begin();
|
---|
4003 | delete (*PolygonRunner);
|
---|
4004 | ListofDegeneratedPolygons.erase(PolygonRunner);
|
---|
4005 | }
|
---|
4006 |
|
---|
4007 | return counter;
|
---|
4008 | }
|
---|
4009 | ;
|
---|