/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* ellipsoid.cpp
*
* Created on: Jan 20, 2009
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include "CodePatterns/Log.hpp"
#include "ellipsoid.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinkedCell/linkedcell.hpp"
#include "Tesselation/BoundaryPointSet.hpp"
#include "Tesselation/boundary.hpp"
#include "Tesselation/tesselation.hpp"
#include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
#include "RandomNumbers/RandomNumberGenerator.hpp"
/** Determines squared distance for a given point \a x to surface of ellipsoid.
* \param x given point
* \param EllipsoidCenter center of ellipsoid
* \param EllipsoidLength[3] three lengths of half axis of ellipsoid
* \param EllipsoidAngle[3] three rotation angles of ellipsoid
* \return squared distance from point to surface
*/
double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
{
Vector helper, RefPoint;
double distance = -1.;
RealSpaceMatrix Matrix;
double InverseLength[3];
double psi,theta,phi; // euler angles in ZX'Z'' convention
//LOG(3, "Begin of SquaredDistanceToEllipsoid");
for(int i=0;i<3;i++)
InverseLength[i] = 1./EllipsoidLength[i];
// 1. translate coordinate system so that ellipsoid center is in origin
RefPoint = helper = x - EllipsoidCenter;
//LOG(4, "Translated given point is at " << RefPoint << ".");
// 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
psi = EllipsoidAngle[0];
theta = EllipsoidAngle[1];
phi = EllipsoidAngle[2];
Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
Matrix.set(2,0, sin(psi)*sin(theta));
Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
Matrix.set(2,1, -cos(psi)*sin(theta));
Matrix.set(0,2, sin(theta)*sin(phi));
Matrix.set(1,2, sin(theta)*cos(phi));
Matrix.set(2,2, cos(theta));
helper *= Matrix;
helper.ScaleAll(InverseLength);
//LOG(4, "Transformed RefPoint is at " << helper << ".");
// 3. construct intersection point with unit sphere and ray between origin and x
helper.Normalize(); // is simply normalizes vector in distance direction
//LOG(4, "Transformed intersection is at " << helper << ".");
// 4. transform back the constructed intersection point
psi = -EllipsoidAngle[0];
theta = -EllipsoidAngle[1];
phi = -EllipsoidAngle[2];
helper.ScaleAll(EllipsoidLength);
Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
Matrix.set(2,0, sin(psi)*sin(theta));
Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
Matrix.set(2,1, -cos(psi)*sin(theta));
Matrix.set(0,2, sin(theta)*sin(phi));
Matrix.set(1,2, sin(theta)*cos(phi));
Matrix.set(2,2, cos(theta));
helper *= Matrix;
//LOG(4, "Intersection is at " << helper << ".");
// 5. determine distance between backtransformed point and x
distance = RefPoint.DistanceSquared(helper);
//LOG(4, "Squared distance between intersection and RefPoint is " << distance << ".");
return distance;
//LOG(3, "End of SquaredDistanceToEllipsoid");
};
/** structure for ellipsoid minimisation containing points to fit to.
*/
struct EllipsoidMinimisation {
int N; //!< dimension of vector set
Vector *x; //!< array of vectors
};
/** Sum of squared distance to ellipsoid to be minimised.
* \param *x parameters for the ellipsoid
* \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
* \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
*/
double SumSquaredDistance (const gsl_vector * x, void * params)
{
Vector *set= ((struct EllipsoidMinimisation *)params)->x;
int N = ((struct EllipsoidMinimisation *)params)->N;
double SumDistance = 0.;
double distance;
Vector Center;
double EllipsoidLength[3], EllipsoidAngle[3];
// put parameters into suitable ellipsoid form
for (int i=0;i<3;i++) {
Center[i] = gsl_vector_get(x, i+0);
EllipsoidLength[i] = gsl_vector_get(x, i+3);
EllipsoidAngle[i] = gsl_vector_get(x, i+6);
}
// go through all points and sum distance
for (int i=0;i= 3) { // check that enough points are given (9 d.o.f.)
struct EllipsoidMinimisation par;
const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
gsl_multimin_fminimizer *s = NULL;
gsl_vector *ss, *x;
gsl_multimin_function minex_func;
size_t iter = 0;
double size;
/* Starting point */
x = gsl_vector_alloc (9);
for (int i=0;i<3;i++) {
gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
gsl_vector_set (x, i+3, EllipsoidLength[i]);
gsl_vector_set (x, i+6, EllipsoidAngle[i]);
}
par.x = set;
par.N = N;
/* Set initial step sizes */
ss = gsl_vector_alloc (9);
for (int i=0;i<3;i++) {
gsl_vector_set (ss, i+0, 0.1);
gsl_vector_set (ss, i+3, 1.0);
gsl_vector_set (ss, i+6, M_PI/20.);
}
/* Initialize method and iterate */
minex_func.n = 9;
minex_func.f = &SumSquaredDistance;
minex_func.params = (void *)∥
s = gsl_multimin_fminimizer_alloc (T, 9);
gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
do {
iter++;
status = gsl_multimin_fminimizer_iterate(s);
if (status)
break;
size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, 1e-2);
if (status == GSL_SUCCESS) {
for (int i=0;i<3;i++) {
EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
}
LOG(4, setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << ".");
}
} while (status == GSL_CONTINUE && iter < 1000);
gsl_vector_free(x);
gsl_vector_free(ss);
gsl_multimin_fminimizer_free (s);
} else {
LOG(3, "Not enough points provided for fit to ellipsoid.");
return false;
}
LOG(2, "End of FitPointSetToEllipsoid");
if (status == GSL_SUCCESS)
return true;
else
return false;
};
/** Picks a number of random points from a LC neighbourhood as a fitting set.
* \param *out output stream for debugging
* \param *T Tesselation containing boundary points
* \param *LC linked cell list of all atoms
* \param *&x random point set on return (not allocated!)
* \param PointsToPick number of points in set to pick
*/
void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell_deprecated *LC, Vector *&x, size_t PointsToPick)
{
size_t PointsLeft = 0;
size_t PointsPicked = 0;
int Nlower[NDIM], Nupper[NDIM];
set PickedAtomNrs; // ordered list of picked atoms
set::iterator current;
int index;
TesselPoint *Candidate = NULL;
LOG(2, "Begin of PickRandomPointSet");
// allocate array
if (x == NULL) {
x = new Vector[PointsToPick];
} else {
ELOG(2, "Given pointer to vector array seems already allocated.");
}
RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
// check that random number generator's bounds are ok
ASSERT(random.min() == 0,
"PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's min "
+toString(random.min())+" is not 0!");
ASSERT(random.max() >= LC->N[0],
"PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
+toString(random.max())+" is too small"+toString(LC->N[0])
+" for axis 0!");
ASSERT(random.max() >= LC->N[1],
"PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
+toString(random.max())+" is too small"+toString(LC->N[1])
+" for axis 1!");
ASSERT(random.max() >= LC->N[2],
"PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
+toString(random.max())+" is too small"+toString(LC->N[2])
+" for axis 2!");
do {
for(int i=0;in[i] = ((int)random() % LC->N[i]);
LOG(2, "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << ".");
// get random cell
const TesselPointSTLList *List = LC->GetCurrentCell();
if (List == NULL) { // set index to it
continue;
}
LOG(2, "INFO: Cell index is No. " << LC->index << ".");
if (DoLog(2)) {
std::stringstream output;
output << "LC Intervals:";
for (int i=0;in[i]-1) >= 0) ? LC->n[i]-1 : 0;
Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
}
// count whether there are sufficient atoms in this cell+neighbors
PointsLeft=0;
for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
const TesselPointSTLList *List = LC->GetCurrentCell();
PointsLeft += List->size();
}
LOG(2, "There are " << PointsLeft << " atoms in this neighbourhood.");
if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
continue;
}
// pre-pick a fixed number of atoms
PickedAtomNrs.clear();
do {
index = (((int)random()) % PointsLeft);
current = PickedAtomNrs.find(index); // not present?
if (current == PickedAtomNrs.end()) {
//LOG(2, "Picking atom Nr. " << index << ".");
PickedAtomNrs.insert(index);
}
} while (PickedAtomNrs.size() < PointsToPick);
index = 0; // now go through all and pick those whose from PickedAtomsNr
PointsPicked=0;
current = PickedAtomNrs.begin();
for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
const TesselPointSTLList *List = LC->GetCurrentCell();
// LOG(2, "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points.");
if (List != NULL) {
// if (List->begin() != List->end())
// LOG(2, "Going through candidates ... ");
// else
// LOG(2, "Cell is empty ... ");
for (TesselPointSTLList::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
if ((current != PickedAtomNrs.end()) && (*current == index)) {
Candidate = (*Runner);
LOG(2, "Current picked node is " << (*Runner)->getName() << " with index " << index << ".");
x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
current++; // next pre-picked atom
}
index++; // next atom Nr.
}
// } else {
// LOG(2, "List for this index not allocated!");
}
}
LOG(2, "The following points were picked: ");
for (size_t i=0;iPointsOnBoundaryCount;
size_t PointsPicked = 0;
double value, threshold;
PointMap *List = &T->PointsOnBoundary;
LOG(2, "Begin of PickRandomPointSet");
// allocate array
if (x == NULL) {
x = new Vector[PointsToPick];
} else {
ELOG(2, "Given pointer to vector array seems already allocated.");
}
RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
const double rng_min = random.min();
const double rng_max = random.max();
if (List != NULL)
for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
value = (double)random()/(double)(rng_max-rng_min);
if (value > threshold) {
x[PointsPicked] = (Runner->second->node->getPosition());
PointsPicked++;
//LOG(3, "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": IN.");
} else {
//LOG(3, "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": OUT.");
}
PointsLeft--;
}
LOG(2, "The following points were picked: ");
for (size_t i=0;iPointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
Center += (Runner->second->node->getPosition());
Center.Scale(1./T->PointsOnBoundaryCount);
LOG(4, "DEBUG: Center of PointsOnBoundary is at " << Center << ".");
// Output header
output.open(filename, ios::trunc);
output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
// loop over desired number of parameter sets
for (;number >0;number--) {
LOG(1, "Determining data set " << number << " ... ");
// pick the point set
x = NULL;
//PickRandomPointSet(T, LCList, x, N);
PickRandomNeighbouredPointSet(T, LCList, x, N);
// calculate some sensible starting values for parameter fit
MaxDistance = 0.;
MinDistance = x[0].ScalarProduct(x[0]);
for (int i=0;i MaxDistance)
MaxDistance = distance;
if (distance < MinDistance)
MinDistance = distance;
}
//LOG(2, "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << ".");
EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
for (int i=0;i<3;i++)
EllipsoidAngle[i] = 0.;
EllipsoidLength[0] = sqrt(MaxDistance);
EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
EllipsoidLength[2] = sqrt(MinDistance);
// fit the parameters
if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
LOG(1, "Picking succeeded!");
// output obtained parameter set
output << number << "\t";
for (int i=0;i<3;i++)
output << setprecision(9) << EllipsoidCenter[i] << "\t";
for (int i=0;i<3;i++)
output << setprecision(9) << EllipsoidLength[i] << "\t";
for (int i=0;i<3;i++)
output << setprecision(9) << EllipsoidAngle[i] << "\t";
output << endl;
} else { // increase N to pick one more
LOG(1, "Picking failed!");
number++;
}
delete[](x); // free allocated memory for point set
}
// close output and finish
output.close();
LOG(0, "End of FindDistributionOfEllipsoids");
};