1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | */
|
---|
7 |
|
---|
8 | /*
|
---|
9 | * BoundaryTriangleSet.cpp
|
---|
10 | *
|
---|
11 | * Created on: Jul 29, 2010
|
---|
12 | * Author: heber
|
---|
13 | */
|
---|
14 |
|
---|
15 | // include config.h
|
---|
16 | #ifdef HAVE_CONFIG_H
|
---|
17 | #include <config.h>
|
---|
18 | #endif
|
---|
19 |
|
---|
20 | #include "CodePatterns/MemDebug.hpp"
|
---|
21 |
|
---|
22 | #include "BoundaryTriangleSet.hpp"
|
---|
23 |
|
---|
24 | #include <iostream>
|
---|
25 |
|
---|
26 | #include "BoundaryLineSet.hpp"
|
---|
27 | #include "BoundaryPointSet.hpp"
|
---|
28 | #include "Atom/TesselPoint.hpp"
|
---|
29 |
|
---|
30 | #include "Helpers/defs.hpp"
|
---|
31 |
|
---|
32 | #include "CodePatterns/Assert.hpp"
|
---|
33 | #include "CodePatterns/Info.hpp"
|
---|
34 | #include "CodePatterns/Log.hpp"
|
---|
35 | #include "CodePatterns/Verbose.hpp"
|
---|
36 | #include "LinearAlgebra/Exceptions.hpp"
|
---|
37 | #include "LinearAlgebra/Line.hpp"
|
---|
38 | #include "LinearAlgebra/Plane.hpp"
|
---|
39 | #include "LinearAlgebra/Vector.hpp"
|
---|
40 |
|
---|
41 | using namespace std;
|
---|
42 |
|
---|
43 | /** Constructor for BoundaryTriangleSet.
|
---|
44 | */
|
---|
45 | BoundaryTriangleSet::BoundaryTriangleSet() :
|
---|
46 | Nr(-1)
|
---|
47 | {
|
---|
48 | Info FunctionInfo(__func__);
|
---|
49 | for (int i = 0; i < 3; i++) {
|
---|
50 | endpoints[i] = NULL;
|
---|
51 | lines[i] = NULL;
|
---|
52 | }
|
---|
53 | }
|
---|
54 | ;
|
---|
55 |
|
---|
56 | /** Constructor for BoundaryTriangleSet with three lines.
|
---|
57 | * \param *line[3] lines that make up the triangle
|
---|
58 | * \param number number of triangle
|
---|
59 | */
|
---|
60 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
|
---|
61 | Nr(number)
|
---|
62 | {
|
---|
63 | Info FunctionInfo(__func__);
|
---|
64 | // set number
|
---|
65 | // set lines
|
---|
66 | for (int i = 0; i < 3; i++) {
|
---|
67 | lines[i] = line[i];
|
---|
68 | lines[i]->AddTriangle(this);
|
---|
69 | }
|
---|
70 | // get ascending order of endpoints
|
---|
71 | PointMap OrderMap;
|
---|
72 | for (int i = 0; i < 3; i++) {
|
---|
73 | // for all three lines
|
---|
74 | for (int j = 0; j < 2; j++) { // for both endpoints
|
---|
75 | OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
|
---|
76 | // and we don't care whether insertion fails
|
---|
77 | }
|
---|
78 | }
|
---|
79 | // set endpoints
|
---|
80 | int Counter = 0;
|
---|
81 | LOG(0, "New triangle " << Nr << " with end points: ");
|
---|
82 | for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
|
---|
83 | endpoints[Counter] = runner->second;
|
---|
84 | LOG(0, " " << *endpoints[Counter]);
|
---|
85 | Counter++;
|
---|
86 | }
|
---|
87 | ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!");
|
---|
88 | };
|
---|
89 |
|
---|
90 |
|
---|
91 | /** Destructor of BoundaryTriangleSet.
|
---|
92 | * Removes itself from each of its lines' LineMap and removes them if necessary.
|
---|
93 | * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
|
---|
94 | */
|
---|
95 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
96 | {
|
---|
97 | Info FunctionInfo(__func__);
|
---|
98 | for (int i = 0; i < 3; i++) {
|
---|
99 | if (lines[i] != NULL) {
|
---|
100 | if (lines[i]->triangles.erase(Nr)) {
|
---|
101 | //LOG(0, "Triangle Nr." << Nr << " erased in line " << *lines[i] << ".");
|
---|
102 | }
|
---|
103 | if (lines[i]->triangles.empty()) {
|
---|
104 | //LOG(0, *lines[i] << " is no more attached to any triangle, erasing.");
|
---|
105 | delete (lines[i]);
|
---|
106 | lines[i] = NULL;
|
---|
107 | }
|
---|
108 | }
|
---|
109 | }
|
---|
110 | //LOG(0, "Erasing triangle Nr." << Nr << " itself.");
|
---|
111 | }
|
---|
112 | ;
|
---|
113 |
|
---|
114 | /** Calculates the area of this triangle.
|
---|
115 | *
|
---|
116 | * @return surface area in between the tree points of this triangle
|
---|
117 | */
|
---|
118 | double BoundaryTriangleSet::getArea() const
|
---|
119 | {
|
---|
120 | Vector x;
|
---|
121 | Vector y;
|
---|
122 | x = getEndpoint(0) - getEndpoint(1);
|
---|
123 | y = getEndpoint(0) - getEndpoint(2);
|
---|
124 | const double a = x.Norm();
|
---|
125 | const double b = y.Norm();
|
---|
126 | const double c = getEndpoint(2).distance(getEndpoint(1));
|
---|
127 | const double area = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
|
---|
128 | return area;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /** Calculates the normal vector for this triangle.
|
---|
132 | * Is made unique by comparison with \a OtherVector to point in the other direction.
|
---|
133 | * \param &OtherVector direction vector to make normal vector unique.
|
---|
134 | */
|
---|
135 | void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
|
---|
136 | {
|
---|
137 | Info FunctionInfo(__func__);
|
---|
138 | // get normal vector
|
---|
139 | NormalVector = Plane((endpoints[0]->node->getPosition()),
|
---|
140 | (endpoints[1]->node->getPosition()),
|
---|
141 | (endpoints[2]->node->getPosition())).getNormal();
|
---|
142 |
|
---|
143 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
144 | if (NormalVector.ScalarProduct(OtherVector) > 0.)
|
---|
145 | NormalVector.Scale(-1.);
|
---|
146 | LOG(1, "Normal Vector is " << NormalVector << ".");
|
---|
147 | }
|
---|
148 | ;
|
---|
149 |
|
---|
150 | /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
|
---|
151 | * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
|
---|
152 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
153 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
154 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
155 | * the first two basepoints) or not.
|
---|
156 | * \param *out output stream for debugging
|
---|
157 | * \param &MolCenter offset vector of line
|
---|
158 | * \param &x second endpoint of line, minus \a *MolCenter is directional vector of line
|
---|
159 | * \param &Intersection intersection on plane on return
|
---|
160 | * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
|
---|
161 | */
|
---|
162 |
|
---|
163 | bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const
|
---|
164 | {
|
---|
165 | Info FunctionInfo(__func__);
|
---|
166 | Vector CrossPoint;
|
---|
167 | Vector helper;
|
---|
168 |
|
---|
169 | try {
|
---|
170 | Line centerLine = makeLineThrough(MolCenter, x);
|
---|
171 | Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine);
|
---|
172 |
|
---|
173 | LOG(1, "INFO: Triangle is " << *this << ".");
|
---|
174 | LOG(1, "INFO: Line is from " << MolCenter << " to " << x << ".");
|
---|
175 | LOG(1, "INFO: Intersection is " << Intersection << ".");
|
---|
176 |
|
---|
177 | if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) {
|
---|
178 | LOG(1, "Intersection coindices with first endpoint.");
|
---|
179 | return true;
|
---|
180 | } else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) {
|
---|
181 | LOG(1, "Intersection coindices with second endpoint.");
|
---|
182 | return true;
|
---|
183 | } else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) {
|
---|
184 | LOG(1, "Intersection coindices with third endpoint.");
|
---|
185 | return true;
|
---|
186 | }
|
---|
187 | // Calculate cross point between one baseline and the line from the third endpoint to intersection
|
---|
188 | int i = 0;
|
---|
189 | do {
|
---|
190 | Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition()));
|
---|
191 | Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection);
|
---|
192 | CrossPoint = line1.getIntersection(line2);
|
---|
193 | helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
|
---|
194 | CrossPoint -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
195 | const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared();
|
---|
196 | LOG(1, "INFO: Factor s is " << s << ".");
|
---|
197 | if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) {
|
---|
198 | LOG(1, "INFO: Crosspoint " << CrossPoint << "outside of triangle.");
|
---|
199 | return false;
|
---|
200 | }
|
---|
201 | i++;
|
---|
202 | } while (i < 3);
|
---|
203 | LOG(1, "INFO: Crosspoint " << CrossPoint << " inside of triangle.");
|
---|
204 | return true;
|
---|
205 | }
|
---|
206 | catch (LinearAlgebraException &excp) {
|
---|
207 | LOG(1, boost::diagnostic_information(excp));
|
---|
208 | ELOG(1, "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!");
|
---|
209 | return false;
|
---|
210 | }
|
---|
211 | return true;
|
---|
212 | }
|
---|
213 |
|
---|
214 |
|
---|
215 | /** Finds the point on the triangle to the point \a *x.
|
---|
216 | * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
|
---|
217 | * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
|
---|
218 | * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
|
---|
219 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
220 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
221 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
222 | * the first two basepoints) or not.
|
---|
223 | * \param *x point
|
---|
224 | * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
|
---|
225 | * \return Distance squared between \a *x and closest point inside triangle
|
---|
226 | */
|
---|
227 | double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const
|
---|
228 | {
|
---|
229 | Info FunctionInfo(__func__);
|
---|
230 | Vector Direction;
|
---|
231 |
|
---|
232 | // 1. get intersection with plane and place in ClosestPoint
|
---|
233 | LOG(1, "INFO: Looking for closest point of triangle " << *this << " to " << x << ".");
|
---|
234 | LOG(1, "INFO: endpoints are " << endpoints[0]->node->getPosition() << ","
|
---|
235 | << endpoints[1]->node->getPosition() << ", and " << endpoints[2]->node->getPosition() << ".");
|
---|
236 | try {
|
---|
237 | ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).getClosestPoint(x);
|
---|
238 | }
|
---|
239 | catch (LinearAlgebraException &excp) {
|
---|
240 | (ClosestPoint) = (x);
|
---|
241 | }
|
---|
242 | Vector InPlane(ClosestPoint); // points from plane intersection to straight-down point
|
---|
243 |
|
---|
244 | // 2. Calculate in plane part of line (x, intersection)
|
---|
245 | LOG(2, "INFO: Closest point on triangle plane is " << ClosestPoint << ".");
|
---|
246 |
|
---|
247 | // Calculate cross point between one baseline and the desired point such that distance is shortest
|
---|
248 | Vector CrossDirection[3];
|
---|
249 | Vector CrossPoint[3];
|
---|
250 | for (int i = 0; i < 3; i++) {
|
---|
251 | const Vector Direction = (endpoints[i%3]->node->getPosition()) - (endpoints[(i+1)%3]->node->getPosition());
|
---|
252 | // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
|
---|
253 | Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition()));
|
---|
254 | CrossPoint[i] = l.getClosestPoint(InPlane);
|
---|
255 | // NOTE: direction of line is normalized, hence s must not necessarily be in [0,1] for the baseline
|
---|
256 | LOG(2, "INFO: Closest point on line from " << (endpoints[(i+1)%3]->node->getPosition())
|
---|
257 | << " to " << (endpoints[i%3]->node->getPosition()) << " is " << CrossPoint[i] << ".");
|
---|
258 | CrossPoint[i] -= (endpoints[(i+1)%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
259 | const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared();
|
---|
260 | LOG(2, "INFO: Factor s is " << s << ".");
|
---|
261 | if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {
|
---|
262 | CrossPoint[i] += (endpoints[(i+1)%3]->node->getPosition()); // make cross point absolute again
|
---|
263 | LOG(2, "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between "
|
---|
264 | << endpoints[i % 3]->node->getPosition() << " and "
|
---|
265 | << endpoints[(i + 1) % 3]->node->getPosition() << ".");
|
---|
266 | } else {
|
---|
267 | // set to either endpoint of BoundaryLine
|
---|
268 | if (s < -MYEPSILON)
|
---|
269 | CrossPoint[i] = (endpoints[(i+1)%3]->node->getPosition());
|
---|
270 | else
|
---|
271 | CrossPoint[i] = (endpoints[i%3]->node->getPosition());
|
---|
272 | LOG(2, "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting outside of BoundaryLine between "
|
---|
273 | << endpoints[i % 3]->node->getPosition() << " and "
|
---|
274 | << endpoints[(i + 1) % 3]->node->getPosition() << ".");
|
---|
275 | }
|
---|
276 | CrossDirection[i] = CrossPoint[i] - InPlane;
|
---|
277 | }
|
---|
278 |
|
---|
279 | bool InsideFlag = true;
|
---|
280 | double ShortestDistance = -1.;
|
---|
281 | for (int i = 0; i < 3; i++) {
|
---|
282 | const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]);
|
---|
283 | const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]);
|
---|
284 |
|
---|
285 | if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
|
---|
286 | InsideFlag = false;
|
---|
287 | // update current best candidate
|
---|
288 | const double distance = CrossPoint[i].DistanceSquared(x);
|
---|
289 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
|
---|
290 | ShortestDistance = distance;
|
---|
291 | (ClosestPoint) = CrossPoint[i];
|
---|
292 | }
|
---|
293 | }
|
---|
294 |
|
---|
295 | if (InsideFlag) {
|
---|
296 | (ClosestPoint) = InPlane;
|
---|
297 | ShortestDistance = InPlane.DistanceSquared(x);
|
---|
298 | }
|
---|
299 |
|
---|
300 | LOG(1, "INFO: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << ".");
|
---|
301 | return ShortestDistance;
|
---|
302 | }
|
---|
303 | ;
|
---|
304 |
|
---|
305 | /** Checks whether lines is any of the three boundary lines this triangle contains.
|
---|
306 | * \param *line line to test
|
---|
307 | * \return true - line is of the triangle, false - is not
|
---|
308 | */
|
---|
309 | bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
|
---|
310 | {
|
---|
311 | Info FunctionInfo(__func__);
|
---|
312 | for (int i = 0; i < 3; i++)
|
---|
313 | if (line == lines[i])
|
---|
314 | return true;
|
---|
315 | return false;
|
---|
316 | }
|
---|
317 | ;
|
---|
318 |
|
---|
319 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
320 | * \param *point point to test
|
---|
321 | * \return true - point is of the triangle, false - is not
|
---|
322 | */
|
---|
323 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
|
---|
324 | {
|
---|
325 | Info FunctionInfo(__func__);
|
---|
326 | for (int i = 0; i < 3; i++)
|
---|
327 | if (point == endpoints[i])
|
---|
328 | return true;
|
---|
329 | return false;
|
---|
330 | }
|
---|
331 | ;
|
---|
332 |
|
---|
333 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
334 | * \param *point TesselPoint to test
|
---|
335 | * \return true - point is of the triangle, false - is not
|
---|
336 | */
|
---|
337 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
|
---|
338 | {
|
---|
339 | Info FunctionInfo(__func__);
|
---|
340 | for (int i = 0; i < 3; i++)
|
---|
341 | if (point == endpoints[i]->node)
|
---|
342 | return true;
|
---|
343 | return false;
|
---|
344 | }
|
---|
345 | ;
|
---|
346 |
|
---|
347 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
348 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
349 | * \return true - is the very triangle, false - is not
|
---|
350 | */
|
---|
351 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
|
---|
352 | {
|
---|
353 | Info FunctionInfo(__func__);
|
---|
354 | LOG(1, "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << ".");
|
---|
355 | return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
|
---|
356 |
|
---|
357 | ));
|
---|
358 | }
|
---|
359 | ;
|
---|
360 |
|
---|
361 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
362 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
363 | * \return true - is the very triangle, false - is not
|
---|
364 | */
|
---|
365 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
|
---|
366 | {
|
---|
367 | Info FunctionInfo(__func__);
|
---|
368 | return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
|
---|
369 |
|
---|
370 | ));
|
---|
371 | }
|
---|
372 | ;
|
---|
373 |
|
---|
374 | /** Checks whether a given point is inside the plane of the triangle and inside the
|
---|
375 | * bounds defined by its BoundaryLineSet's.
|
---|
376 | *
|
---|
377 | * @param point point to check
|
---|
378 | * @return true - point is inside place and inside all BoundaryLine's
|
---|
379 | */
|
---|
380 | bool BoundaryTriangleSet::IsInsideTriangle(const Vector &point) const
|
---|
381 | {
|
---|
382 | Info FunctionInfo(__func__);
|
---|
383 |
|
---|
384 | // check if it's inside the plane
|
---|
385 | try {
|
---|
386 | Plane trianglePlane(
|
---|
387 | endpoints[0]->node->getPosition(),
|
---|
388 | endpoints[1]->node->getPosition(),
|
---|
389 | endpoints[2]->node->getPosition());
|
---|
390 | if (!trianglePlane.isContained(point)) {
|
---|
391 | LOG(1, "INFO: Point " << point << " is not inside plane " << trianglePlane << " by "
|
---|
392 | << trianglePlane.distance(point) << ".");
|
---|
393 | return false;
|
---|
394 | }
|
---|
395 | } catch(LinearDependenceException) {
|
---|
396 | // triangle is degenerated, it's just a line (i.e. one endpoint is right in between two others
|
---|
397 | for (size_t i = 0; i < NDIM; ++i) {
|
---|
398 | try {
|
---|
399 | Line l = makeLineThrough(
|
---|
400 | lines[i]->endpoints[0]->node->getPosition(),
|
---|
401 | lines[i]->endpoints[1]->node->getPosition());
|
---|
402 | if (l.isContained(GetThirdEndpoint(lines[i])->node->getPosition())) {
|
---|
403 | // we have the largest of the three lines
|
---|
404 | LOG(1, "INFO: Linear-dependent case where point " << point << " is on line " << l << ".");
|
---|
405 | return (l.isContained(point));
|
---|
406 | }
|
---|
407 | } catch(ZeroVectorException) {
|
---|
408 | // two points actually coincide
|
---|
409 | try {
|
---|
410 | Line l = makeLineThrough(
|
---|
411 | lines[i]->endpoints[0]->node->getPosition(),
|
---|
412 | GetThirdEndpoint(lines[i])->node->getPosition());
|
---|
413 | LOG(1, "INFO: Degenerated case where point " << point << " is on line " << l << ".");
|
---|
414 | return (l.isContained(point));
|
---|
415 | } catch(ZeroVectorException) {
|
---|
416 | // all three points coincide
|
---|
417 | if (point.DistanceSquared(lines[i]->endpoints[0]->node->getPosition()) < MYEPSILON) {
|
---|
418 | LOG(1, "INFO: Full-Degenerated case where point " << point << " is on three endpoints "
|
---|
419 | << lines[i]->endpoints[0]->node->getPosition() << ".");
|
---|
420 | return true;
|
---|
421 | }
|
---|
422 | else return false;
|
---|
423 | }
|
---|
424 | }
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 | // check whether it lies on the correct side as given by third endpoint for
|
---|
429 | // each BoundaryLine.
|
---|
430 | // NOTE: we assume here that endpoints are linear independent, as the case
|
---|
431 | // has been caught before already extensively
|
---|
432 | for (size_t i = 0; i < NDIM; ++i) {
|
---|
433 | Line l = makeLineThrough(
|
---|
434 | lines[i]->endpoints[0]->node->getPosition(),
|
---|
435 | lines[i]->endpoints[1]->node->getPosition());
|
---|
436 | Vector onLine( l.getClosestPoint(point) );
|
---|
437 | LOG(1, "INFO: Closest point on boundary line is " << onLine << ".");
|
---|
438 | Vector inTriangleDirection( GetThirdEndpoint(lines[i])->node->getPosition() - onLine );
|
---|
439 | Vector inPointDirection(point - onLine);
|
---|
440 | if ((inTriangleDirection.NormSquared() > MYEPSILON) && (inPointDirection.NormSquared() > MYEPSILON))
|
---|
441 | if (inTriangleDirection.ScalarProduct(inPointDirection) < -MYEPSILON)
|
---|
442 | return false;
|
---|
443 | }
|
---|
444 |
|
---|
445 | return true;
|
---|
446 | }
|
---|
447 |
|
---|
448 |
|
---|
449 | /** Returns the endpoint which is not contained in the given \a *line.
|
---|
450 | * \param *line baseline defining two endpoints
|
---|
451 | * \return pointer third endpoint or NULL if line does not belong to triangle.
|
---|
452 | */
|
---|
453 | class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
|
---|
454 | {
|
---|
455 | Info FunctionInfo(__func__);
|
---|
456 | // sanity check
|
---|
457 | if (!ContainsBoundaryLine(line))
|
---|
458 | return NULL;
|
---|
459 | for (int i = 0; i < 3; i++)
|
---|
460 | if (!line->ContainsBoundaryPoint(endpoints[i]))
|
---|
461 | return endpoints[i];
|
---|
462 | // actually, that' impossible :)
|
---|
463 | return NULL;
|
---|
464 | }
|
---|
465 | ;
|
---|
466 |
|
---|
467 | /** Returns the baseline which does not contain the given boundary point \a *point.
|
---|
468 | * \param *point endpoint which is neither endpoint of the desired line
|
---|
469 | * \return pointer to desired third baseline
|
---|
470 | */
|
---|
471 | class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const
|
---|
472 | {
|
---|
473 | Info FunctionInfo(__func__);
|
---|
474 | // sanity check
|
---|
475 | if (!ContainsBoundaryPoint(point))
|
---|
476 | return NULL;
|
---|
477 | for (int i = 0; i < 3; i++)
|
---|
478 | if (!lines[i]->ContainsBoundaryPoint(point))
|
---|
479 | return lines[i];
|
---|
480 | // actually, that' impossible :)
|
---|
481 | return NULL;
|
---|
482 | }
|
---|
483 | ;
|
---|
484 |
|
---|
485 | /** Calculates the center point of the triangle.
|
---|
486 | * Is third of the sum of all endpoints.
|
---|
487 | * \param *center central point on return.
|
---|
488 | */
|
---|
489 | void BoundaryTriangleSet::GetCenter(Vector & center) const
|
---|
490 | {
|
---|
491 | Info FunctionInfo(__func__);
|
---|
492 | center.Zero();
|
---|
493 | for (int i = 0; i < 3; i++)
|
---|
494 | (center) += (endpoints[i]->node->getPosition());
|
---|
495 | center.Scale(1. / 3.);
|
---|
496 | LOG(1, "INFO: Center is at " << center << ".");
|
---|
497 | }
|
---|
498 |
|
---|
499 | /**
|
---|
500 | * gets the Plane defined by the three triangle Basepoints
|
---|
501 | */
|
---|
502 | Plane BoundaryTriangleSet::getPlane() const{
|
---|
503 | ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined");
|
---|
504 |
|
---|
505 | return Plane(endpoints[0]->node->getPosition(),
|
---|
506 | endpoints[1]->node->getPosition(),
|
---|
507 | endpoints[2]->node->getPosition());
|
---|
508 | }
|
---|
509 |
|
---|
510 | Vector BoundaryTriangleSet::getEndpoint(int i) const{
|
---|
511 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
512 |
|
---|
513 | return endpoints[i]->node->getPosition();
|
---|
514 | }
|
---|
515 |
|
---|
516 | string BoundaryTriangleSet::getEndpointName(int i) const{
|
---|
517 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
518 |
|
---|
519 | return endpoints[i]->node->getName();
|
---|
520 | }
|
---|
521 |
|
---|
522 | /** output operator for BoundaryTriangleSet.
|
---|
523 | * \param &ost output stream
|
---|
524 | * \param &a boundary triangle
|
---|
525 | */
|
---|
526 | ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
|
---|
527 | {
|
---|
528 | ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]";
|
---|
529 | // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
|
---|
530 | // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
|
---|
531 | return ost;
|
---|
532 | }
|
---|
533 | ;
|
---|
534 |
|
---|