1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 |
|
---|
8 | #include "defs.hpp"
|
---|
9 | #include "gslmatrix.hpp"
|
---|
10 | #include "leastsquaremin.hpp"
|
---|
11 | #include "memoryallocator.hpp"
|
---|
12 | #include "SingleVector.hpp"
|
---|
13 | #include "Helpers/fast_functions.hpp"
|
---|
14 | #include "Helpers/Assert.hpp"
|
---|
15 | #include "Plane.hpp"
|
---|
16 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
17 |
|
---|
18 | #include <gsl/gsl_linalg.h>
|
---|
19 | #include <gsl/gsl_matrix.h>
|
---|
20 | #include <gsl/gsl_permutation.h>
|
---|
21 | #include <gsl/gsl_vector.h>
|
---|
22 |
|
---|
23 | #include <iostream>
|
---|
24 |
|
---|
25 | using namespace std;
|
---|
26 |
|
---|
27 | /************************************ Functions for class vector ************************************/
|
---|
28 |
|
---|
29 | /** Constructor of class vector.
|
---|
30 | */
|
---|
31 | SingleVector::SingleVector() :
|
---|
32 | Vector(Baseconstructor())
|
---|
33 | {
|
---|
34 | x[0] = x[1] = x[2] = 0.;
|
---|
35 | };
|
---|
36 |
|
---|
37 | /** Constructor of class vector.
|
---|
38 | */
|
---|
39 | SingleVector::SingleVector(const double x1, const double x2, const double x3) :
|
---|
40 | Vector(Baseconstructor())
|
---|
41 | {
|
---|
42 | x[0] = x1;
|
---|
43 | x[1] = x2;
|
---|
44 | x[2] = x3;
|
---|
45 | };
|
---|
46 |
|
---|
47 | /**
|
---|
48 | * Copy constructor
|
---|
49 | */
|
---|
50 | SingleVector::SingleVector(const Vector& src) :
|
---|
51 | Vector(Baseconstructor())
|
---|
52 | {
|
---|
53 | x[0] = src[0];
|
---|
54 | x[1] = src[1];
|
---|
55 | x[2] = src[2];
|
---|
56 | }
|
---|
57 |
|
---|
58 | SingleVector* SingleVector::clone() const{
|
---|
59 | return new SingleVector(x[0],x[1],x[2]);
|
---|
60 | }
|
---|
61 |
|
---|
62 | /** Desctructor of class vector.
|
---|
63 | */
|
---|
64 | SingleVector::~SingleVector() {};
|
---|
65 |
|
---|
66 | /** Calculates square of distance between this and another vector.
|
---|
67 | * \param *y array to second vector
|
---|
68 | * \return \f$| x - y |^2\f$
|
---|
69 | */
|
---|
70 | double SingleVector::DistanceSquared(const Vector &y) const
|
---|
71 | {
|
---|
72 | double res = 0.;
|
---|
73 | for (int i=NDIM;i--;)
|
---|
74 | res += (x[i]-y[i])*(x[i]-y[i]);
|
---|
75 | return (res);
|
---|
76 | };
|
---|
77 |
|
---|
78 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
79 | * \param *y array to second vector
|
---|
80 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
81 | * \return \f$| x - y |\f$
|
---|
82 | */
|
---|
83 | double SingleVector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
---|
84 | {
|
---|
85 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
86 | Vector Shiftedy, TranslationVector;
|
---|
87 | int N[NDIM];
|
---|
88 | matrix[0] = cell_size[0];
|
---|
89 | matrix[1] = cell_size[1];
|
---|
90 | matrix[2] = cell_size[3];
|
---|
91 | matrix[3] = cell_size[1];
|
---|
92 | matrix[4] = cell_size[2];
|
---|
93 | matrix[5] = cell_size[4];
|
---|
94 | matrix[6] = cell_size[3];
|
---|
95 | matrix[7] = cell_size[4];
|
---|
96 | matrix[8] = cell_size[5];
|
---|
97 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
98 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
99 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
100 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
101 | // create the translation vector
|
---|
102 | TranslationVector.Zero();
|
---|
103 | for (int i=NDIM;i--;)
|
---|
104 | TranslationVector[i] = (double)N[i];
|
---|
105 | TranslationVector.MatrixMultiplication(matrix);
|
---|
106 | // add onto the original vector to compare with
|
---|
107 | Shiftedy = y + TranslationVector;
|
---|
108 | // get distance and compare with minimum so far
|
---|
109 | tmp = Distance(Shiftedy);
|
---|
110 | if (tmp < res) res = tmp;
|
---|
111 | }
|
---|
112 | return (res);
|
---|
113 | };
|
---|
114 |
|
---|
115 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
116 | * \param *y array to second vector
|
---|
117 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
118 | * \return \f$| x - y |^2\f$
|
---|
119 | */
|
---|
120 | double SingleVector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
---|
121 | {
|
---|
122 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
123 | Vector Shiftedy, TranslationVector;
|
---|
124 | int N[NDIM];
|
---|
125 | matrix[0] = cell_size[0];
|
---|
126 | matrix[1] = cell_size[1];
|
---|
127 | matrix[2] = cell_size[3];
|
---|
128 | matrix[3] = cell_size[1];
|
---|
129 | matrix[4] = cell_size[2];
|
---|
130 | matrix[5] = cell_size[4];
|
---|
131 | matrix[6] = cell_size[3];
|
---|
132 | matrix[7] = cell_size[4];
|
---|
133 | matrix[8] = cell_size[5];
|
---|
134 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
135 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
136 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
137 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
138 | // create the translation vector
|
---|
139 | TranslationVector.Zero();
|
---|
140 | for (int i=NDIM;i--;)
|
---|
141 | TranslationVector[i] = (double)N[i];
|
---|
142 | TranslationVector.MatrixMultiplication(matrix);
|
---|
143 | // add onto the original vector to compare with
|
---|
144 | Shiftedy = y + TranslationVector;
|
---|
145 | // get distance and compare with minimum so far
|
---|
146 | tmp = DistanceSquared(Shiftedy);
|
---|
147 | if (tmp < res) res = tmp;
|
---|
148 | }
|
---|
149 | return (res);
|
---|
150 | };
|
---|
151 |
|
---|
152 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
153 | * \param *out ofstream for debugging messages
|
---|
154 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
155 | */
|
---|
156 | void SingleVector::KeepPeriodic(const double * const matrix)
|
---|
157 | {
|
---|
158 | // int N[NDIM];
|
---|
159 | // bool flag = false;
|
---|
160 | //vector Shifted, TranslationVector;
|
---|
161 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
162 | // Log() << Verbose(2) << "Vector is: ";
|
---|
163 | // Output(out);
|
---|
164 | // Log() << Verbose(0) << endl;
|
---|
165 | SingleVector TestVector(*this);
|
---|
166 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
167 | for(int i=NDIM;i--;) { // correct periodically
|
---|
168 | if (TestVector[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
169 | TestVector[i] += ceil(TestVector[i]);
|
---|
170 | } else {
|
---|
171 | TestVector[i] -= floor(TestVector[i]);
|
---|
172 | }
|
---|
173 | }
|
---|
174 | TestVector.MatrixMultiplication(matrix);
|
---|
175 | CopyVector(TestVector);
|
---|
176 | // Log() << Verbose(2) << "New corrected vector is: ";
|
---|
177 | // Output(out);
|
---|
178 | // Log() << Verbose(0) << endl;
|
---|
179 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
180 | };
|
---|
181 |
|
---|
182 | /** Calculates scalar product between this and another vector.
|
---|
183 | * \param *y array to second vector
|
---|
184 | * \return \f$\langle x, y \rangle\f$
|
---|
185 | */
|
---|
186 | double SingleVector::ScalarProduct(const Vector &y) const
|
---|
187 | {
|
---|
188 | double res = 0.;
|
---|
189 | for (int i=NDIM;i--;)
|
---|
190 | res += x[i]*y[i];
|
---|
191 | return (res);
|
---|
192 | };
|
---|
193 |
|
---|
194 |
|
---|
195 | void SingleVector::AddVector(const Vector &y) {
|
---|
196 | for(int i=NDIM;i--;)
|
---|
197 | x[i] += y[i];
|
---|
198 | }
|
---|
199 |
|
---|
200 | void SingleVector::SubtractVector(const Vector &y){
|
---|
201 | for(int i=NDIM;i--;)
|
---|
202 | x[i] -= y[i];
|
---|
203 | }
|
---|
204 |
|
---|
205 | /** Calculates VectorProduct between this and another vector.
|
---|
206 | * -# returns the Product in place of vector from which it was initiated
|
---|
207 | * -# ATTENTION: Only three dim.
|
---|
208 | * \param *y array to vector with which to calculate crossproduct
|
---|
209 | * \return \f$ x \times y \f&
|
---|
210 | */
|
---|
211 | void SingleVector::VectorProduct(const Vector &y)
|
---|
212 | {
|
---|
213 | SingleVector tmp;
|
---|
214 | tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
|
---|
215 | tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
|
---|
216 | tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
|
---|
217 | CopyVector(tmp);
|
---|
218 | };
|
---|
219 |
|
---|
220 |
|
---|
221 | /** projects this vector onto plane defined by \a *y.
|
---|
222 | * \param *y normal vector of plane
|
---|
223 | * \return \f$\langle x, y \rangle\f$
|
---|
224 | */
|
---|
225 | void SingleVector::ProjectOntoPlane(const Vector &y)
|
---|
226 | {
|
---|
227 | Vector tmp;
|
---|
228 | tmp = y;
|
---|
229 | tmp.Normalize();
|
---|
230 | tmp.Scale(ScalarProduct(tmp));
|
---|
231 | *this -= tmp;
|
---|
232 | };
|
---|
233 |
|
---|
234 | /** Calculates the minimum distance of this vector to the plane.
|
---|
235 | * \param *out output stream for debugging
|
---|
236 | * \param *PlaneNormal normal of plane
|
---|
237 | * \param *PlaneOffset offset of plane
|
---|
238 | * \return distance to plane
|
---|
239 | */
|
---|
240 | double SingleVector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
|
---|
241 | {
|
---|
242 | // first create part that is orthonormal to PlaneNormal with withdraw
|
---|
243 | Vector temp = VecFromRep(this)- PlaneOffset;
|
---|
244 | temp.MakeNormalTo(PlaneNormal);
|
---|
245 | temp.Scale(-1.);
|
---|
246 | // then add connecting vector from plane to point
|
---|
247 | temp += VecFromRep(this)-PlaneOffset;
|
---|
248 | double sign = temp.ScalarProduct(PlaneNormal);
|
---|
249 | if (fabs(sign) > MYEPSILON)
|
---|
250 | sign /= fabs(sign);
|
---|
251 | else
|
---|
252 | sign = 0.;
|
---|
253 |
|
---|
254 | return (temp.Norm()*sign);
|
---|
255 | };
|
---|
256 |
|
---|
257 | /** Calculates the projection of a vector onto another \a *y.
|
---|
258 | * \param *y array to second vector
|
---|
259 | */
|
---|
260 | void SingleVector::ProjectIt(const Vector &y)
|
---|
261 | {
|
---|
262 | Vector helper = y;
|
---|
263 | helper.Scale(-(ScalarProduct(y)));
|
---|
264 | AddVector(helper);
|
---|
265 | };
|
---|
266 |
|
---|
267 | /** Calculates the projection of a vector onto another \a *y.
|
---|
268 | * \param *y array to second vector
|
---|
269 | * \return Vector
|
---|
270 | */
|
---|
271 | Vector SingleVector::Projection(const Vector &y) const
|
---|
272 | {
|
---|
273 | Vector helper = y;
|
---|
274 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
---|
275 |
|
---|
276 | return helper;
|
---|
277 | };
|
---|
278 |
|
---|
279 | /** Checks whether vector has all components zero.
|
---|
280 | * @return true - vector is zero, false - vector is not
|
---|
281 | */
|
---|
282 | bool SingleVector::IsZero() const
|
---|
283 | {
|
---|
284 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
---|
285 | };
|
---|
286 |
|
---|
287 | /** Checks whether vector has length of 1.
|
---|
288 | * @return true - vector is normalized, false - vector is not
|
---|
289 | */
|
---|
290 | bool SingleVector::IsOne() const
|
---|
291 | {
|
---|
292 | return (fabs(Norm() - 1.) < MYEPSILON);
|
---|
293 | };
|
---|
294 |
|
---|
295 | /** Checks whether vector is normal to \a *normal.
|
---|
296 | * @return true - vector is normalized, false - vector is not
|
---|
297 | */
|
---|
298 | bool SingleVector::IsNormalTo(const Vector &normal) const
|
---|
299 | {
|
---|
300 | if (ScalarProduct(normal) < MYEPSILON)
|
---|
301 | return true;
|
---|
302 | else
|
---|
303 | return false;
|
---|
304 | };
|
---|
305 |
|
---|
306 | /** Checks whether vector is normal to \a *normal.
|
---|
307 | * @return true - vector is normalized, false - vector is not
|
---|
308 | */
|
---|
309 | bool SingleVector::IsEqualTo(const Vector &a) const
|
---|
310 | {
|
---|
311 | bool status = true;
|
---|
312 | for (int i=0;i<NDIM;i++) {
|
---|
313 | if (fabs(x[i] - a[i]) > MYEPSILON)
|
---|
314 | status = false;
|
---|
315 | }
|
---|
316 | return status;
|
---|
317 | };
|
---|
318 |
|
---|
319 | /** Calculates the angle between this and another vector.
|
---|
320 | * \param *y array to second vector
|
---|
321 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
322 | */
|
---|
323 | double SingleVector::Angle(const Vector &y) const
|
---|
324 | {
|
---|
325 | double norm1 = Norm(), norm2 = y.Norm();
|
---|
326 | double angle = -1;
|
---|
327 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
---|
328 | angle = this->ScalarProduct(y)/norm1/norm2;
|
---|
329 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
330 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
331 | if (angle < -1)
|
---|
332 | angle = -1;
|
---|
333 | if (angle > 1)
|
---|
334 | angle = 1;
|
---|
335 | return acos(angle);
|
---|
336 | };
|
---|
337 |
|
---|
338 |
|
---|
339 | double& SingleVector::operator[](size_t i){
|
---|
340 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
341 | return x[i];
|
---|
342 | }
|
---|
343 |
|
---|
344 | const double& SingleVector::operator[](size_t i) const{
|
---|
345 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
---|
346 | return x[i];
|
---|
347 | }
|
---|
348 |
|
---|
349 | double* SingleVector::get(){
|
---|
350 | return x;
|
---|
351 | }
|
---|
352 | /** Scales each atom coordinate by an individual \a factor.
|
---|
353 | * \param *factor pointer to scaling factor
|
---|
354 | */
|
---|
355 | void SingleVector::ScaleAll(const double *factor)
|
---|
356 | {
|
---|
357 | for (int i=NDIM;i--;)
|
---|
358 | x[i] *= factor[i];
|
---|
359 | };
|
---|
360 |
|
---|
361 | void SingleVector::Scale(const double factor)
|
---|
362 | {
|
---|
363 | for (int i=NDIM;i--;)
|
---|
364 | x[i] *= factor;
|
---|
365 | };
|
---|
366 |
|
---|
367 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
---|
368 | * \param *M matrix of box
|
---|
369 | * \param *Minv inverse matrix
|
---|
370 | */
|
---|
371 | void SingleVector::WrapPeriodically(const double * const M, const double * const Minv)
|
---|
372 | {
|
---|
373 | MatrixMultiplication(Minv);
|
---|
374 | // truncate to [0,1] for each axis
|
---|
375 | for (int i=0;i<NDIM;i++) {
|
---|
376 | x[i] += 0.5; // set to center of box
|
---|
377 | while (x[i] >= 1.)
|
---|
378 | x[i] -= 1.;
|
---|
379 | while (x[i] < 0.)
|
---|
380 | x[i] += 1.;
|
---|
381 | }
|
---|
382 | MatrixMultiplication(M);
|
---|
383 | };
|
---|
384 |
|
---|
385 | /** Do a matrix multiplication.
|
---|
386 | * \param *matrix NDIM_NDIM array
|
---|
387 | */
|
---|
388 | void SingleVector::MatrixMultiplication(const double * const M)
|
---|
389 | {
|
---|
390 | SingleVector C;
|
---|
391 | // do the matrix multiplication
|
---|
392 | C[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
393 | C[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
394 | C[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
395 |
|
---|
396 | CopyVector(C);
|
---|
397 | };
|
---|
398 |
|
---|
399 | /** Do a matrix multiplication with the \a *A' inverse.
|
---|
400 | * \param *matrix NDIM_NDIM array
|
---|
401 | */
|
---|
402 | bool SingleVector::InverseMatrixMultiplication(const double * const A)
|
---|
403 | {
|
---|
404 | SingleVector C;
|
---|
405 | double B[NDIM*NDIM];
|
---|
406 | double detA = RDET3(A);
|
---|
407 | double detAReci;
|
---|
408 |
|
---|
409 | // calculate the inverse B
|
---|
410 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
411 | detAReci = 1./detA;
|
---|
412 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
413 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
414 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
415 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
416 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
417 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
418 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
419 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
420 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
421 |
|
---|
422 | // do the matrix multiplication
|
---|
423 | C[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
424 | C[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
425 | C[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
426 |
|
---|
427 | CopyVector(C);
|
---|
428 | return true;
|
---|
429 | } else {
|
---|
430 | return false;
|
---|
431 | }
|
---|
432 | };
|
---|
433 |
|
---|
434 |
|
---|
435 | /** Mirrors atom against a given plane.
|
---|
436 | * \param n[] normal vector of mirror plane.
|
---|
437 | */
|
---|
438 | void SingleVector::Mirror(const Vector &n)
|
---|
439 | {
|
---|
440 | double projection;
|
---|
441 | projection = ScalarProduct(n)/n.NormSquared(); // remove constancy from n (keep as logical one)
|
---|
442 | // withdraw projected vector twice from original one
|
---|
443 | for (int i=NDIM;i--;)
|
---|
444 | x[i] -= 2.*projection*n[i];
|
---|
445 | };
|
---|
446 |
|
---|
447 |
|
---|
448 | /** Calculates orthonormal vector to one given vector.
|
---|
449 | * Just subtracts the projection onto the given vector from this vector.
|
---|
450 | * The removed part of the vector is Vector::Projection()
|
---|
451 | * \param *x1 vector
|
---|
452 | * \return true - success, false - vector is zero
|
---|
453 | */
|
---|
454 | bool SingleVector::MakeNormalTo(const Vector &y1)
|
---|
455 | {
|
---|
456 | bool result = false;
|
---|
457 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
---|
458 | Vector x1;
|
---|
459 | x1 = factor * y1;
|
---|
460 | SubtractVector(x1);
|
---|
461 | for (int i=NDIM;i--;)
|
---|
462 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
463 |
|
---|
464 | return result;
|
---|
465 | };
|
---|
466 |
|
---|
467 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
468 | * Just scan how many components of given *vector are unequal to zero and
|
---|
469 | * try to get the skp of both to be zero accordingly.
|
---|
470 | * \param *vector given vector
|
---|
471 | * \return true - success, false - failure (null vector given)
|
---|
472 | */
|
---|
473 | bool SingleVector::GetOneNormalVector(const Vector &GivenVector)
|
---|
474 | {
|
---|
475 | int Components[NDIM]; // contains indices of non-zero components
|
---|
476 | int Last = 0; // count the number of non-zero entries in vector
|
---|
477 | int j; // loop variables
|
---|
478 | double norm;
|
---|
479 |
|
---|
480 | for (j=NDIM;j--;)
|
---|
481 | Components[j] = -1;
|
---|
482 | // find two components != 0
|
---|
483 | for (j=0;j<NDIM;j++)
|
---|
484 | if (fabs(GivenVector[j]) > MYEPSILON)
|
---|
485 | Components[Last++] = j;
|
---|
486 |
|
---|
487 | switch(Last) {
|
---|
488 | case 3: // threecomponent system
|
---|
489 | case 2: // two component system
|
---|
490 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
---|
491 | x[Components[2]] = 0.;
|
---|
492 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
493 | x[Components[1]] = -1./GivenVector[Components[1]] / norm;
|
---|
494 | x[Components[0]] = 1./GivenVector[Components[0]] / norm;
|
---|
495 | return true;
|
---|
496 | break;
|
---|
497 | case 1: // one component system
|
---|
498 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
499 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
500 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
501 | x[Components[0]] = 0.;
|
---|
502 | return true;
|
---|
503 | break;
|
---|
504 | default:
|
---|
505 | return false;
|
---|
506 | }
|
---|
507 | };
|
---|
508 |
|
---|
509 | /**
|
---|
510 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
---|
511 | * their offset.
|
---|
512 | *
|
---|
513 | * @param offest for the origin of the parallelepiped
|
---|
514 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
---|
515 | */
|
---|
516 | bool SingleVector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
---|
517 | {
|
---|
518 | Vector a = VecFromRep(this);
|
---|
519 | a -= offset;
|
---|
520 | a.InverseMatrixMultiplication(parallelepiped);
|
---|
521 | bool isInside = true;
|
---|
522 |
|
---|
523 | for (int i=NDIM;i--;)
|
---|
524 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
|
---|
525 |
|
---|
526 | return isInside;
|
---|
527 | }
|
---|
528 |
|
---|
529 |
|
---|
530 | void SingleVector::CopyVector(SingleVector& vec) {
|
---|
531 | for(int i =NDIM; i--;)
|
---|
532 | x[i]=vec.x[i];
|
---|
533 | }
|
---|
534 |
|
---|
535 | bool SingleVector::isBaseClass() const{
|
---|
536 | return false;
|
---|
537 | }
|
---|