1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
5 | *
|
---|
6 | *
|
---|
7 | * This file is part of MoleCuilder.
|
---|
8 | *
|
---|
9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * BaseShapes_impl.cpp
|
---|
25 | *
|
---|
26 | * Created on: Jun 18, 2010
|
---|
27 | * Author: crueger
|
---|
28 | */
|
---|
29 |
|
---|
30 | // include config.h
|
---|
31 | #ifdef HAVE_CONFIG_H
|
---|
32 | #include <config.h>
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include "CodePatterns/MemDebug.hpp"
|
---|
36 |
|
---|
37 | #include "Shapes/BaseShapes.hpp"
|
---|
38 | #include "Shapes/BaseShapes_impl.hpp"
|
---|
39 | #include "Shapes/ShapeExceptions.hpp"
|
---|
40 | #include "Shapes/ShapeOps.hpp"
|
---|
41 |
|
---|
42 | #include "Helpers/defs.hpp"
|
---|
43 |
|
---|
44 | #include "CodePatterns/Assert.hpp"
|
---|
45 | #include "LinearAlgebra/Vector.hpp"
|
---|
46 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
47 | #include "LinearAlgebra/Line.hpp"
|
---|
48 | #include "LinearAlgebra/Plane.hpp"
|
---|
49 | #include "LinearAlgebra/LineSegment.hpp"
|
---|
50 | #include "LinearAlgebra/LineSegmentSet.hpp"
|
---|
51 |
|
---|
52 | #include <cmath>
|
---|
53 | #include <algorithm>
|
---|
54 |
|
---|
55 | // CYLINDER CODE
|
---|
56 | // ----------------------------------------------------------------------------
|
---|
57 | bool Cylinder_impl::isInside(const Vector &point) const {
|
---|
58 | return (Vector(point[0], point[1], 0.0).NormSquared() < 1.0+MYEPSILON) &&
|
---|
59 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON);
|
---|
60 | }
|
---|
61 |
|
---|
62 | bool Cylinder_impl::isOnSurface(const Vector &point) const {
|
---|
63 | return fabs(Vector(point[0], point[1], 0.0).NormSquared()-1.0)<MYEPSILON &&
|
---|
64 | (point[2] > -1.0-MYEPSILON) && (point[2] < 1.0+MYEPSILON);
|
---|
65 |
|
---|
66 | }
|
---|
67 |
|
---|
68 | Vector Cylinder_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException) {
|
---|
69 | if(!isOnSurface(point)){
|
---|
70 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
71 | }
|
---|
72 |
|
---|
73 | if ((fabs(point[2]-1)<MYEPSILON) || (fabs(point[2])<MYEPSILON))
|
---|
74 | return Vector(0.0, 0.0, point[2]);
|
---|
75 | else
|
---|
76 | return Vector(point[0], point[1], 0.0);
|
---|
77 | }
|
---|
78 |
|
---|
79 | Vector Cylinder_impl::getCenter() const
|
---|
80 | {
|
---|
81 | return Vector(0.0, 0.0, 0.0);
|
---|
82 | }
|
---|
83 |
|
---|
84 | double Cylinder_impl::getRadius() const
|
---|
85 | {
|
---|
86 | return 1.0;
|
---|
87 | }
|
---|
88 |
|
---|
89 | double Cylinder_impl::getVolume() const
|
---|
90 | {
|
---|
91 | return M_PI*2.0; // pi r^2 h
|
---|
92 | }
|
---|
93 |
|
---|
94 | double Cylinder_impl::getSurfaceArea() const
|
---|
95 | {
|
---|
96 | return 2.0*M_PI*2.0; // 2 pi r h
|
---|
97 | }
|
---|
98 |
|
---|
99 | LineSegmentSet Cylinder_impl::getLineIntersections(const Line &line) const {
|
---|
100 | const Vector origin = line.getOrigin();
|
---|
101 | const Vector direction = line.getDirection();
|
---|
102 |
|
---|
103 | const Vector e(direction[0], direction[1], 0.0);
|
---|
104 | const Vector f(origin[0], origin[1], 0.0);
|
---|
105 | const double A = e.ScalarProduct(e);
|
---|
106 | const double B = 2.0*e.ScalarProduct(f);
|
---|
107 | const double C = f.ScalarProduct(f) - 1.0;
|
---|
108 |
|
---|
109 | std::vector<double> solutions;
|
---|
110 |
|
---|
111 | // Common routine to solve quadratic quations, anywhere?
|
---|
112 | const double neg_p_half = -B/(2.0*A);
|
---|
113 | const double q = C/A;
|
---|
114 | const double radicant = neg_p_half*neg_p_half-q;
|
---|
115 |
|
---|
116 | if (radicant > 0.0) {
|
---|
117 | const double root = sqrt(radicant);
|
---|
118 | solutions.push_back(neg_p_half+root);
|
---|
119 | const double sln2 = neg_p_half-root;
|
---|
120 | if (sln2 != solutions.back())
|
---|
121 | solutions.push_back(sln2);
|
---|
122 | }
|
---|
123 |
|
---|
124 | // Now get parameter for intersection with z-Planes.
|
---|
125 | const double origin_z = origin[2];
|
---|
126 | const double dir_z = direction[2];
|
---|
127 |
|
---|
128 | if (dir_z != 0.0) {
|
---|
129 | solutions.push_back((-1.0-origin_z)/dir_z);
|
---|
130 | solutions.push_back((1.0-origin_z)/dir_z);
|
---|
131 | }
|
---|
132 |
|
---|
133 | // Calculate actual vectors from obtained parameters and check,
|
---|
134 | // if they are actual intersections.
|
---|
135 | std::vector<Vector> intersections;
|
---|
136 |
|
---|
137 | for(unsigned int i=0; i<solutions.size(); i++) {
|
---|
138 | const Vector check_me(origin + direction*solutions[i]);
|
---|
139 | if (isOnSurface(check_me))
|
---|
140 | intersections.push_back(check_me);
|
---|
141 | }
|
---|
142 |
|
---|
143 | LineSegmentSet result(line);
|
---|
144 | if (intersections.size()==2)
|
---|
145 | result.insert(LineSegment(intersections[0], intersections[1]));
|
---|
146 | return result;
|
---|
147 | }
|
---|
148 |
|
---|
149 | std::string Cylinder_impl::toString() const
|
---|
150 | {
|
---|
151 | return "Cylinder()";
|
---|
152 | }
|
---|
153 |
|
---|
154 | enum ShapeType Cylinder_impl::getType() const
|
---|
155 | {
|
---|
156 | return CylinderType;
|
---|
157 | }
|
---|
158 |
|
---|
159 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsOnSurface(const size_t N) const {
|
---|
160 | const double nz_float = sqrt(N/M_PI);
|
---|
161 | const int nu = round(N/nz_float);
|
---|
162 | const int nz = round(nz_float);
|
---|
163 |
|
---|
164 | const double dphi = 2.0*M_PI/nu;
|
---|
165 | const double dz = 2.0/nz;
|
---|
166 |
|
---|
167 | std::vector<Vector> result;
|
---|
168 |
|
---|
169 | for(int useg=0; useg<nu; useg++)
|
---|
170 | for(int zseg=0; zseg<nz; zseg++)
|
---|
171 | result.push_back(Vector(cos(useg*dphi), sin(useg*dphi), zseg*dz-1.0));
|
---|
172 |
|
---|
173 | return result;
|
---|
174 | }
|
---|
175 |
|
---|
176 | std::vector<Vector> Cylinder_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
177 | const double nz_float = pow(N/(2.0*M_PI), 1.0/3.0);
|
---|
178 | const int nu = round(nz_float*M_PI);
|
---|
179 | const int nr = round(nz_float*0.5);
|
---|
180 | const int nz = round(nz_float);
|
---|
181 |
|
---|
182 | const double dphi = 2.0*M_PI/nu;
|
---|
183 | const double dz = 2.0/nz;
|
---|
184 | const double dr = 1.0/nr;
|
---|
185 |
|
---|
186 | std::vector<Vector> result;
|
---|
187 |
|
---|
188 | for(int useg=0; useg<nu; useg++)
|
---|
189 | for(int zseg=0; zseg<nz; zseg++)
|
---|
190 | for(int rseg=0; rseg<nr; rseg++)
|
---|
191 | {
|
---|
192 | const double r = dr+rseg*dr;
|
---|
193 | result.push_back(Vector(r*cos(useg*dphi), r*sin(useg*dphi), zseg*dz-1.0));
|
---|
194 | }
|
---|
195 |
|
---|
196 | return result;
|
---|
197 | }
|
---|
198 |
|
---|
199 | Shape Cylinder() {
|
---|
200 | Shape::impl_ptr impl = Shape::impl_ptr(new Cylinder_impl());
|
---|
201 | return Shape(impl);
|
---|
202 | }
|
---|
203 |
|
---|
204 | Shape Cylinder(const Vector ¢er, const double xrot, const double yrot,
|
---|
205 | const double height, const double radius)
|
---|
206 | {
|
---|
207 | RealSpaceMatrix rot;
|
---|
208 | rot.setRotation(xrot, yrot, 0.0);
|
---|
209 |
|
---|
210 | return translate(
|
---|
211 | transform(
|
---|
212 | stretch(
|
---|
213 | Cylinder(),
|
---|
214 | Vector(radius, radius, height*0.5)),
|
---|
215 | rot),
|
---|
216 | center);
|
---|
217 | }
|
---|
218 | // ----------------------------------------------------------------------------
|
---|
219 |
|
---|
220 | bool Sphere_impl::isInside(const Vector &point) const{
|
---|
221 | return point.NormSquared()<=1.;
|
---|
222 | }
|
---|
223 |
|
---|
224 | bool Sphere_impl::isOnSurface(const Vector &point) const{
|
---|
225 | return fabs(point.NormSquared()-1.)<MYEPSILON;
|
---|
226 | }
|
---|
227 |
|
---|
228 | Vector Sphere_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
|
---|
229 | if(!isOnSurface(point)){
|
---|
230 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
231 | }
|
---|
232 | return point;
|
---|
233 | }
|
---|
234 |
|
---|
235 | Vector Sphere_impl::getCenter() const
|
---|
236 | {
|
---|
237 | return Vector(0.,0.,0.);
|
---|
238 | }
|
---|
239 |
|
---|
240 | double Sphere_impl::getRadius() const
|
---|
241 | {
|
---|
242 | return 1.;
|
---|
243 | }
|
---|
244 |
|
---|
245 | double Sphere_impl::getVolume() const
|
---|
246 | {
|
---|
247 | return (4./3.)*M_PI; // 4/3 pi r^3
|
---|
248 | }
|
---|
249 |
|
---|
250 | double Sphere_impl::getSurfaceArea() const
|
---|
251 | {
|
---|
252 | return 2.*M_PI; // 2 pi r^2
|
---|
253 | }
|
---|
254 |
|
---|
255 |
|
---|
256 | LineSegmentSet Sphere_impl::getLineIntersections(const Line &line) const{
|
---|
257 | LineSegmentSet res(line);
|
---|
258 | std::vector<Vector> intersections = line.getSphereIntersections();
|
---|
259 | if(intersections.size()==2){
|
---|
260 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
261 | }
|
---|
262 | return res;
|
---|
263 | }
|
---|
264 |
|
---|
265 | std::string Sphere_impl::toString() const{
|
---|
266 | return "Sphere()";
|
---|
267 | }
|
---|
268 |
|
---|
269 | enum ShapeType Sphere_impl::getType() const
|
---|
270 | {
|
---|
271 | return SphereType;
|
---|
272 | }
|
---|
273 |
|
---|
274 | /**
|
---|
275 | * algorithm taken from http://www.cgafaq.info/wiki/Evenly_distributed_points_on_sphere
|
---|
276 | * \param N number of points on surface
|
---|
277 | */
|
---|
278 | std::vector<Vector> Sphere_impl::getHomogeneousPointsOnSurface(const size_t N) const
|
---|
279 | {
|
---|
280 | std::vector<Vector> PointsOnSurface;
|
---|
281 | if (true) {
|
---|
282 | // Exactly N points but not symmetric.
|
---|
283 |
|
---|
284 | // This formula is derived by finding a curve on the sphere that spirals down from
|
---|
285 | // the north pole to the south pole keeping a constant distance between consecutive turns.
|
---|
286 | // The curve is then parametrized by arch length and evaluated in constant intervals.
|
---|
287 | double a = sqrt(N) * 2;
|
---|
288 | for (int i=0; i<N; i++){
|
---|
289 | double t0 = ((double)i + 0.5) / (double)N;
|
---|
290 | double t = (sqrt(t0) - sqrt(1.0 - t0) + 1.0) / 2.0 * M_PI;
|
---|
291 | Vector point;
|
---|
292 | point.Zero();
|
---|
293 | point[0] = sin(t) * sin(t * a);
|
---|
294 | point[1] = sin(t) * cos(t * a);
|
---|
295 | point[2] = cos(t);
|
---|
296 | PointsOnSurface.push_back(point);
|
---|
297 | }
|
---|
298 | ASSERT(PointsOnSurface.size() == N,
|
---|
299 | "Sphere_impl::getHomogeneousPointsOnSurface() did not create "
|
---|
300 | +::toString(N)+" but "+::toString(PointsOnSurface.size())+" points.");
|
---|
301 | } else {
|
---|
302 | // Symmetric but only approximately N points.
|
---|
303 | double a=4*M_PI/N;
|
---|
304 | double d= sqrt(a);
|
---|
305 | int Mtheta=int(M_PI/d);
|
---|
306 | double dtheta=M_PI/Mtheta;
|
---|
307 | double dphi=a/dtheta;
|
---|
308 | for (int m=0; m<Mtheta; m++)
|
---|
309 | {
|
---|
310 | double theta=M_PI*(m+0.5)/Mtheta;
|
---|
311 | int Mphi=int(2*M_PI*sin(theta)/dphi);
|
---|
312 | for (int n=0; n<Mphi;n++)
|
---|
313 | {
|
---|
314 | double phi= 2*M_PI*n/Mphi;
|
---|
315 | Vector point;
|
---|
316 | point.Zero();
|
---|
317 | point[0]=sin(theta)*cos(phi);
|
---|
318 | point[1]=sin(theta)*sin(phi);
|
---|
319 | point[2]=cos(theta);
|
---|
320 | PointsOnSurface.push_back(point);
|
---|
321 | }
|
---|
322 | }
|
---|
323 | }
|
---|
324 | return PointsOnSurface;
|
---|
325 | }
|
---|
326 |
|
---|
327 | std::vector<Vector> Sphere_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
328 | ASSERT(0,
|
---|
329 | "Sphere_impl::getHomogeneousPointsInVolume() - not implemented.");
|
---|
330 | return std::vector<Vector>();
|
---|
331 | }
|
---|
332 |
|
---|
333 | Shape Sphere(){
|
---|
334 | Shape::impl_ptr impl = Shape::impl_ptr(new Sphere_impl());
|
---|
335 | return Shape(impl);
|
---|
336 | }
|
---|
337 |
|
---|
338 | Shape Sphere(const Vector ¢er,double radius){
|
---|
339 | return translate(resize(Sphere(),radius),center);
|
---|
340 | }
|
---|
341 |
|
---|
342 | Shape Ellipsoid(const Vector ¢er, const Vector &radius){
|
---|
343 | return translate(stretch(Sphere(),radius),center);
|
---|
344 | }
|
---|
345 |
|
---|
346 | bool Cuboid_impl::isInside(const Vector &point) const{
|
---|
347 | return (point[0]>=0 && point[0]<=1) && (point[1]>=0 && point[1]<=1) && (point[2]>=0 && point[2]<=1);
|
---|
348 | }
|
---|
349 |
|
---|
350 | bool Cuboid_impl::isOnSurface(const Vector &point) const{
|
---|
351 | bool retVal = isInside(point);
|
---|
352 | // test all borders of the cuboid
|
---|
353 | // double fabs
|
---|
354 | retVal = retVal &&
|
---|
355 | (((fabs(point[0]-1.) < MYEPSILON) || (fabs(point[0]) < MYEPSILON)) ||
|
---|
356 | ((fabs(point[1]-1.) < MYEPSILON) || (fabs(point[1]) < MYEPSILON)) ||
|
---|
357 | ((fabs(point[2]-1.) < MYEPSILON) || (fabs(point[2]) < MYEPSILON)));
|
---|
358 | return retVal;
|
---|
359 | }
|
---|
360 |
|
---|
361 | Vector Cuboid_impl::getNormal(const Vector &point) const throw(NotOnSurfaceException){
|
---|
362 | if(!isOnSurface(point)){
|
---|
363 | throw NotOnSurfaceException() << ShapeVector(&point);
|
---|
364 | }
|
---|
365 | Vector res;
|
---|
366 | // figure out on which sides the Vector lies (maximum 3, when it is in a corner)
|
---|
367 | for(int i=NDIM;i--;){
|
---|
368 | if(fabs(fabs(point[i])-1)<MYEPSILON){
|
---|
369 | // add the scaled (-1/+1) Vector to the set of surface vectors
|
---|
370 | res[i] = point[i];
|
---|
371 | }
|
---|
372 | }
|
---|
373 | ASSERT(res.NormSquared()>=1 && res.NormSquared()<=3,"To many or to few sides found for this Vector");
|
---|
374 |
|
---|
375 | res.Normalize();
|
---|
376 | return res;
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | Vector Cuboid_impl::getCenter() const
|
---|
381 | {
|
---|
382 | return Vector(0.5,0.5,0.5);
|
---|
383 | }
|
---|
384 |
|
---|
385 | double Cuboid_impl::getRadius() const
|
---|
386 | {
|
---|
387 | return .5;
|
---|
388 | }
|
---|
389 |
|
---|
390 | double Cuboid_impl::getVolume() const
|
---|
391 | {
|
---|
392 | return 1.; // l^3
|
---|
393 | }
|
---|
394 |
|
---|
395 | double Cuboid_impl::getSurfaceArea() const
|
---|
396 | {
|
---|
397 | return 6.; // 6 * l^2
|
---|
398 | }
|
---|
399 |
|
---|
400 | LineSegmentSet Cuboid_impl::getLineIntersections(const Line &line) const{
|
---|
401 | LineSegmentSet res(line);
|
---|
402 | // get the intersection on each of the six faces
|
---|
403 | std::vector<Vector> intersections;
|
---|
404 | intersections.resize(2);
|
---|
405 | int c=0;
|
---|
406 | int x[2]={-1,+1};
|
---|
407 | for(int i=NDIM;i--;){
|
---|
408 | for(int p=0;p<2;++p){
|
---|
409 | if(c==2) goto end; // I know this sucks, but breaking two loops is stupid
|
---|
410 | Vector base;
|
---|
411 | base[i]=x[p];
|
---|
412 | // base now points to the surface and is normal to it at the same time
|
---|
413 | Plane p(base,base);
|
---|
414 | Vector intersection = p.GetIntersection(line);
|
---|
415 | if(isInside(intersection)){
|
---|
416 | // if we have a point on the edge it might already be contained
|
---|
417 | if(c==1 && intersections[0]==intersection)
|
---|
418 | continue;
|
---|
419 | intersections[c++]=intersection;
|
---|
420 | }
|
---|
421 | }
|
---|
422 | }
|
---|
423 | end:
|
---|
424 | if(c==2){
|
---|
425 | res.insert(LineSegment(intersections[0],intersections[1]));
|
---|
426 | }
|
---|
427 | return res;
|
---|
428 | }
|
---|
429 |
|
---|
430 | std::string Cuboid_impl::toString() const{
|
---|
431 | return "Cuboid()";
|
---|
432 | }
|
---|
433 |
|
---|
434 | enum ShapeType Cuboid_impl::getType() const
|
---|
435 | {
|
---|
436 | return CuboidType;
|
---|
437 | }
|
---|
438 |
|
---|
439 | /**
|
---|
440 | * \param N number of points on surface
|
---|
441 | */
|
---|
442 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsOnSurface(const size_t N) const {
|
---|
443 | std::vector<Vector> PointsOnSurface;
|
---|
444 | ASSERT(false, "Cuboid_impl::getHomogeneousPointsOnSurface() not implemented yet");
|
---|
445 | return PointsOnSurface;
|
---|
446 | }
|
---|
447 |
|
---|
448 | std::vector<Vector> Cuboid_impl::getHomogeneousPointsInVolume(const size_t N) const {
|
---|
449 | ASSERT(0,
|
---|
450 | "Cuboid_impl::getHomogeneousPointsInVolume() - not implemented.");
|
---|
451 | return std::vector<Vector>();
|
---|
452 | }
|
---|
453 |
|
---|
454 | Shape Cuboid(){
|
---|
455 | Shape::impl_ptr impl = Shape::impl_ptr(new Cuboid_impl());
|
---|
456 | return Shape(impl);
|
---|
457 | }
|
---|
458 |
|
---|
459 | Shape Cuboid(const Vector &corner1, const Vector &corner2){
|
---|
460 | // make sure the two edges are upper left front and lower right back
|
---|
461 | Vector sortedC1;
|
---|
462 | Vector sortedC2;
|
---|
463 | for(int i=NDIM;i--;){
|
---|
464 | sortedC1[i] = std::min(corner1[i],corner2[i]);
|
---|
465 | sortedC2[i] = std::max(corner1[i],corner2[i]);
|
---|
466 | ASSERT(corner1[i]!=corner2[i],"Given points for cuboid edges did not define a valid space");
|
---|
467 | }
|
---|
468 | // get the middle point
|
---|
469 | Vector middle = (1./2.)*(sortedC1+sortedC2);
|
---|
470 | Vector factors = sortedC2-middle;
|
---|
471 | return translate(stretch(Cuboid(),factors),middle);
|
---|
472 | }
|
---|