/* * PairPotential_Angle.hpp * * Created on: Oct 11, 2012 * Author: heber */ #ifndef PAIRPOTENTIAL_ANGLE_HPP_ #define PAIRPOTENTIAL_ANGLE_HPP_ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include #include "CodePatterns/Assert.hpp" #include "Potentials/EmpiricalPotential.hpp" #include "FunctionApproximation/FunctionModel.hpp" /** This is the implementation of a harmonic angle potential. * * This evaluates \f$ k \cdot (\theta -\theta_0)^2 \f$. * */ class PairPotential_Angle : virtual public EmpiricalPotential, virtual public FunctionModel { //!> grant unit test access to internal parts friend class PairPotential_AngleTest; // some repeated typedefs to avoid ambiguities typedef FunctionModel::arguments_t arguments_t; typedef FunctionModel::result_t result_t; typedef FunctionModel::results_t results_t; typedef EmpiricalPotential::derivative_components_t derivative_components_t; typedef FunctionModel::parameters_t parameters_t; public: PairPotential_Angle(); PairPotential_Angle( const double _spring_constant, const double _equilibrium_distance, const double _energy_offset); virtual ~PairPotential_Angle() {} /** Setter for parameters as required by FunctionModel interface. * * \param _params given set of parameters */ void setParameters(const parameters_t &_params); /** Getter for parameters as required by FunctionModel interface. * * \return set of parameters */ parameters_t getParameters() const { return params; } /** Getter for the number of parameters of this model function. * * \return number of parameters */ size_t getParameterDimension() const { return 3; } /** Evaluates the harmonic potential function for the given arguments. * * @param arguments single distance * @return value of the potential function */ results_t operator()(const arguments_t &arguments) const; /** Evaluates the derivative of the potential function. * * @param arguments single distance * @return vector with derivative with respect to the input degrees of freedom */ derivative_components_t derivative(const arguments_t &arguments) const; /** Evaluates the derivative of the function with the given \a arguments * with respect to a specific parameter indicated by \a index. * * \param arguments set of arguments as input variables to the function * \param index derivative of which parameter * \return result vector containing the derivative with respect to the given * input */ results_t parameter_derivative(const arguments_t &arguments, const size_t index) const; /** States whether lower and upper boundaries should be used to constraint * the parameter search for this function model. * * \return true - constraints should be used, false - else */ bool isBoxConstraint() const { return true; } /** Returns a vector which are the lower boundaries for each parameter_t * of this FunctionModel. * * \return vector of parameter_t resembling lowest allowed values */ parameters_t getLowerBoxConstraints() const { parameters_t lowerbounds(getParameterDimension(), -std::numeric_limits::max()); lowerbounds[equilibrium_distance] = -1.; return lowerbounds; } /** Returns a vector which are the upper boundaries for each parameter_t * of this FunctionModel. * * \return vector of parameter_t resembling highest allowed values */ parameters_t getUpperBoxConstraints() const { parameters_t upperbounds(getParameterDimension(), std::numeric_limits::max()); upperbounds[equilibrium_distance] = 1.; return upperbounds; } enum parameter_enum_t { spring_constant=0, equilibrium_distance=1, energy_offset=2, MAXPARAMS }; private: result_t function_theta( const double &r_ij, const double &r_ik, const double &r_jk ) const; private: //!> parameter vector with parameters as in enum parameter_enum_t parameters_t params; }; #endif /* PAIRPOTENTIAL_ANGLE_HPP_ */