1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2012 University of Bonn. All rights reserved.
|
---|
5 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
|
---|
6 | *
|
---|
7 | *
|
---|
8 | * This file is part of MoleCuilder.
|
---|
9 | *
|
---|
10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
11 | * it under the terms of the GNU General Public License as published by
|
---|
12 | * the Free Software Foundation, either version 2 of the License, or
|
---|
13 | * (at your option) any later version.
|
---|
14 | *
|
---|
15 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | * GNU General Public License for more details.
|
---|
19 | *
|
---|
20 | * You should have received a copy of the GNU General Public License
|
---|
21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | */
|
---|
23 |
|
---|
24 | /*
|
---|
25 | * ManyBodyPotential_Tersoff.cpp
|
---|
26 | *
|
---|
27 | * Created on: Sep 26, 2012
|
---|
28 | * Author: heber
|
---|
29 | */
|
---|
30 |
|
---|
31 |
|
---|
32 | // include config.h
|
---|
33 | #ifdef HAVE_CONFIG_H
|
---|
34 | #include <config.h>
|
---|
35 | #endif
|
---|
36 |
|
---|
37 | #include "CodePatterns/MemDebug.hpp"
|
---|
38 |
|
---|
39 | #include "ManyBodyPotential_Tersoff.hpp"
|
---|
40 |
|
---|
41 | #include <boost/bind.hpp>
|
---|
42 | #include <cmath>
|
---|
43 |
|
---|
44 | #include "CodePatterns/Assert.hpp"
|
---|
45 | //#include "CodePatterns/Info.hpp"
|
---|
46 |
|
---|
47 | #include "Potentials/helpers.hpp"
|
---|
48 |
|
---|
49 | ManyBodyPotential_Tersoff::ManyBodyPotential_Tersoff(
|
---|
50 | boost::function< std::vector<arguments_t>(const argument_t &, const double)> &_triplefunction
|
---|
51 | ) :
|
---|
52 | params(parameters_t(MAXPARAMS, 0.)),
|
---|
53 | lambda3(0.),
|
---|
54 | alpha(0.),
|
---|
55 | chi(1.),
|
---|
56 | omega(1.),
|
---|
57 | triplefunction(_triplefunction)
|
---|
58 | {}
|
---|
59 |
|
---|
60 | ManyBodyPotential_Tersoff::ManyBodyPotential_Tersoff(
|
---|
61 | const double &_R,
|
---|
62 | const double &_S,
|
---|
63 | const double &_A,
|
---|
64 | const double &_B,
|
---|
65 | const double &_lambda,
|
---|
66 | const double &_mu,
|
---|
67 | const double &_lambda3,
|
---|
68 | const double &_alpha,
|
---|
69 | const double &_beta,
|
---|
70 | const double &_chi,
|
---|
71 | const double &_omega,
|
---|
72 | const double &_n,
|
---|
73 | const double &_c,
|
---|
74 | const double &_d,
|
---|
75 | const double &_h,
|
---|
76 | boost::function< std::vector<arguments_t>(const argument_t &, const double)> &_triplefunction) :
|
---|
77 | params(parameters_t(MAXPARAMS, 0.)),
|
---|
78 | lambda3(_lambda3),
|
---|
79 | alpha(_alpha),
|
---|
80 | chi(_chi),
|
---|
81 | omega(_mu),
|
---|
82 | triplefunction(_triplefunction)
|
---|
83 | {
|
---|
84 | // Info info(__func__);
|
---|
85 | params[R] = _R;
|
---|
86 | params[S] = _S;
|
---|
87 | params[A] = _A;
|
---|
88 | params[B] = _B;
|
---|
89 | params[lambda] = _lambda;
|
---|
90 | params[mu] = _mu;
|
---|
91 | // lambda3 = _lambda3;
|
---|
92 | // alpha = _alpha;
|
---|
93 | params[beta] = _beta;
|
---|
94 | // chi = _chi;
|
---|
95 | // omega = _omega;
|
---|
96 | params[n] = _n;
|
---|
97 | params[c] = _c;
|
---|
98 | params[d] = _d;
|
---|
99 | params[h] = _h;
|
---|
100 | }
|
---|
101 |
|
---|
102 | ManyBodyPotential_Tersoff::results_t
|
---|
103 | ManyBodyPotential_Tersoff::operator()(
|
---|
104 | const arguments_t &arguments
|
---|
105 | ) const
|
---|
106 | {
|
---|
107 | // Info info(__func__);
|
---|
108 | const argument_t &r_ij = arguments[0];
|
---|
109 | const double cutoff = function_cutoff(r_ij.distance);
|
---|
110 | const double result = (cutoff == 0.) ?
|
---|
111 | 0. :
|
---|
112 | cutoff * (
|
---|
113 | function_prefactor(
|
---|
114 | alpha,
|
---|
115 | function_eta(r_ij))
|
---|
116 | * function_smoother(
|
---|
117 | params[A],
|
---|
118 | params[lambda],
|
---|
119 | r_ij.distance)
|
---|
120 | +
|
---|
121 | function_prefactor(
|
---|
122 | params[beta],
|
---|
123 | function_zeta(r_ij))
|
---|
124 | * function_smoother(
|
---|
125 | -params[B],
|
---|
126 | params[mu],
|
---|
127 | r_ij.distance)
|
---|
128 | );
|
---|
129 | // LOG(2, "DEBUG: operator()(" << r_ij.distance << ") = " << result);
|
---|
130 | return std::vector<result_t>(1, result);
|
---|
131 | }
|
---|
132 |
|
---|
133 | ManyBodyPotential_Tersoff::derivative_components_t
|
---|
134 | ManyBodyPotential_Tersoff::derivative(
|
---|
135 | const arguments_t &arguments
|
---|
136 | ) const
|
---|
137 | {
|
---|
138 | // Info info(__func__);
|
---|
139 | return ManyBodyPotential_Tersoff::derivative_components_t();
|
---|
140 | }
|
---|
141 |
|
---|
142 | ManyBodyPotential_Tersoff::results_t
|
---|
143 | ManyBodyPotential_Tersoff::parameter_derivative(
|
---|
144 | const arguments_t &arguments,
|
---|
145 | const size_t index
|
---|
146 | ) const
|
---|
147 | {
|
---|
148 | // Info info(__func__);
|
---|
149 | // ASSERT( arguments.size() == 1,
|
---|
150 | // "PairPotential_Harmonic::parameter_derivative() - requires exactly one argument.");
|
---|
151 | const argument_t &r_ij = arguments[0];
|
---|
152 | switch (index) {
|
---|
153 | case R:
|
---|
154 | {
|
---|
155 | const double result = 0.;
|
---|
156 | return results_t(1, result);
|
---|
157 | break;
|
---|
158 | }
|
---|
159 | case S:
|
---|
160 | {
|
---|
161 | const double result = 0.;
|
---|
162 | return results_t(1, result);
|
---|
163 | break;
|
---|
164 | }
|
---|
165 | case A:
|
---|
166 | {
|
---|
167 | const double result = 0.;
|
---|
168 | return results_t(1, result);
|
---|
169 | break;
|
---|
170 | }
|
---|
171 | case B:
|
---|
172 | {
|
---|
173 | const double result = 0.;
|
---|
174 | return results_t(1, result);
|
---|
175 | break;
|
---|
176 | }
|
---|
177 | case lambda:
|
---|
178 | {
|
---|
179 | const double cutoff = function_cutoff(r_ij.distance);
|
---|
180 | const double result = (cutoff == 0.) ?
|
---|
181 | 0. :
|
---|
182 | -r_ij.distance * cutoff * params[lambda] * (
|
---|
183 | function_prefactor(
|
---|
184 | alpha,
|
---|
185 | function_eta(r_ij))
|
---|
186 | * function_smoother(
|
---|
187 | params[A],
|
---|
188 | params[lambda],
|
---|
189 | r_ij.distance)
|
---|
190 | );
|
---|
191 | return results_t(1, result);
|
---|
192 | break;
|
---|
193 | }
|
---|
194 | case mu:
|
---|
195 | {
|
---|
196 | const double cutoff = function_cutoff(r_ij.distance);
|
---|
197 | const double result = (cutoff == 0.) ?
|
---|
198 | 0. :
|
---|
199 | -r_ij.distance * cutoff * params[mu] *(
|
---|
200 | function_prefactor(
|
---|
201 | params[beta],
|
---|
202 | function_zeta(r_ij))
|
---|
203 | * function_smoother(
|
---|
204 | -params[B],
|
---|
205 | params[mu],
|
---|
206 | r_ij.distance)
|
---|
207 | );
|
---|
208 | return results_t(1, result);
|
---|
209 | break;
|
---|
210 | }
|
---|
211 | // case lambda3:
|
---|
212 | // {
|
---|
213 | // const double result = 0.;
|
---|
214 | // return results_t(1, result);
|
---|
215 | // break;
|
---|
216 | // }
|
---|
217 | // case alpha:
|
---|
218 | // {
|
---|
219 | // const double temp =
|
---|
220 | // pow(alpha*function_eta(r_ij), params[n]);
|
---|
221 | // const double cutoff = function_cutoff(r_ij.distance);
|
---|
222 | // const double result = (cutoff == 0.) || (alpha == 0. )?
|
---|
223 | // 0. :
|
---|
224 | // function_smoother(
|
---|
225 | // -params[A],
|
---|
226 | // params[lambda],
|
---|
227 | // r_ij.distance)
|
---|
228 | // * (-.5) * alpha * (temp/alpha)
|
---|
229 | // / (1. + temp)
|
---|
230 | // ;
|
---|
231 | // return results_t(1, result);
|
---|
232 | // break;
|
---|
233 | // }
|
---|
234 | // case chi:
|
---|
235 | // {
|
---|
236 | // const double result = 0.;
|
---|
237 | // return results_t(1, result);
|
---|
238 | // break;
|
---|
239 | // }
|
---|
240 | // case omega:
|
---|
241 | // {
|
---|
242 | // const double result = 0.;
|
---|
243 | // return results_t(1, result);
|
---|
244 | // break;
|
---|
245 | // }
|
---|
246 | case beta:
|
---|
247 | {
|
---|
248 | const double temp =
|
---|
249 | pow(params[beta]*function_zeta(r_ij), params[n]);
|
---|
250 | const double cutoff = function_cutoff(r_ij.distance);
|
---|
251 | const double result = (cutoff == 0.) || (params[beta] == 0. )?
|
---|
252 | 0. : cutoff *
|
---|
253 | function_smoother(
|
---|
254 | -params[B],
|
---|
255 | params[mu],
|
---|
256 | r_ij.distance)
|
---|
257 | * (-.5) * params[beta] * (temp/params[beta])
|
---|
258 | / (1. + temp)
|
---|
259 | ;
|
---|
260 | return results_t(1, result);
|
---|
261 | break;
|
---|
262 | }
|
---|
263 | case n:
|
---|
264 | {
|
---|
265 | const double temp =
|
---|
266 | pow(params[beta]*function_zeta(r_ij), params[n]);
|
---|
267 | const double cutoff = function_cutoff(r_ij.distance);
|
---|
268 | const double result = (cutoff == 0.) ?
|
---|
269 | 0. : cutoff *
|
---|
270 | function_smoother(
|
---|
271 | -params[B],
|
---|
272 | params[mu],
|
---|
273 | r_ij.distance)
|
---|
274 | * params[B]
|
---|
275 | * ( log(1.+temp)/(params[n]*params[n]) - temp
|
---|
276 | * (log(function_zeta(r_ij)) + log(params[beta]))
|
---|
277 | /(params[n]*(1.+temp)))
|
---|
278 | ;
|
---|
279 | return results_t(1, result);
|
---|
280 | break;
|
---|
281 | }
|
---|
282 | case c:
|
---|
283 | {
|
---|
284 | const double result = 0.;
|
---|
285 | return results_t(1, result);
|
---|
286 | break;
|
---|
287 | }
|
---|
288 | case d:
|
---|
289 | {
|
---|
290 | const double result = 0.;
|
---|
291 | return results_t(1, result);
|
---|
292 | break;
|
---|
293 | }
|
---|
294 | case h:
|
---|
295 | {
|
---|
296 | const double result = 0.;
|
---|
297 | return results_t(1, result);
|
---|
298 | break;
|
---|
299 | }
|
---|
300 | default:
|
---|
301 | break;
|
---|
302 | }
|
---|
303 | return results_t(1, 0.);
|
---|
304 | }
|
---|
305 |
|
---|
306 | ManyBodyPotential_Tersoff::result_t
|
---|
307 | ManyBodyPotential_Tersoff::function_cutoff(
|
---|
308 | const double &distance
|
---|
309 | ) const
|
---|
310 | {
|
---|
311 | // Info info(__func__);
|
---|
312 | double result = 0.;
|
---|
313 | if (distance < params[R])
|
---|
314 | result = 1.;
|
---|
315 | else if (distance > params[S])
|
---|
316 | result = 0.;
|
---|
317 | else {
|
---|
318 | result = (0.5 + 0.5 * cos( M_PI * (distance - params[R])/(params[S]-params[R])));
|
---|
319 | }
|
---|
320 | // LOG(2, "DEBUG: function_cutoff(" << distance << ") = " << result);
|
---|
321 | return result;
|
---|
322 | }
|
---|
323 |
|
---|
324 | ManyBodyPotential_Tersoff::result_t
|
---|
325 | ManyBodyPotential_Tersoff::function_prefactor(
|
---|
326 | const double &alpha,
|
---|
327 | const double &eta
|
---|
328 | ) const
|
---|
329 | {
|
---|
330 | // Info info(__func__);
|
---|
331 | const double result = chi * pow(
|
---|
332 | (1. + pow(alpha * eta, params[n])),
|
---|
333 | -1./(2.*params[n]));
|
---|
334 | // LOG(2, "DEBUG: function_prefactor(" << alpha << "," << eta << ") = " << result);
|
---|
335 | return result;
|
---|
336 | }
|
---|
337 |
|
---|
338 | ManyBodyPotential_Tersoff::result_t
|
---|
339 | ManyBodyPotential_Tersoff::function_smoother(
|
---|
340 | const double &prefactor,
|
---|
341 | const double &lambda,
|
---|
342 | const double &distance
|
---|
343 | ) const
|
---|
344 | {
|
---|
345 | // Info info(__func__);
|
---|
346 | const double result = prefactor * exp(-lambda * distance);
|
---|
347 | // LOG(2, "DEBUG: function_smoother(" << prefactor << "," << lambda << "," << distance << ") = " << result);
|
---|
348 | return result;
|
---|
349 | }
|
---|
350 |
|
---|
351 | ManyBodyPotential_Tersoff::result_t
|
---|
352 | ManyBodyPotential_Tersoff::function_eta(
|
---|
353 | const argument_t &r_ij
|
---|
354 | ) const
|
---|
355 | {
|
---|
356 | // Info info(__func__);
|
---|
357 | result_t result = 0.;
|
---|
358 |
|
---|
359 | // get all triples within the cutoff
|
---|
360 | std::vector<arguments_t> triples = triplefunction(r_ij, params[S]);
|
---|
361 | for (std::vector<arguments_t>::const_iterator iter = triples.begin();
|
---|
362 | iter != triples.end(); ++iter) {
|
---|
363 | ASSERT( iter->size() == 2,
|
---|
364 | "ManyBodyPotential_Tersoff::function_zeta() - the triples result must contain of exactly two distances.");
|
---|
365 | const argument_t &r_ik = (*iter)[0];
|
---|
366 | result += function_cutoff(r_ik.distance)
|
---|
367 | * exp( Helpers::pow(lambda3 * (r_ij.distance - r_ik.distance) ,3));
|
---|
368 | }
|
---|
369 |
|
---|
370 | // LOG(2, "DEBUG: function_eta(" << r_ij.distance << ") = " << result);
|
---|
371 | return result;
|
---|
372 | }
|
---|
373 |
|
---|
374 | ManyBodyPotential_Tersoff::result_t
|
---|
375 | ManyBodyPotential_Tersoff::function_zeta(
|
---|
376 | const argument_t &r_ij
|
---|
377 | ) const
|
---|
378 | {
|
---|
379 | // Info info(__func__);
|
---|
380 | result_t result = 0.;
|
---|
381 |
|
---|
382 | // get all triples within the cutoff
|
---|
383 | std::vector<arguments_t> triples = triplefunction(r_ij, params[S]);
|
---|
384 | for (std::vector<arguments_t>::const_iterator iter = triples.begin();
|
---|
385 | iter != triples.end(); ++iter) {
|
---|
386 | ASSERT( iter->size() == 2,
|
---|
387 | "ManyBodyPotential_Tersoff::function_zeta() - the triples result must contain exactly two distances.");
|
---|
388 | const argument_t &r_ik = (*iter)[0];
|
---|
389 | const argument_t &r_jk = (*iter)[1];
|
---|
390 | result +=
|
---|
391 | function_cutoff(r_ik.distance)
|
---|
392 | * omega
|
---|
393 | * function_angle(r_ij.distance, r_ik.distance, r_jk.distance)
|
---|
394 | * exp( Helpers::pow(lambda3 * (r_ij.distance - r_ik.distance) ,3));
|
---|
395 | }
|
---|
396 |
|
---|
397 | // LOG(2, "DEBUG: function_zeta(" << r_ij.distance << ") = " << result);
|
---|
398 | return result;
|
---|
399 | }
|
---|
400 |
|
---|
401 | ManyBodyPotential_Tersoff::result_t
|
---|
402 | ManyBodyPotential_Tersoff::function_angle(
|
---|
403 | const double &r_ij,
|
---|
404 | const double &r_ik,
|
---|
405 | const double &r_jk
|
---|
406 | ) const
|
---|
407 | {
|
---|
408 | // Info info(__func__);
|
---|
409 | const double angle = Helpers::pow(r_ij,2) + Helpers::pow(r_ik,2) - Helpers::pow(r_jk,2);
|
---|
410 | const double divisor = 2.* r_ij * r_ik;
|
---|
411 | // LOG(2, "DEBUG: cos(theta)= " << angle/divisor);
|
---|
412 | if (divisor != 0.) {
|
---|
413 | const double result =
|
---|
414 | 1.
|
---|
415 | + (Helpers::pow(params[c]/params[d], 2))
|
---|
416 | - Helpers::pow(params[c], 2)/(Helpers::pow(params[d], 2) +
|
---|
417 | Helpers::pow(params[h] - angle/divisor,2));
|
---|
418 |
|
---|
419 | // LOG(2, "DEBUG: function_angle(" << r_ij << "," << r_ik << "," << r_jk << ") = " << result);
|
---|
420 | return result;
|
---|
421 | } else
|
---|
422 | return 0.;
|
---|
423 | }
|
---|
424 |
|
---|