1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2013 Frederik Heber. All rights reserved.
|
---|
5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
6 | *
|
---|
7 | *
|
---|
8 | * This file is part of MoleCuilder.
|
---|
9 | *
|
---|
10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
11 | * it under the terms of the GNU General Public License as published by
|
---|
12 | * the Free Software Foundation, either version 2 of the License, or
|
---|
13 | * (at your option) any later version.
|
---|
14 | *
|
---|
15 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | * GNU General Public License for more details.
|
---|
19 | *
|
---|
20 | * You should have received a copy of the GNU General Public License
|
---|
21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | */
|
---|
23 |
|
---|
24 | /*
|
---|
25 | * PartialNucleiChargeFitter.cpp
|
---|
26 | *
|
---|
27 | * Created on: 12.05.2013
|
---|
28 | * Author: heber
|
---|
29 | */
|
---|
30 |
|
---|
31 | // include config.h
|
---|
32 | #ifdef HAVE_CONFIG_H
|
---|
33 | #include <config.h>
|
---|
34 | #endif
|
---|
35 |
|
---|
36 | #include "CodePatterns/MemDebug.hpp"
|
---|
37 |
|
---|
38 | #include "PartialNucleiChargeFitter.hpp"
|
---|
39 |
|
---|
40 | #include <cmath>
|
---|
41 | #include <fstream>
|
---|
42 | #include <limits>
|
---|
43 | #include <numeric>
|
---|
44 |
|
---|
45 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
46 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
47 |
|
---|
48 | #include "CodePatterns/Assert.hpp"
|
---|
49 | #include "CodePatterns/Log.hpp"
|
---|
50 |
|
---|
51 | #include "Fragmentation/Summation/SetValues/SamplingGrid.hpp"
|
---|
52 |
|
---|
53 | PartialNucleiChargeFitter::dimensions_t
|
---|
54 | PartialNucleiChargeFitter::getGridDimensions(const SamplingGrid &grid) const
|
---|
55 | {
|
---|
56 | // convert sampled potential into a vector
|
---|
57 | const double round_offset =
|
---|
58 | (std::numeric_limits<size_t>::round_style == std::round_toward_zero) ?
|
---|
59 | 0.5 : 0.; // need offset to get to round_toward_nearest behavior
|
---|
60 | dimensions_t total(3,0);
|
---|
61 | for(size_t index=0;index<3;++index) {
|
---|
62 | const double delta = grid.getDeltaPerAxis(index);
|
---|
63 | // delta is conversion factor from box length to discrete length, i.e. number of points
|
---|
64 | total[index] = (grid.end[index] - grid.begin[index])/delta+round_offset;
|
---|
65 | }
|
---|
66 | return total;
|
---|
67 | }
|
---|
68 |
|
---|
69 | PartialNucleiChargeFitter::PartialNucleiChargeFitter(
|
---|
70 | const SamplingGrid &grid,
|
---|
71 | const positions_t &_positions,
|
---|
72 | const double _threshold) :
|
---|
73 | total(getGridDimensions(grid)),
|
---|
74 | SampledPotential(std::accumulate(total.begin(), total.end(), 1, std::multiplies<double>())),
|
---|
75 | grid_properties(static_cast<const SamplingGridProperties &>(grid)),
|
---|
76 | positions(_positions),
|
---|
77 | PotentialFromCharges(NULL),
|
---|
78 | PartialCharges(NULL),
|
---|
79 | threshold(_threshold)
|
---|
80 | {
|
---|
81 | // we must take care of the "window", i.e. there may be less entries in sampled_grid
|
---|
82 | // vector as we would expect from size of grid ((2^level)^3) as 0-entries have been
|
---|
83 | // omitted.
|
---|
84 | size_t pre_offset[3];
|
---|
85 | size_t post_offset[3];
|
---|
86 | size_t length[3];
|
---|
87 | size_t total[3];
|
---|
88 | grid.getDiscreteWindowCopyIndices(
|
---|
89 | grid.begin, grid.end,
|
---|
90 | grid.begin_window, grid.end_window,
|
---|
91 | pre_offset,
|
---|
92 | post_offset,
|
---|
93 | length,
|
---|
94 | total
|
---|
95 | );
|
---|
96 | #ifndef NDEBUG
|
---|
97 | const size_t calculated_size = length[0]*length[1]*length[2];
|
---|
98 | #endif
|
---|
99 | ASSERT( calculated_size == grid.sampled_grid.size(),
|
---|
100 | "PartialNucleiChargeFitter::PartialNucleiChargeFitter() - grid does not match size indicated by its window.");
|
---|
101 |
|
---|
102 | double minimum = std::numeric_limits<double>::max();
|
---|
103 | double maximum = std::numeric_limits<double>::min();
|
---|
104 | double average = 0.;
|
---|
105 | for (SamplingGrid::sampledvalues_t::const_iterator iter = grid.sampled_grid.begin();
|
---|
106 | iter != grid.sampled_grid.end(); ++iter) {
|
---|
107 | minimum = std::min(minimum, *iter);
|
---|
108 | maximum = std::max(maximum, *iter);
|
---|
109 | average += *iter;
|
---|
110 | }
|
---|
111 | LOG(2, "DEBUG: Max over grid is " << maximum
|
---|
112 | << ", minimum is " << minimum
|
---|
113 | << ", and average is " << average/(double)grid.sampled_grid.size());
|
---|
114 |
|
---|
115 | const double potential_sum = std::accumulate(grid.sampled_grid.begin(), grid.sampled_grid.end(), 0.);
|
---|
116 | if ( fabs(potential_sum) > std::numeric_limits<double>::epsilon()*1e4 ) {
|
---|
117 | ELOG(2, "Potential sum is not less than "
|
---|
118 | << std::numeric_limits<double>::epsilon()*1e4 << " but "
|
---|
119 | << potential_sum << ".");
|
---|
120 | }
|
---|
121 |
|
---|
122 | SamplingGrid::sampledvalues_t::const_iterator griditer = grid.sampled_grid.begin();
|
---|
123 | size_t index=0;
|
---|
124 | size_t N[3];
|
---|
125 | Vector grid_position; // position of grid point in real domain
|
---|
126 | size_t masked_points = 0;
|
---|
127 | // store step length per axis
|
---|
128 | double delta[3];
|
---|
129 | for (size_t i=0;i<3;++i)
|
---|
130 | delta[i] = grid_properties.getDeltaPerAxis(i);
|
---|
131 | /// convert sampled potential into a vector
|
---|
132 | grid_position[0] = grid_properties.begin[0];
|
---|
133 | for(N[0]=0; N[0] < pre_offset[0]; ++N[0]) {
|
---|
134 | grid_position[1] = grid_properties.begin[1];
|
---|
135 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
136 | grid_position[2] = grid_properties.begin[2];
|
---|
137 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
138 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
139 | grid_position[2] += delta[2];
|
---|
140 | }
|
---|
141 | grid_position[1] += delta[1];
|
---|
142 | }
|
---|
143 | grid_position[0] += delta[0];
|
---|
144 | }
|
---|
145 | for(N[0]=0; N[0] < length[0]; ++N[0]) {
|
---|
146 | grid_position[1] = grid_properties.begin[1];
|
---|
147 | for(N[1]=0; N[1] < pre_offset[1]; ++N[1]) {
|
---|
148 | grid_position[2] = grid_properties.begin[2];
|
---|
149 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
150 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
151 | grid_position[2] += delta[2];
|
---|
152 | }
|
---|
153 | grid_position[1] += delta[1];
|
---|
154 | }
|
---|
155 | for(N[1]=0; N[1] < length[1]; ++N[1]) {
|
---|
156 | grid_position[2] = grid_properties.begin[2];
|
---|
157 | for(N[2]=0; N[2] < pre_offset[2]; ++N[2]) {
|
---|
158 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
159 | grid_position[2] += delta[2];
|
---|
160 | }
|
---|
161 | for(N[2]=0; N[2] < length[2]; ++N[2]) {
|
---|
162 | if (isGridPointSettable(positions, grid_position))
|
---|
163 | const_cast<VectorContent &>(SampledPotential)[index++] = *griditer++;
|
---|
164 | else {
|
---|
165 | // skip point
|
---|
166 | ++griditer;
|
---|
167 | ++masked_points;
|
---|
168 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
169 | }
|
---|
170 | grid_position[2] += delta[2];
|
---|
171 | }
|
---|
172 | for(N[2]=0; N[2] < post_offset[2]; ++N[2]) {
|
---|
173 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
174 | grid_position[2] += delta[2];
|
---|
175 | }
|
---|
176 | grid_position[1] += delta[1];
|
---|
177 | }
|
---|
178 | for(N[1]=0; N[1] < post_offset[1]; ++N[1]) {
|
---|
179 | grid_position[2] = grid_properties.begin[2];
|
---|
180 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
181 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
182 | grid_position[2] += delta[2];
|
---|
183 | }
|
---|
184 | grid_position[1] += delta[1];
|
---|
185 | }
|
---|
186 | grid_position[0] += delta[0];
|
---|
187 | }
|
---|
188 | for(N[0]=0; N[0] < post_offset[0]; ++N[0]) {
|
---|
189 | grid_position[1] = grid_properties.begin[1];
|
---|
190 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
191 | grid_position[2] = grid_properties.begin[2];
|
---|
192 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
193 | const_cast<VectorContent &>(SampledPotential)[index++] = 0.;
|
---|
194 | grid_position[2] += delta[2];
|
---|
195 | }
|
---|
196 | grid_position[1] += delta[1];
|
---|
197 | }
|
---|
198 | grid_position[0] += delta[0];
|
---|
199 | }
|
---|
200 | // set remainder of points to zero
|
---|
201 | ASSERT( index == SampledPotential.getDimension(),
|
---|
202 | "PartialNucleiChargeFitter::PartialNucleiChargeFitter() - not enough or more than calculated sample points.");
|
---|
203 |
|
---|
204 | #ifndef NDEBUG
|
---|
205 | // write vector as paraview csv file file
|
---|
206 | {
|
---|
207 | size_t N[3];
|
---|
208 | size_t index = 0;
|
---|
209 | std::ofstream paraview_output("solution.csv");
|
---|
210 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
211 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
212 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
213 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
214 | paraview_output
|
---|
215 | << (double)N[0]/(double)total[0] << ","
|
---|
216 | << (double)N[1]/(double)total[1] << ","
|
---|
217 | << (double)N[2]/(double)total[2] << ","
|
---|
218 | << SampledPotential.at(index++) << std::endl;
|
---|
219 | }
|
---|
220 | }
|
---|
221 | }
|
---|
222 | paraview_output.close();
|
---|
223 | }
|
---|
224 | #endif
|
---|
225 |
|
---|
226 | LOG(1, "INFO: I masked " << masked_points << " points in right-hand-side.");
|
---|
227 | // LOG(4, "DEBUG: Right-hand side vector is " << SampledPotential << ".");
|
---|
228 | }
|
---|
229 |
|
---|
230 | bool PartialNucleiChargeFitter::isGridPointSettable(
|
---|
231 | const positions_t &_positions,
|
---|
232 | const Vector &grid_position) const
|
---|
233 | {
|
---|
234 | bool status = true;
|
---|
235 | for (positions_t::const_iterator iter = _positions.begin();
|
---|
236 | iter != _positions.end(); ++iter) {
|
---|
237 | status &= grid_position.DistanceSquared(*iter) > threshold*threshold;
|
---|
238 | }
|
---|
239 | return status;
|
---|
240 | }
|
---|
241 |
|
---|
242 | PartialNucleiChargeFitter::~PartialNucleiChargeFitter()
|
---|
243 | {
|
---|
244 | if (PartialCharges != NULL)
|
---|
245 | delete PartialCharges;
|
---|
246 |
|
---|
247 | if (PotentialFromCharges != NULL)
|
---|
248 | delete PotentialFromCharges;
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | void PartialNucleiChargeFitter::constructMatrix()
|
---|
253 | {
|
---|
254 | const size_t rows = SampledPotential.getDimension();
|
---|
255 | const size_t cols = positions.size();
|
---|
256 |
|
---|
257 | // allocate memory for PotentialFromCharges
|
---|
258 | if (PotentialFromCharges != NULL) {
|
---|
259 | delete PotentialFromCharges;
|
---|
260 | PotentialFromCharges = NULL;
|
---|
261 | }
|
---|
262 | PotentialFromCharges = new MatrixContent( rows, cols );
|
---|
263 | // store step length per axis
|
---|
264 | double delta[3];
|
---|
265 | for (size_t i=0;i<3;++i)
|
---|
266 | delta[i] = grid_properties.getDeltaPerAxis(i);
|
---|
267 | // then for each charge ...
|
---|
268 | size_t masked_points = 0;
|
---|
269 | for (size_t nuclei_index = 0; nuclei_index < cols; ++nuclei_index) {
|
---|
270 | // ... calculate potential at each grid position,
|
---|
271 | // i.e. step through grid and calculate distance to charge position
|
---|
272 | Vector grid_position; // position of grid point in real domain
|
---|
273 | grid_position[0] = grid_properties.begin[0];
|
---|
274 | size_t N[3]; // discrete grid position
|
---|
275 | size_t index = 0; // component of column vector
|
---|
276 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
277 | grid_position[1] = grid_properties.begin[1];
|
---|
278 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
279 | grid_position[2] = grid_properties.begin[2];
|
---|
280 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
281 | if (isGridPointSettable(positions, grid_position)) {
|
---|
282 | const double distance = positions[nuclei_index].distance(grid_position);
|
---|
283 | ASSERT( distance >= 0,
|
---|
284 | "PartialNucleiChargeFitter::constructMatrix() - distance is negative?");
|
---|
285 | // Coulomb's constant is 1 in atomic units, see http://en.wikipedia.org/wiki/Atomic_units
|
---|
286 | const double epsilon0_au = 1.; //4.*M_PI*0.007957747154594767;
|
---|
287 | // ... with epsilon_0 in atom units from http://folk.uio.no/michalj/node72.html
|
---|
288 | const double value = 1./(epsilon0_au*distance);
|
---|
289 | PotentialFromCharges->at(index++, nuclei_index) = value;
|
---|
290 | } else {
|
---|
291 | ++masked_points;
|
---|
292 | PotentialFromCharges->at(index++, nuclei_index) = 0.;
|
---|
293 | }
|
---|
294 | grid_position[2] += delta[2];
|
---|
295 | }
|
---|
296 | grid_position[1] += delta[1];
|
---|
297 | }
|
---|
298 | grid_position[0] += delta[0];
|
---|
299 | }
|
---|
300 | ASSERT( index == PotentialFromCharges->getRows(),
|
---|
301 | "PartialNucleiChargeFitter::operator() - number of sampled positions "
|
---|
302 | +toString(index)+" unequal to set rows "
|
---|
303 | +toString(PotentialFromCharges->getRows())+".");
|
---|
304 | }
|
---|
305 |
|
---|
306 | LOG(1, "INFO: I masked " << masked_points/cols << " points in matrix.");
|
---|
307 | }
|
---|
308 |
|
---|
309 | VectorContent PartialNucleiChargeFitter::calculateResiduum()
|
---|
310 | {
|
---|
311 | constructMatrix();
|
---|
312 |
|
---|
313 | // calculate residual vector
|
---|
314 | VectorContent residuum = (*PotentialFromCharges) * (*PartialCharges) - SampledPotential;
|
---|
315 |
|
---|
316 | return residuum;
|
---|
317 | }
|
---|
318 |
|
---|
319 | void PartialNucleiChargeFitter::prepareCharges(const size_t _size)
|
---|
320 | {
|
---|
321 | // prepare PartialCharges
|
---|
322 | if (PartialCharges != NULL) {
|
---|
323 | delete PartialCharges;
|
---|
324 | PartialCharges = NULL;
|
---|
325 | }
|
---|
326 | PartialCharges = new VectorContent(_size);
|
---|
327 | }
|
---|
328 |
|
---|
329 | double PartialNucleiChargeFitter::operator()()
|
---|
330 | {
|
---|
331 | prepareCharges(positions.size());
|
---|
332 |
|
---|
333 | // set up over-determined system's problem matrix A for Ax=b
|
---|
334 | // i.e. columns represent potential of a single charge at grid positions
|
---|
335 | constructMatrix();
|
---|
336 |
|
---|
337 | // solve for x
|
---|
338 | *PartialCharges =
|
---|
339 | PotentialFromCharges->solveOverdeterminedLinearEquation(
|
---|
340 | SampledPotential);
|
---|
341 |
|
---|
342 | // LOG(4, "DEBUG: Solution vector is " << (*PotentialFromCharges) * (*PartialCharges) << ".");
|
---|
343 |
|
---|
344 | LOG(2, "DEBUG: Norm of right-hand side is " << SampledPotential.Norm());
|
---|
345 |
|
---|
346 | // calculate residuum (forces matrix reconstruction)
|
---|
347 | VectorContent residuum = calculateResiduum();
|
---|
348 |
|
---|
349 | #ifndef NDEBUG
|
---|
350 | // write solution to file
|
---|
351 | writeMatrix();
|
---|
352 |
|
---|
353 | // write vector as paraview csv file file
|
---|
354 | {
|
---|
355 | size_t N[3];
|
---|
356 | size_t index = 0;
|
---|
357 | std::ofstream paraview_output("residuum.csv");
|
---|
358 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
359 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
360 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
361 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
362 | paraview_output
|
---|
363 | << (double)N[0]/(double)total[0] << ","
|
---|
364 | << (double)N[1]/(double)total[1] << ","
|
---|
365 | << (double)N[2]/(double)total[2] << ","
|
---|
366 | << residuum.at(index++) << std::endl;
|
---|
367 | }
|
---|
368 | }
|
---|
369 | }
|
---|
370 | paraview_output.close();
|
---|
371 | }
|
---|
372 | #endif
|
---|
373 |
|
---|
374 | // calculate L1 and L2 errors
|
---|
375 | double residuum_l1 = 0.;
|
---|
376 | for (size_t i=0; i< residuum.getDimension(); ++i)
|
---|
377 | if (residuum_l1 < residuum[i])
|
---|
378 | residuum_l1 = residuum[i];
|
---|
379 | LOG(1, "INFO: L2-Norm of residuum is " << residuum.Norm() << ".");
|
---|
380 | LOG(1, "INFO: L1-Norm of residuum is " << residuum_l1 << ".");
|
---|
381 |
|
---|
382 | return residuum.Norm();
|
---|
383 | }
|
---|
384 |
|
---|
385 | bool PartialNucleiChargeFitter::setCharges(const charges_t &_charges)
|
---|
386 | {
|
---|
387 | // check sizes
|
---|
388 | if (positions.size() != _charges.size()) {
|
---|
389 | return false;
|
---|
390 | }
|
---|
391 | // (re-)allocate memory
|
---|
392 | prepareCharges(positions.size());
|
---|
393 | // and place charges in vector
|
---|
394 | for(size_t i=0;i<_charges.size();++i)
|
---|
395 | (*PartialCharges)[i] = _charges[i];
|
---|
396 |
|
---|
397 | return true;
|
---|
398 | }
|
---|
399 |
|
---|
400 | void PartialNucleiChargeFitter::writeMatrix()
|
---|
401 | {
|
---|
402 | // only construct if not yet present
|
---|
403 | if (PotentialFromCharges == NULL)
|
---|
404 | constructMatrix();
|
---|
405 |
|
---|
406 | // write matrix as paraview csv file file
|
---|
407 | size_t N[3];
|
---|
408 | size_t index=0;
|
---|
409 | std::string filename = std::string("potential.csv");
|
---|
410 | std::ofstream paraview_output(filename.c_str());
|
---|
411 | paraview_output << "x coord,y coord,z coord,scalar" << std::endl;
|
---|
412 | for(N[0]=0; N[0] < total[0]; ++N[0]) {
|
---|
413 | for(N[1]=0; N[1] < total[1]; ++N[1]) {
|
---|
414 | for(N[2]=0; N[2] < total[2]; ++N[2]) {
|
---|
415 | double sum = 0.;
|
---|
416 | for (size_t nuclei_index = 0; nuclei_index < positions.size(); ++nuclei_index) {
|
---|
417 | sum+= PotentialFromCharges->at(index, nuclei_index)*PartialCharges->at(nuclei_index);
|
---|
418 | }
|
---|
419 | paraview_output
|
---|
420 | << (double)N[0]/(double)total[0] << ","
|
---|
421 | << (double)N[1]/(double)total[1] << ","
|
---|
422 | << (double)N[2]/(double)total[2] << ","
|
---|
423 | << sum << std::endl;
|
---|
424 | index++;
|
---|
425 | }
|
---|
426 | }
|
---|
427 | }
|
---|
428 | paraview_output.close();
|
---|
429 | }
|
---|
430 |
|
---|
431 | PartialNucleiChargeFitter::charges_t
|
---|
432 | PartialNucleiChargeFitter::getSolutionAsCharges_t() const
|
---|
433 | {
|
---|
434 | ASSERT( PartialCharges != NULL,
|
---|
435 | "PartialNucleiChargeFitter::getSolutionAsCharges_t() - PartialCharges requested prior to calculation.");
|
---|
436 | charges_t return_charges(positions.size(), 0.);
|
---|
437 | for (size_t i = 0; i < return_charges.size(); ++i)
|
---|
438 | return_charges[i] = PartialCharges->at(i);
|
---|
439 | return return_charges;
|
---|
440 | }
|
---|