1 | /*
|
---|
2 | * Plane.cpp
|
---|
3 | *
|
---|
4 | * Created on: Apr 7, 2010
|
---|
5 | * Author: crueger
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "Helpers/MemDebug.hpp"
|
---|
9 |
|
---|
10 | #include "Plane.hpp"
|
---|
11 | #include "vector.hpp"
|
---|
12 | #include "defs.hpp"
|
---|
13 | #include "info.hpp"
|
---|
14 | #include "log.hpp"
|
---|
15 | #include "verbose.hpp"
|
---|
16 | #include "Helpers/Assert.hpp"
|
---|
17 | #include "helpers.hpp"
|
---|
18 | #include <cmath>
|
---|
19 | #include "Line.hpp"
|
---|
20 | #include "Exceptions/MultipleSolutionsException.hpp"
|
---|
21 |
|
---|
22 | /**
|
---|
23 | * generates a plane from three given vectors defining three points in space
|
---|
24 | */
|
---|
25 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
|
---|
26 | normalVector(new Vector())
|
---|
27 | {
|
---|
28 | Vector x1 = y1 -y2;
|
---|
29 | Vector x2 = y3 -y2;
|
---|
30 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
31 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
32 | }
|
---|
33 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
34 | // x1.Output((ofstream *)&cout);
|
---|
35 | // Log() << Verbose(0) << endl;
|
---|
36 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
37 | // x2.Output((ofstream *)&cout);
|
---|
38 | // Log() << Verbose(0) << endl;
|
---|
39 |
|
---|
40 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
41 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
42 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
43 | normalVector->Normalize();
|
---|
44 |
|
---|
45 | offset=normalVector->ScalarProduct(y1);
|
---|
46 | }
|
---|
47 | /**
|
---|
48 | * Constructs a plane from two direction vectors and a offset.
|
---|
49 | */
|
---|
50 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
|
---|
51 | normalVector(new Vector()),
|
---|
52 | offset(_offset)
|
---|
53 | {
|
---|
54 | Vector x1 = y1;
|
---|
55 | Vector x2 = y2;
|
---|
56 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
|
---|
57 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
58 | }
|
---|
59 |
|
---|
60 | if((fabs(x1.Angle(x2)) < MYEPSILON)) {
|
---|
61 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
62 | }
|
---|
63 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
---|
64 | // x1.Output((ofstream *)&cout);
|
---|
65 | // Log() << Verbose(0) << endl;
|
---|
66 | // Log() << Verbose(4) << "second plane coordinates:";
|
---|
67 | // x2.Output((ofstream *)&cout);
|
---|
68 | // Log() << Verbose(0) << endl;
|
---|
69 |
|
---|
70 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
---|
71 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
---|
72 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
---|
73 | normalVector->Normalize();
|
---|
74 | }
|
---|
75 |
|
---|
76 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
|
---|
77 | normalVector(new Vector(_normalVector)),
|
---|
78 | offset(_offset)
|
---|
79 | {
|
---|
80 | if(normalVector->IsZero())
|
---|
81 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
82 | double factor = 1/normalVector->Norm();
|
---|
83 | // normalize the plane parameters
|
---|
84 | (*normalVector)*=factor;
|
---|
85 | offset*=factor;
|
---|
86 | }
|
---|
87 |
|
---|
88 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
|
---|
89 | normalVector(new Vector(_normalVector))
|
---|
90 | {
|
---|
91 | if(normalVector->IsZero()){
|
---|
92 | throw ZeroVectorException(__FILE__,__LINE__);
|
---|
93 | }
|
---|
94 | normalVector->Normalize();
|
---|
95 | offset = normalVector->ScalarProduct(_offsetVector);
|
---|
96 | }
|
---|
97 |
|
---|
98 | /**
|
---|
99 | * copy constructor
|
---|
100 | */
|
---|
101 | Plane::Plane(const Plane& plane) :
|
---|
102 | normalVector(new Vector(*plane.normalVector)),
|
---|
103 | offset(plane.offset)
|
---|
104 | {}
|
---|
105 |
|
---|
106 |
|
---|
107 | Plane::~Plane()
|
---|
108 | {}
|
---|
109 |
|
---|
110 | Plane &Plane::operator=(const Plane &rhs){
|
---|
111 | if(&rhs!=this){
|
---|
112 | normalVector.reset(new Vector(*rhs.normalVector));
|
---|
113 | offset = rhs.offset;
|
---|
114 | }
|
---|
115 | return *this;
|
---|
116 | }
|
---|
117 |
|
---|
118 |
|
---|
119 | Vector Plane::getNormal() const{
|
---|
120 | return *normalVector;
|
---|
121 | }
|
---|
122 |
|
---|
123 | double Plane::getOffset() const{
|
---|
124 | return offset;
|
---|
125 | }
|
---|
126 |
|
---|
127 | Vector Plane::getOffsetVector() const {
|
---|
128 | return getOffset()*getNormal();
|
---|
129 | }
|
---|
130 |
|
---|
131 | vector<Vector> Plane::getPointsOnPlane() const{
|
---|
132 | std::vector<Vector> res;
|
---|
133 | res.reserve(3);
|
---|
134 | // first point on the plane
|
---|
135 | res.push_back(getOffsetVector());
|
---|
136 | // get a vector that has direction of plane
|
---|
137 | Vector direction;
|
---|
138 | direction.GetOneNormalVector(getNormal());
|
---|
139 | res.push_back(res[0]+direction);
|
---|
140 | // get an orthogonal vector to direction and normal (has direction of plane)
|
---|
141 | direction.VectorProduct(getNormal());
|
---|
142 | direction.Normalize();
|
---|
143 | res.push_back(res[0] +direction);
|
---|
144 | return res;
|
---|
145 | }
|
---|
146 |
|
---|
147 |
|
---|
148 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
---|
149 | * According to [Bronstein] the vectorial plane equation is:
|
---|
150 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
---|
151 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
---|
152 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
---|
153 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
---|
154 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
---|
155 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
---|
156 | * of the line yields the intersection point on the plane.
|
---|
157 | * \param *Origin first vector of line
|
---|
158 | * \param *LineVector second vector of line
|
---|
159 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
---|
160 | */
|
---|
161 | Vector Plane::GetIntersection(const Line& line) const
|
---|
162 | {
|
---|
163 | Info FunctionInfo(__func__);
|
---|
164 | Vector res;
|
---|
165 |
|
---|
166 | double factor1 = getNormal().ScalarProduct(line.getDirection());
|
---|
167 | if(fabs(factor1)<MYEPSILON){
|
---|
168 | // the plane is parallel... under all circumstances this is bad luck
|
---|
169 | // we no have either no or infinite solutions
|
---|
170 | if(isContained(line.getOrigin())){
|
---|
171 | throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
|
---|
172 | }
|
---|
173 | else{
|
---|
174 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | double factor2 = getNormal().ScalarProduct(line.getOrigin());
|
---|
179 | double scaleFactor = (offset-factor2)/factor1;
|
---|
180 |
|
---|
181 | res = line.getOrigin() + scaleFactor * line.getDirection();
|
---|
182 |
|
---|
183 | // tests to make sure the resulting vector really is on plane and line
|
---|
184 | ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
|
---|
185 | ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
|
---|
186 | return res;
|
---|
187 | };
|
---|
188 |
|
---|
189 | Vector Plane::mirrorVector(const Vector &rhs) const {
|
---|
190 | Vector helper = getVectorToPoint(rhs);
|
---|
191 | // substract twice the Vector to the plane
|
---|
192 | return rhs+2*helper;
|
---|
193 | }
|
---|
194 |
|
---|
195 | Line Plane::getOrthogonalLine(const Vector &origin) const{
|
---|
196 | return Line(origin,getNormal());
|
---|
197 | }
|
---|
198 |
|
---|
199 | bool Plane::onSameSide(const Vector &point1,const Vector &point2) const{
|
---|
200 | return sign(point1.ScalarProduct(*normalVector)-offset) ==
|
---|
201 | sign(point2.ScalarProduct(*normalVector)-offset);
|
---|
202 | }
|
---|
203 |
|
---|
204 | /************ Methods inherited from Space ****************/
|
---|
205 |
|
---|
206 | double Plane::distance(const Vector &point) const{
|
---|
207 | double res = point.ScalarProduct(*normalVector)-offset;
|
---|
208 | return fabs(res);
|
---|
209 | }
|
---|
210 |
|
---|
211 | Vector Plane::getClosestPoint(const Vector &point) const{
|
---|
212 | double factor = point.ScalarProduct(*normalVector)-offset;
|
---|
213 | if(fabs(factor) < MYEPSILON){
|
---|
214 | // the point itself lies on the plane
|
---|
215 | return point;
|
---|
216 | }
|
---|
217 | Vector difference = factor * (*normalVector);
|
---|
218 | return (point - difference);
|
---|
219 | }
|
---|
220 |
|
---|
221 | // Operators
|
---|
222 |
|
---|
223 | bool operator==(const Plane &x,const Plane &y){
|
---|
224 | return *x.normalVector == *y.normalVector && x.offset == y.offset;
|
---|
225 | }
|
---|
226 |
|
---|
227 | ostream &operator << (ostream &ost,const Plane &p){
|
---|
228 | ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
|
---|
229 | return ost;
|
---|
230 | }
|
---|