| 1 | /*
 | 
|---|
| 2 |  * Plane.cpp
 | 
|---|
| 3 |  *
 | 
|---|
| 4 |  *  Created on: Apr 7, 2010
 | 
|---|
| 5 |  *      Author: crueger
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | #include "Plane.hpp"
 | 
|---|
| 9 | #include "vector.hpp"
 | 
|---|
| 10 | #include "defs.hpp"
 | 
|---|
| 11 | #include "info.hpp"
 | 
|---|
| 12 | #include "log.hpp"
 | 
|---|
| 13 | #include "verbose.hpp"
 | 
|---|
| 14 | #include "Helpers/Assert.hpp"
 | 
|---|
| 15 | #include <cmath>
 | 
|---|
| 16 | 
 | 
|---|
| 17 | /**
 | 
|---|
| 18 |  * generates a plane from three given vectors defining three points in space
 | 
|---|
| 19 |  */
 | 
|---|
| 20 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
 | 
|---|
| 21 |   normalVector(new Vector())
 | 
|---|
| 22 | {
 | 
|---|
| 23 |   Vector x1 = y1 -y2;
 | 
|---|
| 24 |   Vector x2 = y3 -y2;
 | 
|---|
| 25 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| 26 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
| 27 |   }
 | 
|---|
| 28 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| 29 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| 30 | //  Log() << Verbose(0) << endl;
 | 
|---|
| 31 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| 32 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| 33 | //  Log() << Verbose(0) << endl;
 | 
|---|
| 34 | 
 | 
|---|
| 35 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
| 36 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
| 37 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
| 38 |   normalVector->Normalize();
 | 
|---|
| 39 | 
 | 
|---|
| 40 |   offset=normalVector->ScalarProduct(y1);
 | 
|---|
| 41 | }
 | 
|---|
| 42 | /**
 | 
|---|
| 43 |  * Constructs a plane from two direction vectors and a offset.
 | 
|---|
| 44 |  * If no offset is given a plane through origin is assumed
 | 
|---|
| 45 |  */
 | 
|---|
| 46 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(LinearDependenceException) :
 | 
|---|
| 47 |     normalVector(new Vector()),
 | 
|---|
| 48 |     offset(_offset)
 | 
|---|
| 49 | {
 | 
|---|
| 50 |   Vector x1 = y1;
 | 
|---|
| 51 |   Vector x2 = y2;
 | 
|---|
| 52 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| 53 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
| 54 |   }
 | 
|---|
| 55 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
| 56 | //  x1.Output((ofstream *)&cout);
 | 
|---|
| 57 | //  Log() << Verbose(0) << endl;
 | 
|---|
| 58 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
| 59 | //  x2.Output((ofstream *)&cout);
 | 
|---|
| 60 | //  Log() << Verbose(0) << endl;
 | 
|---|
| 61 | 
 | 
|---|
| 62 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
| 63 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
| 64 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
| 65 |   normalVector->Normalize();
 | 
|---|
| 66 | }
 | 
|---|
| 67 | 
 | 
|---|
| 68 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
 | 
|---|
| 69 |   normalVector(new Vector(_normalVector)),
 | 
|---|
| 70 |   offset(_offset)
 | 
|---|
| 71 | {
 | 
|---|
| 72 |   if(normalVector->IsZero())
 | 
|---|
| 73 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
| 74 |   double factor = 1/normalVector->Norm();
 | 
|---|
| 75 |   // normalize the plane parameters
 | 
|---|
| 76 |   (*normalVector)*=factor;
 | 
|---|
| 77 |   offset*=factor;
 | 
|---|
| 78 | }
 | 
|---|
| 79 | 
 | 
|---|
| 80 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
 | 
|---|
| 81 |     normalVector(new Vector(_normalVector))
 | 
|---|
| 82 | {
 | 
|---|
| 83 |   if(normalVector->IsZero()){
 | 
|---|
| 84 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
| 85 |   }
 | 
|---|
| 86 |   normalVector->Normalize();
 | 
|---|
| 87 |   offset = normalVector->ScalarProduct(_offsetVector);
 | 
|---|
| 88 | }
 | 
|---|
| 89 | 
 | 
|---|
| 90 | Plane::~Plane()
 | 
|---|
| 91 | {}
 | 
|---|
| 92 | 
 | 
|---|
| 93 | 
 | 
|---|
| 94 | Vector Plane::getNormal(){
 | 
|---|
| 95 |   return *normalVector;
 | 
|---|
| 96 | }
 | 
|---|
| 97 | 
 | 
|---|
| 98 | double Plane::getOffset(){
 | 
|---|
| 99 |   return offset;
 | 
|---|
| 100 | }
 | 
|---|
| 101 | 
 | 
|---|
| 102 | Vector Plane::getOffsetVector() {
 | 
|---|
| 103 |   return getOffset()*getNormal();
 | 
|---|
| 104 | }
 | 
|---|
| 105 | 
 | 
|---|
| 106 | vector<Vector> Plane::getPointsOnPlane(){
 | 
|---|
| 107 |   std::vector<Vector> res;
 | 
|---|
| 108 |   // first point on the plane
 | 
|---|
| 109 |   res[0] = getOffsetVector();
 | 
|---|
| 110 |   // first is orthogonal to the plane...
 | 
|---|
| 111 |   // an orthogonal vector to this one lies on the plane
 | 
|---|
| 112 |   Vector direction;
 | 
|---|
| 113 |   direction.GetOneNormalVector(res[0]);
 | 
|---|
| 114 |   res[1] = res[0]+direction;
 | 
|---|
| 115 |   // get an orthogonal vector to direction and offset (lies on the plane)
 | 
|---|
| 116 |   direction.VectorProduct(res[0]);
 | 
|---|
| 117 |   direction.Normalize();
 | 
|---|
| 118 |   res[2] = res[0] +direction;
 | 
|---|
| 119 |   return res;
 | 
|---|
| 120 | }
 | 
|---|
| 121 | 
 | 
|---|
| 122 | 
 | 
|---|
| 123 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
| 124 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
| 125 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
| 126 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
| 127 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
| 128 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
| 129 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
| 130 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
| 131 |  * of the line yields the intersection point on the plane.
 | 
|---|
| 132 |  * \param *Origin first vector of line
 | 
|---|
| 133 |  * \param *LineVector second vector of line
 | 
|---|
| 134 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
| 135 |  */
 | 
|---|
| 136 | Vector Plane::GetIntersection(const Vector &Origin, const Vector &LineVector)
 | 
|---|
| 137 | {
 | 
|---|
| 138 |   Info FunctionInfo(__func__);
 | 
|---|
| 139 |   Vector res;
 | 
|---|
| 140 | 
 | 
|---|
| 141 |   // find intersection of a line defined by Offset and Direction with a  plane defined by triangle
 | 
|---|
| 142 |   Vector Direction = LineVector - Origin;
 | 
|---|
| 143 |   Direction.Normalize();
 | 
|---|
| 144 |   Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
 | 
|---|
| 145 |   //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
 | 
|---|
| 146 |   double factor1 = Direction.ScalarProduct(*normalVector.get());
 | 
|---|
| 147 |   if (fabs(factor1) < MYEPSILON) { // Uniqueness: line parallel to plane?
 | 
|---|
| 148 |     Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
 | 
|---|
| 149 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
| 150 |   }
 | 
|---|
| 151 | 
 | 
|---|
| 152 |   double factor2 = Origin.ScalarProduct(*normalVector.get());
 | 
|---|
| 153 |   if (fabs(factor2-offset) < MYEPSILON) { // Origin is in-plane
 | 
|---|
| 154 |     Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
 | 
|---|
| 155 |     res = Origin;
 | 
|---|
| 156 |     return res;
 | 
|---|
| 157 |   }
 | 
|---|
| 158 | 
 | 
|---|
| 159 |   double scaleFactor = (offset-factor2)/factor1;
 | 
|---|
| 160 | 
 | 
|---|
| 161 |   //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
 | 
|---|
| 162 |   Direction.Scale(scaleFactor);
 | 
|---|
| 163 |   res = Origin + Direction;
 | 
|---|
| 164 |   Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
 | 
|---|
| 165 | 
 | 
|---|
| 166 |   // test whether resulting vector really is on plane
 | 
|---|
| 167 |   ASSERT(fabs(res.ScalarProduct(*normalVector) - offset) < MYEPSILON,
 | 
|---|
| 168 |          "Calculated line-Plane intersection does not lie on plane.");
 | 
|---|
| 169 |   return res;
 | 
|---|
| 170 | };
 | 
|---|
| 171 | 
 | 
|---|
| 172 | /************ Methods inherited from Space ****************/
 | 
|---|
| 173 | 
 | 
|---|
| 174 | double Plane::distance(const Vector &point) const{
 | 
|---|
| 175 |   double res = point.ScalarProduct(*normalVector)-offset;
 | 
|---|
| 176 |   return fabs(res);
 | 
|---|
| 177 | }
 | 
|---|
| 178 | 
 | 
|---|
| 179 | Vector Plane::getClosestPoint(const Vector &point) const{
 | 
|---|
| 180 |   Vector difference = distance(point) * (*normalVector);
 | 
|---|
| 181 |   if(difference.IsZero()){
 | 
|---|
| 182 |     // the point itself lies on the plane
 | 
|---|
| 183 |     return point;
 | 
|---|
| 184 |   }
 | 
|---|
| 185 |   // get the direction this vector is pointing
 | 
|---|
| 186 |   double sign = difference.ScalarProduct(*normalVector);
 | 
|---|
| 187 |   // sign cannot be zero, since normalVector and difference are both != zero
 | 
|---|
| 188 |   sign = sign/fabs(sign);
 | 
|---|
| 189 |   return (point - (sign * difference));
 | 
|---|
| 190 | }
 | 
|---|