| [0a4f7f] | 1 | /*
 | 
|---|
 | 2 |  * Plane.cpp
 | 
|---|
 | 3 |  *
 | 
|---|
 | 4 |  *  Created on: Apr 7, 2010
 | 
|---|
 | 5 |  *      Author: crueger
 | 
|---|
 | 6 |  */
 | 
|---|
 | 7 | 
 | 
|---|
 | 8 | #include "Plane.hpp"
 | 
|---|
 | 9 | #include "vector.hpp"
 | 
|---|
 | 10 | #include "Exceptions/LinearDependenceException.hpp"
 | 
|---|
 | 11 | #include "info.hpp"
 | 
|---|
 | 12 | #include "log.hpp"
 | 
|---|
 | 13 | #include "verbose.hpp"
 | 
|---|
 | 14 | #include "Helpers/Assert.hpp"
 | 
|---|
 | 15 | 
 | 
|---|
 | 16 | /**
 | 
|---|
 | 17 |  * generates a plane from three given vectors defining three points in space
 | 
|---|
 | 18 |  */
 | 
|---|
 | 19 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) :
 | 
|---|
 | 20 |   normalVector(new Vector())
 | 
|---|
 | 21 | {
 | 
|---|
| [273382] | 22 |   Vector x1 = y1 -y2;
 | 
|---|
 | 23 |   Vector x2 = y3 -y2;
 | 
|---|
 | 24 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 25 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 26 |   }
 | 
|---|
 | 27 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 28 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 29 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 30 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 31 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 32 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 33 | 
 | 
|---|
 | 34 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 35 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 36 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 37 |   normalVector->Normalize();
 | 
|---|
 | 38 | 
 | 
|---|
| [273382] | 39 |   offset=normalVector->ScalarProduct(y1);
 | 
|---|
| [0a4f7f] | 40 | }
 | 
|---|
 | 41 | /**
 | 
|---|
 | 42 |  * Constructs a plane from two vectors and a offset.
 | 
|---|
 | 43 |  * If no offset is given a plane through origin is assumed
 | 
|---|
 | 44 |  */
 | 
|---|
 | 45 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset):
 | 
|---|
 | 46 |     normalVector(new Vector()),
 | 
|---|
 | 47 |     offset(_offset)
 | 
|---|
 | 48 | {
 | 
|---|
| [273382] | 49 |   Vector x1 = y1;
 | 
|---|
 | 50 |   Vector x2 = y2;
 | 
|---|
 | 51 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 52 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 53 |   }
 | 
|---|
 | 54 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 55 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 56 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 57 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 58 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 59 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 60 | 
 | 
|---|
 | 61 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 62 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 63 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 64 |   normalVector->Normalize();
 | 
|---|
 | 65 | }
 | 
|---|
 | 66 | 
 | 
|---|
 | 67 | Plane::Plane(const Vector &_normalVector, double _offset) :
 | 
|---|
 | 68 |   normalVector(new Vector(_normalVector)),
 | 
|---|
 | 69 |   offset(_offset)
 | 
|---|
| [72e7fa] | 70 | {
 | 
|---|
 | 71 |   ASSERT(normalVector->Norm()>MYEPSILON,"Normalvector was zero when constructing a plane.");
 | 
|---|
 | 72 |   double factor = 1/normalVector->Norm();
 | 
|---|
 | 73 |   // normalize the plane parameters
 | 
|---|
 | 74 |   (*normalVector)*=factor;
 | 
|---|
 | 75 |   offset*=factor;
 | 
|---|
 | 76 | }
 | 
|---|
| [0a4f7f] | 77 | 
 | 
|---|
 | 78 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) :
 | 
|---|
 | 79 |     normalVector(new Vector(_normalVector))
 | 
|---|
 | 80 | {
 | 
|---|
| [273382] | 81 |   offset = normalVector->ScalarProduct(_offsetVector);
 | 
|---|
| [0a4f7f] | 82 | }
 | 
|---|
 | 83 | 
 | 
|---|
 | 84 | Plane::~Plane()
 | 
|---|
 | 85 | {}
 | 
|---|
 | 86 | 
 | 
|---|
 | 87 | 
 | 
|---|
 | 88 | Vector Plane::getNormal(){
 | 
|---|
 | 89 |   return *normalVector;
 | 
|---|
 | 90 | }
 | 
|---|
 | 91 | 
 | 
|---|
 | 92 | double Plane::getOffset(){
 | 
|---|
 | 93 |   return offset;
 | 
|---|
 | 94 | }
 | 
|---|
 | 95 | 
 | 
|---|
| [72e7fa] | 96 | Vector Plane::getOffsetVector() {
 | 
|---|
 | 97 |   return getOffset()*getNormal();
 | 
|---|
 | 98 | }
 | 
|---|
 | 99 | 
 | 
|---|
| [0a4f7f] | 100 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
 | 101 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
 | 102 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
 | 103 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
 | 104 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
 | 105 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
 | 106 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
 | 107 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
 | 108 |  * of the line yields the intersection point on the plane.
 | 
|---|
 | 109 |  * \param *Origin first vector of line
 | 
|---|
 | 110 |  * \param *LineVector second vector of line
 | 
|---|
 | 111 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
 | 112 |  */
 | 
|---|
 | 113 | Vector Plane::GetIntersection(const Vector &Origin, const Vector &LineVector)
 | 
|---|
 | 114 | {
 | 
|---|
 | 115 |   Info FunctionInfo(__func__);
 | 
|---|
 | 116 |   Vector res;
 | 
|---|
 | 117 | 
 | 
|---|
 | 118 |   // find intersection of a line defined by Offset and Direction with a  plane defined by triangle
 | 
|---|
 | 119 |   Vector Direction = LineVector - Origin;
 | 
|---|
 | 120 |   Direction.Normalize();
 | 
|---|
 | 121 |   Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
 | 
|---|
 | 122 |   //Log() << Verbose(1) << "INFO: PlaneNormal is " << *PlaneNormal << " and PlaneOffset is " << *PlaneOffset << "." << endl;
 | 
|---|
| [273382] | 123 |   double factor1 = Direction.ScalarProduct(*normalVector.get());
 | 
|---|
| [0a4f7f] | 124 |   if (fabs(factor1) < MYEPSILON) { // Uniqueness: line parallel to plane?
 | 
|---|
 | 125 |     Log() << Verbose(1) << "BAD: Line is parallel to plane, no intersection." << endl;
 | 
|---|
 | 126 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 127 |   }
 | 
|---|
 | 128 | 
 | 
|---|
| [273382] | 129 |   double factor2 = Origin.ScalarProduct(*normalVector.get());
 | 
|---|
| [0a4f7f] | 130 |   if (fabs(factor2-offset) < MYEPSILON) { // Origin is in-plane
 | 
|---|
 | 131 |     Log() << Verbose(1) << "GOOD: Origin of line is in-plane." << endl;
 | 
|---|
 | 132 |     res = Origin;
 | 
|---|
 | 133 |     return res;
 | 
|---|
 | 134 |   }
 | 
|---|
 | 135 | 
 | 
|---|
 | 136 |   double scaleFactor = (offset-factor2)/factor1;
 | 
|---|
 | 137 | 
 | 
|---|
 | 138 |   //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
 | 
|---|
 | 139 |   Direction.Scale(scaleFactor);
 | 
|---|
 | 140 |   res = Origin + Direction;
 | 
|---|
 | 141 |   Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
 | 
|---|
 | 142 | 
 | 
|---|
 | 143 |   // test whether resulting vector really is on plane
 | 
|---|
| [273382] | 144 |   ASSERT(fabs(res.ScalarProduct((*normalVector.get())) - offset) < MYEPSILON,
 | 
|---|
| [0a4f7f] | 145 |          "Calculated line-Plane intersection does not lie on plane.");
 | 
|---|
 | 146 |   return res;
 | 
|---|
 | 147 | };
 | 
|---|