source: src/Parser/PcpParser.cpp@ d4f31f

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d4f31f was 94d5ac6, checked in by Frederik Heber <heber@…>, 12 years ago

FIX: As we use GSL internally, we are as of now required to use GPL v2 license.

  • GNU Scientific Library is used at every place in the code, especially the sub-package LinearAlgebra is based on it which in turn is used really everywhere in the remainder of MoleCuilder. Hence, we have to use the GPL license for the whole of MoleCuilder. In effect, GPL's COPYING was present all along and stated the terms of the GPL v2 license.
  • Hence, I added the default GPL v2 disclaimer to every source file and removed the note about a (actually missing) LICENSE file.
  • also, I added a help-redistribute action which again gives the disclaimer of the GPL v2.
  • also, I changed in the disclaimer that is printed at every program start in builder_init.cpp.
  • TEST: Added check on GPL statement present in every module to test CodeChecks project-disclaimer.
  • Property mode set to 100644
File size: 36.6 KB
RevLine 
[bcf653]1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
[0aa122]4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
[94d5ac6]5 *
6 *
7 * This file is part of MoleCuilder.
8 *
9 * MoleCuilder is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * MoleCuilder is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
[bcf653]21 */
22
[43dad6]23/*
24 * PcpParser.cpp
25 *
26 * Created on: 12.06.2010
27 * Author: heber
28 */
29
[bf3817]30// include config.h
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
[ad011c]35#include "CodePatterns/MemDebug.hpp"
[bbbad5]36
[43dad6]37#include <iostream>
[36166d]38#include <iomanip>
[43dad6]39
[6f0841]40#include "Atom/atom.hpp"
[41a467]41#include "Box.hpp"
[ad011c]42#include "CodePatterns/Assert.hpp"
43#include "CodePatterns/Log.hpp"
44#include "CodePatterns/Verbose.hpp"
[41a467]45#include "Element/element.hpp"
46#include "Element/periodentafel.hpp"
[cca9ef]47#include "LinearAlgebra/RealSpaceMatrix.hpp"
[43dad6]48#include "molecule.hpp"
[42127c]49#include "MoleculeListClass.hpp"
[43dad6]50#include "PcpParser.hpp"
[41a467]51#include "Parser/ConfigFileBuffer.hpp"
52#include "Parser/PcpParser_helper.hpp"
[ab26c3]53#include "Thermostats/ThermoStatContainer.hpp"
[43dad6]54#include "World.hpp"
55
[97b825]56
[765f16]57// declare specialized static variables
58const std::string FormatParserTrait<pcp>::name = "pcp";
59const std::string FormatParserTrait<pcp>::suffix = "conf";
60const ParserTypes FormatParserTrait<pcp>::type = pcp;
61
62FormatParser< pcp >::StructParallelization::StructParallelization() :
[97b825]63 ProcPEGamma(8),
64 ProcPEPsi(1)
65{}
66
[765f16]67FormatParser< pcp >::StructParallelization::~StructParallelization()
[97b825]68{}
69
[765f16]70FormatParser< pcp >::StructPaths::StructPaths() :
[97b825]71 databasepath(NULL),
72 configname(NULL),
73 mainname(NULL),
74 defaultpath(NULL),
75 pseudopotpath(NULL)
76{}
77
[765f16]78FormatParser< pcp >::StructPaths::~StructPaths()
[97b825]79{}
80
[765f16]81FormatParser< pcp >::StructSwitches::StructSwitches() :
[97b825]82 DoConstrainedMD(0),
83 DoOutVis(0),
84 DoOutMes(1),
85 DoOutNICS(0),
86 DoOutOrbitals(0),
87 DoOutCurrent(0),
88 DoFullCurrent(0),
89 DoPerturbation(0),
90 DoWannier(0)
91{}
92
[765f16]93FormatParser< pcp >::StructSwitches::~StructSwitches()
[97b825]94{}
95
[765f16]96FormatParser< pcp >::StructLocalizedOrbitals::StructLocalizedOrbitals() :
[97b825]97 CommonWannier(0),
98 SawtoothStart(0.01),
99 VectorPlane(0),
100 VectorCut(0),
101 UseAddGramSch(1),
102 Seed(1),
103 EpsWannier(1e-7)
104{}
105
[765f16]106FormatParser< pcp >::StructLocalizedOrbitals::~StructLocalizedOrbitals()
[97b825]107{}
108
[765f16]109FormatParser< pcp >::StructStepCounts::StructStepCounts() :
[97b825]110 MaxMinStopStep(1),
111 InitMaxMinStopStep(1),
112 OutVisStep(10),
113 OutSrcStep(5),
114 MaxPsiStep(0),
115 MaxOuterStep(0),
116 MaxMinStep(100),
117 RelEpsTotalEnergy(1e-07),
118 RelEpsKineticEnergy(1e-05),
119 MaxMinGapStopStep(0),
120 MaxInitMinStep(100),
121 InitRelEpsTotalEnergy(1e-05),
122 InitRelEpsKineticEnergy(0.0001),
123 InitMaxMinGapStopStep(0)
124{}
125
[765f16]126FormatParser< pcp >::StructStepCounts::~StructStepCounts()
[97b825]127{}
128
[765f16]129FormatParser< pcp >::StructPlaneWaveSpecifics::StructPlaneWaveSpecifics() :
[97b825]130 PsiType(0),
131 MaxPsiDouble(0),
132 PsiMaxNoUp(0),
133 PsiMaxNoDown(0),
134 ECut(128),
135 MaxLevel(5),
136 RiemannTensor(0),
137 LevRFactor(0),
138 RiemannLevel(0),
139 Lev0Factor(2),
140 RTActualUse(0),
141 AddPsis(0),
142 RCut(20)
143{}
144
[765f16]145FormatParser< pcp >::StructPlaneWaveSpecifics::~StructPlaneWaveSpecifics()
[97b825]146{}
147
[43dad6]148/** Constructor of PcpParser.
149 *
150 */
[765f16]151FormatParser< pcp >::FormatParser() :
152 FormatParser_common(NULL),
[97b825]153 FastParsing(false),
154 Deltat(0.01),
155 IsAngstroem(1),
156 RelativeCoord(0),
157 StructOpt(0),
158 MaxTypes(0)
159{}
[43dad6]160
161/** Destructor of PcpParser.
162 *
163 */
[765f16]164FormatParser< pcp >::~FormatParser()
[43dad6]165{}
166
[765f16]167void FormatParser< pcp >::load(std::istream* file)
[43dad6]168{
169 if (file->fail()) {
[47d041]170 ELOG(1, "could not access given file");
[43dad6]171 return;
172 }
173
174 // ParseParameterFile
175 class ConfigFileBuffer *FileBuffer = new ConfigFileBuffer();
176 FileBuffer->InitFileBuffer(file);
177
178 /* Oeffne Hauptparameterdatei */
179 int di = 0;
180 double BoxLength[9];
181 string zeile;
182 string dummy;
183 int verbose = 0;
184
185 ParseThermostats(FileBuffer);
186
187 /* Namen einlesen */
188
189 // 1. parse in options
[7a1dd0]190 if (!ParseForParameter(verbose,FileBuffer, "mainname", 0, 1, 1, string_type, (Paths.mainname), 1, critical)) {
[47d041]191 ELOG(1, "mainname is missing, is file empty?");
[43dad6]192 } else {
[7a1dd0]193 ParseForParameter(verbose,FileBuffer, "defaultpath", 0, 1, 1, string_type, (Paths.defaultpath), 1, critical);
194 ParseForParameter(verbose,FileBuffer, "pseudopotpath", 0, 1, 1, string_type, (Paths.pseudopotpath), 1, critical);
195 ParseForParameter(verbose,FileBuffer,"ProcPEGamma", 0, 1, 1, int_type, &(Parallelization.ProcPEGamma), 1, critical);
196 ParseForParameter(verbose,FileBuffer,"ProcPEPsi", 0, 1, 1, int_type, &(Parallelization.ProcPEPsi), 1, critical);
197
198 if (!ParseForParameter(verbose,FileBuffer,"Seed", 0, 1, 1, int_type, &(LocalizedOrbitals.Seed), 1, optional))
199 LocalizedOrbitals.Seed = 1;
200
201 if(!ParseForParameter(verbose,FileBuffer,"DoOutOrbitals", 0, 1, 1, int_type, &(Switches.DoOutOrbitals), 1, optional)) {
202 Switches.DoOutOrbitals = 0;
203 } else {
204 if (Switches.DoOutOrbitals < 0) Switches.DoOutOrbitals = 0;
205 if (Switches.DoOutOrbitals > 1) Switches.DoOutOrbitals = 1;
206 }
207 ParseForParameter(verbose,FileBuffer,"DoOutVis", 0, 1, 1, int_type, &(Switches.DoOutVis), 1, critical);
208 if (Switches.DoOutVis < 0) Switches.DoOutVis = 0;
209 if (Switches.DoOutVis > 1) Switches.DoOutVis = 1;
210 if (!ParseForParameter(verbose,FileBuffer,"VectorPlane", 0, 1, 1, int_type, &(LocalizedOrbitals.VectorPlane), 1, optional))
211 LocalizedOrbitals.VectorPlane = -1;
212 if (!ParseForParameter(verbose,FileBuffer,"VectorCut", 0, 1, 1, double_type, &(LocalizedOrbitals.VectorCut), 1, optional))
213 LocalizedOrbitals.VectorCut = 0.;
214 ParseForParameter(verbose,FileBuffer,"DoOutMes", 0, 1, 1, int_type, &(Switches.DoOutMes), 1, critical);
215 if (Switches.DoOutMes < 0) Switches.DoOutMes = 0;
216 if (Switches.DoOutMes > 1) Switches.DoOutMes = 1;
217 if (!ParseForParameter(verbose,FileBuffer,"DoOutCurr", 0, 1, 1, int_type, &(Switches.DoOutCurrent), 1, optional))
218 Switches.DoOutCurrent = 0;
219 if (Switches.DoOutCurrent < 0) Switches.DoOutCurrent = 0;
220 if (Switches.DoOutCurrent > 1) Switches.DoOutCurrent = 1;
221 ParseForParameter(verbose,FileBuffer,"AddGramSch", 0, 1, 1, int_type, &(LocalizedOrbitals.UseAddGramSch), 1, critical);
222 if (LocalizedOrbitals.UseAddGramSch < 0) LocalizedOrbitals.UseAddGramSch = 0;
223 if (LocalizedOrbitals.UseAddGramSch > 2) LocalizedOrbitals.UseAddGramSch = 2;
224 if(!ParseForParameter(verbose,FileBuffer,"DoWannier", 0, 1, 1, int_type, &(Switches.DoWannier), 1, optional)) {
225 Switches.DoWannier = 0;
226 } else {
227 if (Switches.DoWannier < 0) Switches.DoWannier = 0;
228 if (Switches.DoWannier > 1) Switches.DoWannier = 1;
229 }
230 if(!ParseForParameter(verbose,FileBuffer,"CommonWannier", 0, 1, 1, int_type, &(LocalizedOrbitals.CommonWannier), 1, optional)) {
231 LocalizedOrbitals.CommonWannier = 0;
232 } else {
233 if (LocalizedOrbitals.CommonWannier < 0) LocalizedOrbitals.CommonWannier = 0;
234 if (LocalizedOrbitals.CommonWannier > 4) LocalizedOrbitals.CommonWannier = 4;
235 }
236 if(!ParseForParameter(verbose,FileBuffer,"SawtoothStart", 0, 1, 1, double_type, &(LocalizedOrbitals.SawtoothStart), 1, optional)) {
237 LocalizedOrbitals.SawtoothStart = 0.01;
238 } else {
239 if (LocalizedOrbitals.SawtoothStart < 0.) LocalizedOrbitals.SawtoothStart = 0.;
240 if (LocalizedOrbitals.SawtoothStart > 1.) LocalizedOrbitals.SawtoothStart = 1.;
241 }
242
243 if (ParseForParameter(verbose,FileBuffer,"DoConstrainedMD", 0, 1, 1, int_type, &(Switches.DoConstrainedMD), 1, optional))
244 if (Switches.DoConstrainedMD < 0)
245 Switches.DoConstrainedMD = 0;
246 ParseForParameter(verbose,FileBuffer,"MaxOuterStep", 0, 1, 1, int_type, &(StepCounts.MaxOuterStep), 1, critical);
247 if (!ParseForParameter(verbose,FileBuffer,"Deltat", 0, 1, 1, double_type, &(Deltat), 1, optional))
248 Deltat = 1;
249 ParseForParameter(verbose,FileBuffer,"OutVisStep", 0, 1, 1, int_type, &(StepCounts.OutVisStep), 1, optional);
250 ParseForParameter(verbose,FileBuffer,"OutSrcStep", 0, 1, 1, int_type, &(StepCounts.OutSrcStep), 1, optional);
251 ParseForParameter(verbose,FileBuffer,"TargetTemp", 0, 1, 1, double_type, &(World::getInstance().getThermostats()->TargetTemp), 1, optional);
252 //ParseForParameter(verbose,FileBuffer,"Thermostat", 0, 1, 1, int_type, &(ScaleTempStep), 1, optional);
253 if (!ParseForParameter(verbose,FileBuffer,"EpsWannier", 0, 1, 1, double_type, &(LocalizedOrbitals.EpsWannier), 1, optional))
254 LocalizedOrbitals.EpsWannier = 1e-8;
255
256 // stop conditions
257 //if (MaxOuterStep <= 0) MaxOuterStep = 1;
258 ParseForParameter(verbose,FileBuffer,"MaxPsiStep", 0, 1, 1, int_type, &(StepCounts.MaxPsiStep), 1, critical);
259 if (StepCounts.MaxPsiStep <= 0) StepCounts.MaxPsiStep = 3;
260
261 ParseForParameter(verbose,FileBuffer,"MaxMinStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStep), 1, critical);
262 ParseForParameter(verbose,FileBuffer,"RelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.RelEpsTotalEnergy), 1, critical);
263 ParseForParameter(verbose,FileBuffer,"RelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.RelEpsKineticEnergy), 1, critical);
264 ParseForParameter(verbose,FileBuffer,"MaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinStopStep), 1, critical);
265 ParseForParameter(verbose,FileBuffer,"MaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.MaxMinGapStopStep), 1, critical);
266 if (StepCounts.MaxMinStep <= 0) StepCounts.MaxMinStep = StepCounts.MaxPsiStep;
267 if (StepCounts.MaxMinStopStep < 1) StepCounts.MaxMinStopStep = 1;
268 if (StepCounts.MaxMinGapStopStep < 1) StepCounts.MaxMinGapStopStep = 1;
269
270 ParseForParameter(verbose,FileBuffer,"MaxInitMinStep", 0, 1, 1, int_type, &(StepCounts.MaxInitMinStep), 1, critical);
271 ParseForParameter(verbose,FileBuffer,"InitRelEpsTotalE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsTotalEnergy), 1, critical);
272 ParseForParameter(verbose,FileBuffer,"InitRelEpsKineticE", 0, 1, 1, double_type, &(StepCounts.InitRelEpsKineticEnergy), 1, critical);
273 ParseForParameter(verbose,FileBuffer,"InitMaxMinStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinStopStep), 1, critical);
274 ParseForParameter(verbose,FileBuffer,"InitMaxMinGapStopStep", 0, 1, 1, int_type, &(StepCounts.InitMaxMinGapStopStep), 1, critical);
275 if (StepCounts.MaxInitMinStep <= 0) StepCounts.MaxInitMinStep = StepCounts.MaxPsiStep;
276 if (StepCounts.InitMaxMinStopStep < 1) StepCounts.InitMaxMinStopStep = 1;
277 if (StepCounts.InitMaxMinGapStopStep < 1) StepCounts.InitMaxMinGapStopStep = 1;
278
279 // Unit cell and magnetic field
280 ParseForParameter(verbose,FileBuffer, "BoxLength", 0, 3, 3, lower_trigrid, BoxLength, 1, critical); /* Lattice->RealBasis */
281 double *cell_size = new double[6];
282 cell_size[0] = BoxLength[0];
283 cell_size[1] = BoxLength[3];
284 cell_size[2] = BoxLength[4];
285 cell_size[3] = BoxLength[6];
286 cell_size[4] = BoxLength[7];
287 cell_size[5] = BoxLength[8];
288 World::getInstance().setDomain(cell_size);
289 delete[] cell_size;
290 //if (1) fprintf(stderr,"\n");
291
292 ParseForParameter(verbose,FileBuffer,"DoPerturbation", 0, 1, 1, int_type, &(Switches.DoPerturbation), 1, optional);
293 ParseForParameter(verbose,FileBuffer,"DoOutNICS", 0, 1, 1, int_type, &(Switches.DoOutNICS), 1, optional);
294 if (!ParseForParameter(verbose,FileBuffer,"DoFullCurrent", 0, 1, 1, int_type, &(Switches.DoFullCurrent), 1, optional))
295 Switches.DoFullCurrent = 0;
296 if (Switches.DoFullCurrent < 0) Switches.DoFullCurrent = 0;
297 if (Switches.DoFullCurrent > 2) Switches.DoFullCurrent = 2;
298 if (Switches.DoOutNICS < 0) Switches.DoOutNICS = 0;
299 if (Switches.DoOutNICS > 2) Switches.DoOutNICS = 2;
300 if (Switches.DoPerturbation == 0) {
301 Switches.DoFullCurrent = 0;
302 Switches.DoOutNICS = 0;
303 }
304
305 ParseForParameter(verbose,FileBuffer,"ECut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.ECut), 1, critical);
306 ParseForParameter(verbose,FileBuffer,"MaxLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxLevel), 1, critical);
307 ParseForParameter(verbose,FileBuffer,"Level0Factor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.Lev0Factor), 1, critical);
308 if (PlaneWaveSpecifics.Lev0Factor < 2) {
[43dad6]309 PlaneWaveSpecifics.Lev0Factor = 2;
[7a1dd0]310 }
311 ParseForParameter(verbose,FileBuffer,"RiemannTensor", 0, 1, 1, int_type, &di, 1, critical);
312 if (di >= 0 && di < 2) {
313 PlaneWaveSpecifics.RiemannTensor = di;
314 } else {
315 cerr << "0 <= RiemanTensor < 2: 0 UseNotRT, 1 UseRT" << endl;
316 exit(1);
317 }
318 switch (PlaneWaveSpecifics.RiemannTensor) {
319 case 0: //UseNoRT
320 if (PlaneWaveSpecifics.MaxLevel < 2) {
321 PlaneWaveSpecifics.MaxLevel = 2;
322 }
323 PlaneWaveSpecifics.LevRFactor = 2;
324 PlaneWaveSpecifics.RTActualUse = 0;
325 break;
326 case 1: // UseRT
327 if (PlaneWaveSpecifics.MaxLevel < 3) {
328 PlaneWaveSpecifics.MaxLevel = 3;
329 }
330 ParseForParameter(verbose,FileBuffer,"RiemannLevel", 0, 1, 1, int_type, &(PlaneWaveSpecifics.RiemannLevel), 1, critical);
331 if (PlaneWaveSpecifics.RiemannLevel < 2) {
332 PlaneWaveSpecifics.RiemannLevel = 2;
333 }
334 if (PlaneWaveSpecifics.RiemannLevel > PlaneWaveSpecifics.MaxLevel-1) {
335 PlaneWaveSpecifics.RiemannLevel = PlaneWaveSpecifics.MaxLevel-1;
336 }
337 ParseForParameter(verbose,FileBuffer,"LevRFactor", 0, 1, 1, int_type, &(PlaneWaveSpecifics.LevRFactor), 1, critical);
338 if (PlaneWaveSpecifics.LevRFactor < 2) {
339 PlaneWaveSpecifics.LevRFactor = 2;
340 }
341 PlaneWaveSpecifics.Lev0Factor = 2;
342 PlaneWaveSpecifics.RTActualUse = 2;
343 break;
344 }
345 ParseForParameter(verbose,FileBuffer,"PsiType", 0, 1, 1, int_type, &di, 1, critical);
346 if (di >= 0 && di < 2) {
347 PlaneWaveSpecifics.PsiType = di;
348 } else {
349 cerr << "0 <= PsiType < 2: 0 UseSpinDouble, 1 UseSpinUpDown" << endl;
350 exit(1);
351 }
352 switch (PlaneWaveSpecifics.PsiType) {
353 case 0: // SpinDouble
354 ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, critical);
355 ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, optional);
356 ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, optional);
357 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
[43dad6]358 break;
[7a1dd0]359 case 1: // SpinUpDown
360 if (Parallelization.ProcPEGamma % 2) Parallelization.ProcPEGamma*=2;
361 ParseForParameter(verbose,FileBuffer,"MaxPsiDouble", 0, 1, 1, int_type, &(PlaneWaveSpecifics.MaxPsiDouble), 1, optional);
362 ParseForParameter(verbose,FileBuffer,"PsiMaxNoUp", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoUp), 1, critical);
363 ParseForParameter(verbose,FileBuffer,"PsiMaxNoDown", 0, 1, 1, int_type, &(PlaneWaveSpecifics.PsiMaxNoDown), 1, critical);
364 ParseForParameter(verbose,FileBuffer,"AddPsis", 0, 1, 1, int_type, &(PlaneWaveSpecifics.AddPsis), 1, optional);
365 break;
366 }
[43dad6]367
[7a1dd0]368 // IonsInitRead
[43dad6]369
[7a1dd0]370 ParseForParameter(verbose,FileBuffer,"RCut", 0, 1, 1, double_type, &(PlaneWaveSpecifics.RCut), 1, critical);
371 ParseForParameter(verbose,FileBuffer,"IsAngstroem", 0, 1, 1, int_type, &(IsAngstroem), 1, critical);
372 ParseForParameter(verbose,FileBuffer,"MaxTypes", 0, 1, 1, int_type, &(MaxTypes), 1, critical);
373 if (!ParseForParameter(verbose,FileBuffer,"RelativeCoord", 0, 1, 1, int_type, &(RelativeCoord) , 1, optional))
374 RelativeCoord = 0;
375 if (!ParseForParameter(verbose,FileBuffer,"StructOpt", 0, 1, 1, int_type, &(StructOpt), 1, optional))
376 StructOpt = 0;
377 }
[43dad6]378
379 // 3. parse the molecule in
380 molecule *mol = World::getInstance().createMolecule();
381 mol->ActiveFlag = true;
[bd2390]382 // TODO: Remove the insertion into molecule when saving does not depend on them anymore. Also, remove molecule.hpp include
383 World::getInstance().getMolecules()->insert(mol);
384 LoadMolecule(mol, FileBuffer, World::getInstance().getPeriode(), FastParsing);
[43dad6]385
[4afa46]386 // refresh atom::nr and atom::name
387 mol->getAtomCount();
388
[43dad6]389 // 4. dissect the molecule into connected subgraphs
390 // don't do this here ...
[2b7d1b]391 //FragmentationSubgraphDissection();
[43dad6]392 //delete(mol);
393
394 delete(FileBuffer);
395}
396
[73916f]397/**
398 * Saves the \a atoms into as a PCP file.
399 *
400 * \param file where to save the state
401 * \param atoms atoms to store
[43dad6]402 */
[765f16]403void FormatParser< pcp >::save(std::ostream* file, const std::vector<atom *> &atoms)
[43dad6]404{
[47d041]405 LOG(0, "Saving changes to pcp.");
[e97a44]406
[cca9ef]407 const RealSpaceMatrix &domain = World::getInstance().getDomain().getM();
[1bfc8e]408 ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
[43dad6]409 if (!file->fail()) {
[650ca8c]410 // calculate number of Psis
[73916f]411 CalculateOrbitals(atoms);
[43dad6]412 *file << "# ParallelCarParinello - main configuration file - created with molecuilder" << endl;
413 *file << endl;
[650ca8c]414 if (Paths.mainname != NULL)
415 *file << "mainname\t" << Paths.mainname << "\t# programm name (for runtime files)" << endl;
416 else
417 *file << "mainname\tpcp\t# programm name (for runtime files)" << endl;
418 if (Paths.defaultpath != NULL)
419 *file << "defaultpath\t" << Paths.defaultpath << "\t# where to put files during runtime" << endl;
420 else
421 *file << "defaultpath\tnot specified\t# where to put files during runtime" << endl;
422 if (Paths.pseudopotpath != NULL)
423 *file << "pseudopotpath\t" << Paths.pseudopotpath << "\t# where to find pseudopotentials" << endl;
424 else
425 *file << "pseudopotpath\tnot specified\t# where to find pseudopotentials" << endl;
[43dad6]426 *file << endl;
427 *file << "ProcPEGamma\t" << Parallelization.ProcPEGamma << "\t# for parallel computing: share constants" << endl;
428 *file << "ProcPEPsi\t" << Parallelization.ProcPEPsi << "\t# for parallel computing: share wave functions" << endl;
429 *file << "DoOutVis\t" << Switches.DoOutVis << "\t# Output data for OpenDX" << endl;
430 *file << "DoOutMes\t" << Switches.DoOutMes << "\t# Output data for measurements" << endl;
431 *file << "DoOutOrbitals\t" << Switches.DoOutOrbitals << "\t# Output all Orbitals" << endl;
432 *file << "DoOutCurr\t" << Switches.DoOutCurrent << "\t# Ouput current density for OpenDx" << endl;
433 *file << "DoOutNICS\t" << Switches.DoOutNICS << "\t# Output Nucleus independent current shieldings" << endl;
434 *file << "DoPerturbation\t" << Switches.DoPerturbation << "\t# Do perturbation calculate and determine susceptibility and shielding" << endl;
435 *file << "DoFullCurrent\t" << Switches.DoFullCurrent << "\t# Do full perturbation" << endl;
436 *file << "DoConstrainedMD\t" << Switches.DoConstrainedMD << "\t# Do perform a constrained (>0, relating to current MD step) instead of unconstrained (0) MD" << endl;
[765f16]437 ASSERT(Thermostats != NULL, "FormatParser< pcp >::save() - Thermostats not initialized!");
[14c57a]438 *file << "Thermostat\t" << Thermostats->activeThermostat->name() << "\t";
439 *file << Thermostats->activeThermostat->writeParams();
[43dad6]440 *file << "\t# Which Thermostat and its parameters to use in MD case." << endl;
441 *file << "CommonWannier\t" << LocalizedOrbitals.CommonWannier << "\t# Put virtual centers at indivual orbits, all common, merged by variance, to grid point, to cell center" << endl;
442 *file << "SawtoothStart\t" << LocalizedOrbitals.SawtoothStart << "\t# Absolute value for smooth transition at cell border " << endl;
443 *file << "VectorPlane\t" << LocalizedOrbitals.VectorPlane << "\t# Cut plane axis (x, y or z: 0,1,2) for two-dim current vector plot" << endl;
444 *file << "VectorCut\t" << LocalizedOrbitals.VectorCut << "\t# Cut plane axis value" << endl;
445 *file << "AddGramSch\t" << LocalizedOrbitals.UseAddGramSch << "\t# Additional GramSchmidtOrtogonalization to be safe" << endl;
446 *file << "Seed\t\t" << LocalizedOrbitals.Seed << "\t# initial value for random seed for Psi coefficients" << endl;
447 *file << endl;
448 *file << "MaxOuterStep\t" << StepCounts.MaxOuterStep << "\t# number of MolecularDynamics/Structure optimization steps" << endl;
449 *file << "Deltat\t" << Deltat << "\t# time per MD step" << endl;
450 *file << "OutVisStep\t" << StepCounts.OutVisStep << "\t# Output visual data every ...th step" << endl;
451 *file << "OutSrcStep\t" << StepCounts.OutSrcStep << "\t# Output \"restart\" data every ..th step" << endl;
452 *file << "TargetTemp\t" << Thermostats->TargetTemp << "\t# Target temperature" << endl;
453 *file << "MaxPsiStep\t" << StepCounts.MaxPsiStep << "\t# number of Minimisation steps per state (0 - default)" << endl;
454 *file << "EpsWannier\t" << LocalizedOrbitals.EpsWannier << "\t# tolerance value for spread minimisation of orbitals" << endl;
455 *file << endl;
456 *file << "# Values specifying when to stop" << endl;
457 *file << "MaxMinStep\t" << StepCounts.MaxMinStep << "\t# Maximum number of steps" << endl;
458 *file << "RelEpsTotalE\t" << StepCounts.RelEpsTotalEnergy << "\t# relative change in total energy" << endl;
459 *file << "RelEpsKineticE\t" << StepCounts.RelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
460 *file << "MaxMinStopStep\t" << StepCounts.MaxMinStopStep << "\t# check every ..th steps" << endl;
461 *file << "MaxMinGapStopStep\t" << StepCounts.MaxMinGapStopStep << "\t# check every ..th steps" << endl;
462 *file << endl;
463 *file << "# Values specifying when to stop for INIT, otherwise same as above" << endl;
464 *file << "MaxInitMinStep\t" << StepCounts.MaxInitMinStep << "\t# Maximum number of steps" << endl;
465 *file << "InitRelEpsTotalE\t" << StepCounts.InitRelEpsTotalEnergy << "\t# relative change in total energy" << endl;
466 *file << "InitRelEpsKineticE\t" << StepCounts.InitRelEpsKineticEnergy << "\t# relative change in kinetic energy" << endl;
467 *file << "InitMaxMinStopStep\t" << StepCounts.InitMaxMinStopStep << "\t# check every ..th steps" << endl;
468 *file << "InitMaxMinGapStopStep\t" << StepCounts.InitMaxMinGapStopStep << "\t# check every ..th steps" << endl;
469 *file << endl;
470 *file << "BoxLength\t\t\t# (Length of a unit cell)" << endl;
[84c494]471 *file << domain.at(0,0) << "\t" << endl;
472 *file << domain.at(1,0) << "\t" << domain.at(1,1) << "\t" << endl;
473 *file << domain.at(2,0) << "\t" << domain.at(2,1) << "\t" << domain.at(2,2) << "\t" << endl;
[43dad6]474 // FIXME
475 *file << endl;
476 *file << "ECut\t\t" << PlaneWaveSpecifics.ECut << "\t# energy cutoff for discretization in Hartrees" << endl;
477 *file << "MaxLevel\t" << PlaneWaveSpecifics.MaxLevel << "\t# number of different levels in the code, >=2" << endl;
478 *file << "Level0Factor\t" << PlaneWaveSpecifics.Lev0Factor << "\t# factor by which node number increases from S to 0 level" << endl;
479 *file << "RiemannTensor\t" << PlaneWaveSpecifics.RiemannTensor << "\t# (Use metric)" << endl;
480 switch (PlaneWaveSpecifics.RiemannTensor) {
481 case 0: //UseNoRT
482 break;
483 case 1: // UseRT
484 *file << "RiemannLevel\t" << PlaneWaveSpecifics.RiemannLevel << "\t# Number of Riemann Levels" << endl;
485 *file << "LevRFactor\t" << PlaneWaveSpecifics.LevRFactor << "\t# factor by which node number increases from 0 to R level from" << endl;
486 break;
487 }
488 *file << "PsiType\t\t" << PlaneWaveSpecifics.PsiType << "\t# 0 - doubly occupied, 1 - SpinUp,SpinDown" << endl;
[650ca8c]489 *file << "MaxPsiDouble\t" << PlaneWaveSpecifics.MaxPsiDouble << "\t# here: specifying both maximum number of SpinUp- and -Down-states" << endl;
490 *file << "PsiMaxNoUp\t" << PlaneWaveSpecifics.PsiMaxNoUp << "\t# here: specifying maximum number of SpinUp-states" << endl;
491 *file << "PsiMaxNoDown\t" << PlaneWaveSpecifics.PsiMaxNoDown << "\t# here: specifying maximum number of SpinDown-states" << endl;
[43dad6]492 *file << "AddPsis\t\t" << PlaneWaveSpecifics.AddPsis << "\t# Additional unoccupied Psis for bandgap determination" << endl;
493 *file << endl;
494 *file << "RCut\t\t" << PlaneWaveSpecifics.RCut << "\t# R-cut for the ewald summation" << endl;
495 *file << "StructOpt\t" << StructOpt << "\t# Do structure optimization beforehand" << endl;
496 *file << "IsAngstroem\t" << IsAngstroem << "\t# 0 - Bohr, 1 - Angstroem" << endl;
497 *file << "RelativeCoord\t" << RelativeCoord << "\t# whether ion coordinates are relative (1) or absolute (0)" << endl;
498 map<int, int> ZtoIndexMap;
[73916f]499 OutputElements(file, atoms, ZtoIndexMap);
500 OutputAtoms(file, atoms, ZtoIndexMap);
[43dad6]501 } else {
[47d041]502 ELOG(1, "Cannot open output file.");
[43dad6]503 }
504}
505
[650ca8c]506
507/** Counts necessary number of valence electrons and returns number and SpinType.
508 * \param &allatoms all atoms to store away
509 */
[765f16]510void FormatParser< pcp >::CalculateOrbitals(const std::vector<atom *> &allatoms)
[650ca8c]511{
512 PlaneWaveSpecifics.MaxPsiDouble = PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.PsiType = 0;
[73916f]513 for (vector<atom *>::const_iterator runner = allatoms.begin(); runner != allatoms.end(); ++runner) {
[83f176]514 PlaneWaveSpecifics.MaxPsiDouble += (*runner)->getType()->getNoValenceOrbitals();
[650ca8c]515 }
516 cout << PlaneWaveSpecifics.MaxPsiDouble << endl;
517 PlaneWaveSpecifics.PsiMaxNoDown = PlaneWaveSpecifics.MaxPsiDouble/2 + (PlaneWaveSpecifics.MaxPsiDouble % 2);
518 PlaneWaveSpecifics.PsiMaxNoUp = PlaneWaveSpecifics.MaxPsiDouble/2;
519 PlaneWaveSpecifics.MaxPsiDouble /= 2;
520 PlaneWaveSpecifics.PsiType = (PlaneWaveSpecifics.PsiMaxNoDown == PlaneWaveSpecifics.PsiMaxNoUp) ? 0 : 1;
521 if ((PlaneWaveSpecifics.PsiType == 1) && (Parallelization.ProcPEPsi < 2) && ((PlaneWaveSpecifics.PsiMaxNoDown != 1) || (PlaneWaveSpecifics.PsiMaxNoUp != 0))) {
522 Parallelization.ProcPEGamma /= 2;
523 Parallelization.ProcPEPsi *= 2;
524 } else {
525 Parallelization.ProcPEGamma *= Parallelization.ProcPEPsi;
526 Parallelization.ProcPEPsi = 1;
527 }
528 cout << PlaneWaveSpecifics.PsiMaxNoDown << ">" << PlaneWaveSpecifics.PsiMaxNoUp << endl;
529 if (PlaneWaveSpecifics.PsiMaxNoDown > PlaneWaveSpecifics.PsiMaxNoUp) {
530 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoDown;
531 cout << PlaneWaveSpecifics.PsiMaxNoDown << " " << StepCounts.InitMaxMinStopStep << endl;
532 } else {
533 StepCounts.InitMaxMinStopStep = StepCounts.MaxMinStopStep = PlaneWaveSpecifics.PsiMaxNoUp;
534 cout << PlaneWaveSpecifics.PsiMaxNoUp << " " << StepCounts.InitMaxMinStopStep << endl;
535 }
536};
537
[43dad6]538/** Prints MaxTypes and list of elements to strea,
539 * \param *file output stream
540 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
541 * \param &ZtoIndexMap map of which atoms belong to which ion number
542 */
[765f16]543void FormatParser< pcp >::OutputElements(ostream *file, const std::vector<atom *> &allatoms, map<int, int> &ZtoIndexMap)
[43dad6]544{
545 map<int, int> PresentElements;
546 pair < map<int, int>::iterator, bool > Inserter;
547 // insert all found elements into the map
[73916f]548 for (vector<atom *>::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
[83f176]549 Inserter = PresentElements.insert(pair<int, int>((*AtomRunner)->getType()->getAtomicNumber(), 1));
[43dad6]550 if (!Inserter.second) // increase if present
551 Inserter.first->second += 1;
552 }
553 // print total element count
554 *file << "MaxTypes\t" << PresentElements.size() << "\t# maximum number of different ion types" << endl;
[650ca8c]555 *file << endl;
[43dad6]556 // print element list
557 *file << "# Ion type data (PP = PseudoPotential, Z = atomic number)" << endl;
558 *file << "#Ion_TypeNr.\tAmount\tZ\tRGauss\tL_Max(PP)L_Loc(PP)IonMass\t# chemical name, symbol" << endl;
559 // elements are due to map sorted by Z value automatically, hence just count through them
560 int counter = 1;
561 for(map<int, int>::const_iterator iter=PresentElements.begin(); iter!=PresentElements.end();++iter) {
562 const element * const elemental = World::getInstance().getPeriode()->FindElement(iter->first);
563 ZtoIndexMap.insert( pair<int,int> (iter->first, counter) );
[83f176]564 *file << "Ion_Type" << counter++ << "\t" << iter->second << "\t" << elemental->getAtomicNumber() << "\t1.0\t3\t3\t" << fixed << setprecision(11) << showpoint << elemental->getMass() << "\t" << elemental->getName() << "\t" << elemental->getSymbol() <<endl;
[43dad6]565 }
566}
567
568/** Output all atoms one per line.
569 * \param *file output stream
570 * \param &allatoms vector of all atoms in the system, such as by World::getAllAtoms()
571 * \param &ZtoIndexMap map of which atoms belong to which ion number
572 */
[765f16]573void FormatParser< pcp >::OutputAtoms(ostream *file, const std::vector<atom *> &allatoms, map<int, int> &ZtoIndexMap)
[43dad6]574{
575 *file << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
576 map<int, int> ZtoCountMap;
[fcac72]577 map<atom *, int> AtomtoCountMap;
[43dad6]578 pair < map<int, int>::iterator, bool > Inserter;
[fcac72]579 bool ContinueStatus = true;
580 bool AddNewLine = false;
581 size_t step = 0;
582 do {
583 int nr = 0;
584 ContinueStatus = false;
585 for (vector<atom *>::const_iterator AtomRunner = allatoms.begin();AtomRunner != allatoms.end();++AtomRunner) {
586 if ((*AtomRunner)->getTrajectorySize() > step) {
587 if (step == 0) { // fill list only on first step
588 Inserter = ZtoCountMap.insert( pair<int, int>((*AtomRunner)->getType()->getAtomicNumber(), 1) );
589 if (!Inserter.second)
590 Inserter.first->second += 1;
591 AtomtoCountMap.insert( make_pair((*AtomRunner), Inserter.first->second) );
592 }
593 if (AddNewLine) {
594 AddNewLine = false;
595 *file << endl;
596 }
597 const int Z = (*AtomRunner)->getType()->getAtomicNumber();
598 *file << "Ion_Type" << ZtoIndexMap[Z] << "_" << AtomtoCountMap[(*AtomRunner)] << "\t" << fixed << setprecision(9) << showpoint;
599 *file << (*AtomRunner)->atStep(0, step)
600 << "\t" << (*AtomRunner)->atStep(1,step)
601 << "\t" << (*AtomRunner)->atStep(2,step);
602 *file << "\t" << (int)((*AtomRunner)->getFixedIon());
603 if ((*AtomRunner)->getAtomicVelocityAtStep(step).Norm() > MYEPSILON)
604 *file << "\t" << scientific << setprecision(6)
605 << (*AtomRunner)->getAtomicVelocityAtStep(step)[0] << "\t"
606 << (*AtomRunner)->getAtomicVelocityAtStep(step)[1] << "\t"
607 << (*AtomRunner)->getAtomicVelocityAtStep(step)[2] << "\t";
608 *file << " # molecule nr " << nr++ << endl;
609 ContinueStatus = true; // as long as a single atom still has trajectory points, continue
610 }
611 }
612 ++step;
613 if (ContinueStatus)
614 AddNewLine = true;
615 } while (ContinueStatus);
[43dad6]616}
617
618/** Reading of Thermostat related values from parameter file.
619 * \param *fb file buffer containing the config file
620 */
[765f16]621void FormatParser< pcp >::ParseThermostats(class ConfigFileBuffer * const fb)
[43dad6]622{
623 char * const thermo = new char[12];
624 const int verbose = 0;
625 class ThermoStatContainer *Thermostats = World::getInstance().getThermostats();
626
627 // read desired Thermostat from file along with needed additional parameters
628 if (ParseForParameter(verbose,fb,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) {
[14c57a]629 Thermostats->makeActive(thermo,fb);
[43dad6]630 } else {
631 if ((Thermostats->TargetTemp != 0))
[47d041]632 LOG(2, "No thermostat chosen despite finite temperature MD, falling back to None.");
[14c57a]633 Thermostats->chooseNone();
[43dad6]634 }
635 delete[](thermo);
636};
637
[765f16]638bool FormatParser< pcp >::operator==(const FormatParser< pcp >& b) const
[1b2d30]639{
640 ASSERT(Parallelization.ProcPEGamma == b.Parallelization.ProcPEGamma, "PcpParser ==: ProcPEGamma not");
641 ASSERT(Parallelization.ProcPEPsi == b.Parallelization.ProcPEPsi, "PcpParser ==: ProcPEPsi not");
642
643 if ((Paths.databasepath != NULL) && (b.Paths.databasepath != NULL))
644 ASSERT(strcmp(Paths.databasepath, b.Paths.databasepath), "PcpParser ==: databasepath not");
645 if ((Paths.configname != NULL) && (b.Paths.configname != NULL))
646 ASSERT(strcmp(Paths.configname, b.Paths.configname), "PcpParser ==: configname not");
647 if ((Paths.mainname != NULL) && (b.Paths.mainname != NULL))
648 ASSERT(strcmp(Paths.mainname, b.Paths.mainname), "PcpParser ==: mainname not");
649 if ((Paths.defaultpath != NULL) && (b.Paths.defaultpath != NULL))
650 ASSERT(strcmp(Paths.defaultpath, b.Paths.defaultpath), "PcpParser ==: defaultpath not");
651 if ((Paths.pseudopotpath != NULL) && (b.Paths.pseudopotpath != NULL))
652 ASSERT(strcmp(Paths.pseudopotpath, b.Paths.pseudopotpath), "PcpParser ==: pseudopotpath not");
653
654 ASSERT(Switches.DoConstrainedMD == b.Switches.DoConstrainedMD, "PcpParser ==: DoConstrainedMD not");
655 ASSERT(Switches.DoOutVis == b.Switches.DoOutVis, "PcpParser ==: DoOutVis not");
656 ASSERT(Switches.DoOutMes == b.Switches.DoOutMes, "PcpParser ==: DoOutMes not");
657 ASSERT(Switches.DoOutNICS == b.Switches.DoOutNICS, "PcpParser ==: DoOutNICS not");
658 ASSERT(Switches.DoOutOrbitals == b.Switches.DoOutOrbitals, "PcpParser ==: DoOutOrbitals not");
659 ASSERT(Switches.DoOutCurrent == b.Switches.DoOutCurrent, "PcpParser ==: DoOutCurrent not");
660 ASSERT(Switches.DoFullCurrent == b.Switches.DoFullCurrent, "PcpParser ==: DoFullCurrent not");
661 ASSERT(Switches.DoPerturbation == b.Switches.DoPerturbation, "PcpParser ==: DoPerturbation not");
662 ASSERT(Switches.DoWannier == b.Switches.DoWannier, "PcpParser ==: DoWannier not");
663
664 ASSERT(LocalizedOrbitals.CommonWannier == b.LocalizedOrbitals.CommonWannier, "PcpParser ==: CommonWannier not");
665 ASSERT(LocalizedOrbitals.SawtoothStart == b.LocalizedOrbitals.SawtoothStart, "PcpParser ==: SawtoothStart not");
666 ASSERT(LocalizedOrbitals.VectorPlane == b.LocalizedOrbitals.VectorPlane, "PcpParser ==: VectorPlane not");
667 ASSERT(LocalizedOrbitals.VectorCut == b.LocalizedOrbitals.VectorCut, "PcpParser ==: VectorCut not");
668 ASSERT(LocalizedOrbitals.UseAddGramSch == b.LocalizedOrbitals.UseAddGramSch, "PcpParser ==: UseAddGramSch not");
669 ASSERT(LocalizedOrbitals.Seed == b.LocalizedOrbitals.Seed, "PcpParser ==: Seed not");
670 ASSERT(LocalizedOrbitals.EpsWannier == b.LocalizedOrbitals.EpsWannier, "PcpParser ==: EpsWannier not");
671
672 ASSERT(StepCounts.MaxMinStopStep == b.StepCounts.MaxMinStopStep, "PcpParser ==: MaxMinStopStep not");
673 ASSERT(StepCounts.InitMaxMinStopStep == b.StepCounts.InitMaxMinStopStep, "PcpParser ==: InitMaxMinStopStep not");
674 ASSERT(StepCounts.OutVisStep == b.StepCounts.OutVisStep, "PcpParser ==: OutVisStep not");
675 ASSERT(StepCounts.OutSrcStep == b.StepCounts.OutSrcStep, "PcpParser ==: OutSrcStep not");
676 ASSERT(StepCounts.MaxPsiStep == b.StepCounts.MaxPsiStep, "PcpParser ==: MaxPsiStep not");
677 ASSERT(StepCounts.MaxOuterStep == b.StepCounts.MaxOuterStep, "PcpParser ==: MaxOuterStep not");
678 ASSERT(StepCounts.MaxMinStep == b.StepCounts.MaxMinStep, "PcpParser ==: MaxMinStep not");
679 ASSERT(StepCounts.RelEpsTotalEnergy == b.StepCounts.RelEpsTotalEnergy, "PcpParser ==: RelEpsTotalEnergy not");
680 ASSERT(StepCounts.MaxMinGapStopStep == b.StepCounts.MaxMinGapStopStep, "PcpParser ==: MaxMinGapStopStep not");
681 ASSERT(StepCounts.MaxInitMinStep == b.StepCounts.MaxInitMinStep, "PcpParser ==: MaxInitMinStep not");
682 ASSERT(StepCounts.InitRelEpsTotalEnergy == b.StepCounts.InitRelEpsTotalEnergy, "PcpParser ==: InitRelEpsTotalEnergy not");
683 ASSERT(StepCounts.InitRelEpsKineticEnergy == b.StepCounts.InitRelEpsKineticEnergy, "PcpParser ==: InitRelEpsKineticEnergy not");
684 ASSERT(StepCounts.InitMaxMinGapStopStep == b.StepCounts.InitMaxMinGapStopStep, "PcpParser ==: InitMaxMinGapStopStep not");
685
686 ASSERT(PlaneWaveSpecifics.PsiType == b.PlaneWaveSpecifics.PsiType, "PcpParser ==: PsiType not");
687 ASSERT(PlaneWaveSpecifics.MaxPsiDouble == b.PlaneWaveSpecifics.MaxPsiDouble, "PcpParser ==: MaxPsiDouble not");
688 ASSERT(PlaneWaveSpecifics.PsiMaxNoUp == b.PlaneWaveSpecifics.PsiMaxNoUp, "PcpParser ==: PsiMaxNoUp not");
689 ASSERT(PlaneWaveSpecifics.PsiMaxNoDown == b.PlaneWaveSpecifics.PsiMaxNoDown, "PcpParser ==: PsiMaxNoDown not");
690 ASSERT(PlaneWaveSpecifics.ECut == b.PlaneWaveSpecifics.ECut, "PcpParser ==: ECut not");
691 ASSERT(PlaneWaveSpecifics.MaxLevel == b.PlaneWaveSpecifics.MaxLevel, "PcpParser ==: MaxLevel not");
692 ASSERT(PlaneWaveSpecifics.RiemannTensor == b.PlaneWaveSpecifics.RiemannTensor, "PcpParser ==: RiemannTensor not");
693 ASSERT(PlaneWaveSpecifics.LevRFactor == b.PlaneWaveSpecifics.LevRFactor, "PcpParser ==: LevRFactor not");
694 ASSERT(PlaneWaveSpecifics.RiemannLevel == b.PlaneWaveSpecifics.RiemannLevel, "PcpParser ==: RiemannLevel not");
695 ASSERT(PlaneWaveSpecifics.Lev0Factor == b.PlaneWaveSpecifics.Lev0Factor, "PcpParser ==: Lev0Factor not");
696 ASSERT(PlaneWaveSpecifics.RTActualUse == b.PlaneWaveSpecifics.RTActualUse, "PcpParser ==: RTActualUse not");
697 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
698 ASSERT(PlaneWaveSpecifics.AddPsis == b.PlaneWaveSpecifics.AddPsis, "PcpParser ==: AddPsis not");
699 ASSERT(PlaneWaveSpecifics.RCut == b.PlaneWaveSpecifics.RCut, "PcpParser ==: RCut not");
700
701 ASSERT(FastParsing == b.FastParsing, "PcpParser ==: FastParsing not");
702
703 ASSERT(Deltat == b.Deltat, "PcpParser ==: Deltat not");
704 ASSERT(IsAngstroem == b.IsAngstroem, "PcpParser ==: IsAngstroem not");
705 ASSERT(RelativeCoord == b.RelativeCoord, "PcpParser ==: RelativeCoord not");
706 ASSERT(StructOpt == b.StructOpt, "PcpParser ==: StructOpt not");
707 ASSERT(MaxTypes == b.MaxTypes, "PcpParser ==: MaxTypes not");
708 ASSERT(basis == b.basis, "PcpParser ==: basis not");
709
710 return true;
711}
Note: See TracBrowser for help on using the repository browser.