/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* MoleculeLeafClass.cpp
*
* Created on: Oct 20, 2011
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "MoleculeLeafClass.hpp"
#include "CodePatterns/Log.hpp"
#include "Atom/atom.hpp"
#include "Element/element.hpp"
#include "Fragmentation/Graph.hpp"
#include "Fragmentation/KeySet.hpp"
#include "molecule.hpp"
/** Constructor for MoleculeLeafClass root leaf.
* \param *Up Leaf on upper level
* \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
*/
//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL) :
Leaf(NULL),
previous(PreviousLeaf)
{
// if (Up != NULL)
// if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
// Up->DownLeaf = this;
// UpLeaf = Up;
// DownLeaf = NULL;
if (previous != NULL) {
MoleculeLeafClass *Walker = previous->next;
previous->next = this;
next = Walker;
} else {
next = NULL;
}
};
/** Destructor for MoleculeLeafClass.
*/
MoleculeLeafClass::~MoleculeLeafClass()
{
// if (DownLeaf != NULL) {// drop leaves further down
// MoleculeLeafClass *Walker = DownLeaf;
// MoleculeLeafClass *Next;
// do {
// Next = Walker->NextLeaf;
// delete(Walker);
// Walker = Next;
// } while (Walker != NULL);
// // Last Walker sets DownLeaf automatically to NULL
// }
// remove the leaf itself
if (Leaf != NULL) {
Leaf->removeAtomsinMolecule();
World::getInstance().destroyMolecule(Leaf);
Leaf = NULL;
}
// remove this Leaf from level list
if (previous != NULL)
previous->next = next;
// } else { // we are first in list (connects to UpLeaf->DownLeaf)
// if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
// NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
// if (UpLeaf != NULL)
// UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
// }
// UpLeaf = NULL;
if (next != NULL) // are we last in list
next->previous = previous;
next = NULL;
previous = NULL;
};
/** Adds \a molecule leaf to the tree.
* \param *ptr ptr to molecule to be added
* \param *Previous previous MoleculeLeafClass referencing level and which on the level
* \return true - success, false - something went wrong
*/
bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
{
return false;
};
/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
* Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
* \param *out output stream for debugging
* \param *&RootStack stack to be filled
* \param *AtomMask defines true/false per global Atom::Nr to mask in/out each nuclear site
* \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
* \param saturation whether to treat hydrogen special or not
* \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
*/
bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter, const enum HydrogenSaturation saturation)
{
if (RootStack != NULL) {
// find first root candidates
if (&(RootStack[FragmentCounter]) != NULL) {
RootStack[FragmentCounter].clear();
for(molecule::const_iterator iter = Leaf->begin(); iter != Leaf->end(); ++iter) {
const atom * const Father = (*iter)->GetTrueFather();
if (AtomMask[Father->getNr()]) // apply mask
if ((saturation == DontSaturate) || ((*iter)->getType()->getAtomicNumber() != 1)) // skip hydrogen
RootStack[FragmentCounter].push_front((*iter)->getNr());
}
if (next != NULL)
next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter, saturation);
} else {
LOG(1, "Rootstack[" << FragmentCounter << "] is NULL.");
return false;
}
FragmentCounter--;
return true;
} else {
LOG(1, "Rootstack is NULL.");
return false;
}
};
/** The indices per keyset are compared to the respective father's Atom::Nr in each subgraph and thus put into \a **&FragmentList.
* \param *out output stream fro debugging
* \param *reference reference molecule with the bond structure to be copied
* \param *KeySetList list with all keysets
* \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
* \param **&FragmentList list to be allocated and returned
* \param &FragmentCounter counts the fragments as we move along the list
* \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
* \retuen true - success, false - failure
*/
bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList)
{
bool status = true;
int KeySetCounter = 0;
LOG(1, "Begin of AssignKeySetsToFragment.");
// fill ListOfLocalAtoms if NULL was given
if (!Leaf->FillListOfLocalAtoms(ListOfLocalAtoms[FragmentCounter], reference->getAtomCount())) {
LOG(1, "Filling of ListOfLocalAtoms failed.");
return false;
}
// allocate fragment list
if (FragmentList == NULL) {
KeySetCounter = Count();
FragmentList = new Graph*[KeySetCounter];
for (int i=0;isize() != 0)) { // if there are some scanned keysets at all
// assign scanned keysets
if (FragmentList[FragmentCounter] == NULL)
FragmentList[FragmentCounter] = new Graph;
KeySet *TempSet = new KeySet;
for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->getNr()] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
// translate keyset to local numbers
for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->getNr()]->getNr());
// insert into FragmentList
FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair (KeySetCounter++, (*runner).second.second)));
}
TempSet->clear();
}
delete (TempSet);
if (KeySetCounter == 0) {// if there are no keysets, delete the list
LOG(1, "KeySetCounter is zero, deleting FragmentList.");
delete (FragmentList[FragmentCounter]);
} else
LOG(1, KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << ".");
FragmentCounter++;
if (next != NULL)
next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
FragmentCounter--;
} else
LOG(1, "KeySetList is NULL or empty.");
if ((FreeList) && (ListOfLocalAtoms != NULL)) {
// free the index lookup list
delete[](ListOfLocalAtoms[FragmentCounter]);
}
LOG(1, "End of AssignKeySetsToFragment.");
return status;
};
/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
* \param *out output stream for debugging
* \param **FragmentList Graph with local numbers per fragment
* \param &FragmentCounter counts the fragments as we move along the list
* \param &TotalNumberOfKeySets global key set counter
* \param &TotalGraph Graph to be filled with global numbers
*/
void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph)
{
LOG(1, "Begin of TranslateIndicesToGlobalIDs.");
KeySet *TempSet = new KeySet;
if (FragmentList[FragmentCounter] != NULL) {
for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->getNr());
TotalGraph.insert(GraphPair(*TempSet, pair (TotalNumberOfKeySets++, (*runner).second.second)));
TempSet->clear();
}
delete (TempSet);
} else {
LOG(1, "FragmentList is NULL.");
}
if (next != NULL)
next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
FragmentCounter--;
LOG(1, "End of TranslateIndicesToGlobalIDs.");
};
/** Simply counts the number of items in the list, from given MoleculeLeafClass.
* \return number of items
*/
int MoleculeLeafClass::Count() const
{
if (next != NULL)
return next->Count() + 1;
else
return 1;
};