source: src/LinearAlgebra/Vector.cpp@ 3e4162

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 3e4162 was bf3817, checked in by Frederik Heber <heber@…>, 15 years ago

Added ifdef HAVE_CONFIG and config.h include to each and every cpp file.

  • is now topmost in front of MemDebug.hpp (and any other).
  • Property mode set to 100644
File size: 13.2 KB
RevLine 
[6ac7ee]1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
[bf3817]7// include config.h
8#ifdef HAVE_CONFIG_H
9#include <config.h>
10#endif
11
[112b09]12#include "Helpers/MemDebug.hpp"
[edb93c]13
[57f243]14#include "LinearAlgebra/Vector.hpp"
[ce3d2b]15#include "VectorContent.hpp"
[952f38]16#include "Helpers/Verbose.hpp"
[b34306]17#include "World.hpp"
[0a4f7f]18#include "Helpers/Assert.hpp"
[753f02]19#include "Helpers/fast_functions.hpp"
[325390]20#include "Exceptions/MathException.hpp"
[6ac7ee]21
[1bd79e]22#include <iostream>
[923b6c]23#include <gsl/gsl_blas.h>
[a439e5]24#include <gsl/gsl_vector.h>
[923b6c]25
[1bd79e]26
27using namespace std;
[6ac7ee]28
[97498a]29
[6ac7ee]30/************************************ Functions for class vector ************************************/
31
32/** Constructor of class vector.
33 */
[753f02]34Vector::Vector()
35{
[ce3d2b]36 content = new VectorContent();
[753f02]37};
[6ac7ee]38
[753f02]39/**
40 * Copy constructor
[821907]41 */
[1bd79e]42
[753f02]43Vector::Vector(const Vector& src)
[821907]44{
[ce3d2b]45 content = new VectorContent();
46 gsl_vector_memcpy(content->content, src.content->content);
[1bd79e]47}
[821907]48
49/** Constructor of class vector.
50 */
[753f02]51Vector::Vector(const double x1, const double x2, const double x3)
[821907]52{
[ce3d2b]53 content = new VectorContent();
54 gsl_vector_set(content->content,0,x1);
55 gsl_vector_set(content->content,1,x2);
56 gsl_vector_set(content->content,2,x3);
[821907]57};
58
[d74077]59/** Constructor of class vector.
60 */
61Vector::Vector(const double x[3])
62{
63 content = new VectorContent();
64 gsl_vector_set(content->content,0,x[0]);
65 gsl_vector_set(content->content,1,x[1]);
66 gsl_vector_set(content->content,2,x[2]);
67};
68
[ce3d2b]69Vector::Vector(VectorContent *_content) :
[325390]70 content(_content)
71{}
72
[0a4f7f]73/**
74 * Assignment operator
[6ac7ee]75 */
[0a4f7f]76Vector& Vector::operator=(const Vector& src){
77 // check for self assignment
78 if(&src!=this){
[ce3d2b]79 gsl_vector_memcpy(content->content, src.content->content);
[0a4f7f]80 }
81 return *this;
82}
[6ac7ee]83
84/** Desctructor of class vector.
85 */
[d466f0]86Vector::~Vector() {
[ce3d2b]87 delete content;
[d466f0]88};
[6ac7ee]89
90/** Calculates square of distance between this and another vector.
91 * \param *y array to second vector
92 * \return \f$| x - y |^2\f$
93 */
[273382]94double Vector::DistanceSquared(const Vector &y) const
[6ac7ee]95{
[042f82]96 double res = 0.;
97 for (int i=NDIM;i--;)
[d466f0]98 res += (at(i)-y[i])*(at(i)-y[i]);
[042f82]99 return (res);
[6ac7ee]100};
101
102/** Calculates distance between this and another vector.
103 * \param *y array to second vector
104 * \return \f$| x - y |\f$
105 */
[1513a74]106double Vector::distance(const Vector &y) const
[6ac7ee]107{
[273382]108 return (sqrt(DistanceSquared(y)));
[6ac7ee]109};
110
[a439e5]111size_t Vector::GreatestComponent() const
112{
113 int greatest = 0;
114 for (int i=1;i<NDIM;i++) {
115 if (at(i) > at(greatest))
116 greatest = i;
117 }
118 return greatest;
119}
120
121size_t Vector::SmallestComponent() const
122{
123 int smallest = 0;
124 for (int i=1;i<NDIM;i++) {
125 if (at(i) < at(smallest))
126 smallest = i;
127 }
128 return smallest;
129}
130
131
[1513a74]132Vector Vector::getClosestPoint(const Vector &point) const{
133 // the closest point to a single point space is always the single point itself
134 return *this;
135}
136
[6ac7ee]137/** Calculates scalar product between this and another vector.
138 * \param *y array to second vector
139 * \return \f$\langle x, y \rangle\f$
140 */
[273382]141double Vector::ScalarProduct(const Vector &y) const
[6ac7ee]142{
[042f82]143 double res = 0.;
[ce3d2b]144 gsl_blas_ddot(content->content, y.content->content, &res);
[042f82]145 return (res);
[6ac7ee]146};
147
148
149/** Calculates VectorProduct between this and another vector.
[042f82]150 * -# returns the Product in place of vector from which it was initiated
151 * -# ATTENTION: Only three dim.
152 * \param *y array to vector with which to calculate crossproduct
153 * \return \f$ x \times y \f&
[6ac7ee]154 */
[273382]155void Vector::VectorProduct(const Vector &y)
[6ac7ee]156{
[042f82]157 Vector tmp;
[d466f0]158 for(int i=NDIM;i--;)
159 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
[753f02]160 (*this) = tmp;
[6ac7ee]161};
162
163
164/** projects this vector onto plane defined by \a *y.
165 * \param *y normal vector of plane
166 * \return \f$\langle x, y \rangle\f$
167 */
[273382]168void Vector::ProjectOntoPlane(const Vector &y)
[6ac7ee]169{
[042f82]170 Vector tmp;
[753f02]171 tmp = y;
[042f82]172 tmp.Normalize();
[753f02]173 tmp.Scale(ScalarProduct(tmp));
174 *this -= tmp;
[2319ed]175};
176
[821907]177/** Calculates the minimum distance of this vector to the plane.
178 * \sa Vector::GetDistanceVectorToPlane()
179 * \param *out output stream for debugging
180 * \param *PlaneNormal normal of plane
181 * \param *PlaneOffset offset of plane
182 * \return distance to plane
183 */
[d4c9ae]184double Vector::DistanceToSpace(const Space &space) const
[821907]185{
[d4c9ae]186 return space.distance(*this);
[c4d4df]187};
188
[6ac7ee]189/** Calculates the projection of a vector onto another \a *y.
190 * \param *y array to second vector
191 */
[273382]192void Vector::ProjectIt(const Vector &y)
[6ac7ee]193{
[753f02]194 (*this) += (-ScalarProduct(y))*y;
[ef9df36]195};
196
197/** Calculates the projection of a vector onto another \a *y.
198 * \param *y array to second vector
199 * \return Vector
200 */
[273382]201Vector Vector::Projection(const Vector &y) const
[ef9df36]202{
[753f02]203 Vector helper = y;
204 helper.Scale((ScalarProduct(y)/y.NormSquared()));
[ef9df36]205
206 return helper;
[6ac7ee]207};
208
209/** Calculates norm of this vector.
210 * \return \f$|x|\f$
211 */
212double Vector::Norm() const
213{
[273382]214 return (sqrt(NormSquared()));
[6ac7ee]215};
216
[d4d0dd]217/** Calculates squared norm of this vector.
218 * \return \f$|x|^2\f$
219 */
220double Vector::NormSquared() const
221{
[273382]222 return (ScalarProduct(*this));
[d4d0dd]223};
224
[6ac7ee]225/** Normalizes this vector.
226 */
227void Vector::Normalize()
228{
[1bd79e]229 double factor = Norm();
230 (*this) *= 1/factor;
[6ac7ee]231};
232
233/** Zeros all components of this vector.
234 */
235void Vector::Zero()
236{
[753f02]237 at(0)=at(1)=at(2)=0;
[6ac7ee]238};
239
240/** Zeros all components of this vector.
241 */
[776b64]242void Vector::One(const double one)
[6ac7ee]243{
[753f02]244 at(0)=at(1)=at(2)=one;
[6ac7ee]245};
246
[9c20aa]247/** Checks whether vector has all components zero.
248 * @return true - vector is zero, false - vector is not
249 */
[54a746]250bool Vector::IsZero() const
[9c20aa]251{
[d466f0]252 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
[54a746]253};
254
255/** Checks whether vector has length of 1.
256 * @return true - vector is normalized, false - vector is not
257 */
258bool Vector::IsOne() const
259{
260 return (fabs(Norm() - 1.) < MYEPSILON);
[9c20aa]261};
262
[ef9df36]263/** Checks whether vector is normal to \a *normal.
264 * @return true - vector is normalized, false - vector is not
265 */
[273382]266bool Vector::IsNormalTo(const Vector &normal) const
[ef9df36]267{
268 if (ScalarProduct(normal) < MYEPSILON)
269 return true;
270 else
271 return false;
272};
273
[b998c3]274/** Checks whether vector is normal to \a *normal.
275 * @return true - vector is normalized, false - vector is not
276 */
[273382]277bool Vector::IsEqualTo(const Vector &a) const
[b998c3]278{
279 bool status = true;
280 for (int i=0;i<NDIM;i++) {
[d466f0]281 if (fabs(at(i) - a[i]) > MYEPSILON)
[b998c3]282 status = false;
283 }
284 return status;
285};
286
[6ac7ee]287/** Calculates the angle between this and another vector.
288 * \param *y array to second vector
289 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
290 */
[273382]291double Vector::Angle(const Vector &y) const
[6ac7ee]292{
[753f02]293 double norm1 = Norm(), norm2 = y.Norm();
[ef9df36]294 double angle = -1;
[d4d0dd]295 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
296 angle = this->ScalarProduct(y)/norm1/norm2;
[02da9e]297 // -1-MYEPSILON occured due to numerical imprecision, catch ...
[e138de]298 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
[02da9e]299 if (angle < -1)
300 angle = -1;
301 if (angle > 1)
302 angle = 1;
[042f82]303 return acos(angle);
[6ac7ee]304};
305
[0a4f7f]306
307double& Vector::operator[](size_t i){
[753f02]308 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]309 return *gsl_vector_ptr (content->content, i);
[0a4f7f]310}
311
312const double& Vector::operator[](size_t i) const{
[753f02]313 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]314 return *gsl_vector_ptr (content->content, i);
[0a4f7f]315}
316
317double& Vector::at(size_t i){
318 return (*this)[i];
319}
320
321const double& Vector::at(size_t i) const{
322 return (*this)[i];
323}
324
[ce3d2b]325VectorContent* Vector::get(){
[0c7ed8]326 return content;
[0a4f7f]327}
[6ac7ee]328
[ef9df36]329/** Compares vector \a to vector \a b component-wise.
330 * \param a base vector
331 * \param b vector components to add
332 * \return a == b
333 */
[72e7fa]334bool Vector::operator==(const Vector& b) const
[ef9df36]335{
[1bd79e]336 return IsEqualTo(b);
[ef9df36]337};
338
[fa5a6a]339bool Vector::operator!=(const Vector& b) const
340{
341 return !IsEqualTo(b);
342}
343
[6ac7ee]344/** Sums vector \a to this lhs component-wise.
345 * \param a base vector
346 * \param b vector components to add
347 * \return lhs + a
348 */
[72e7fa]349const Vector& Vector::operator+=(const Vector& b)
[6ac7ee]350{
[273382]351 this->AddVector(b);
[72e7fa]352 return *this;
[6ac7ee]353};
[54a746]354
355/** Subtracts vector \a from this lhs component-wise.
356 * \param a base vector
357 * \param b vector components to add
358 * \return lhs - a
359 */
[72e7fa]360const Vector& Vector::operator-=(const Vector& b)
[54a746]361{
[273382]362 this->SubtractVector(b);
[72e7fa]363 return *this;
[54a746]364};
365
[6ac7ee]366/** factor each component of \a a times a double \a m.
367 * \param a base vector
368 * \param m factor
369 * \return lhs.x[i] * m
370 */
[b84d5d]371const Vector& operator*=(Vector& a, const double m)
[6ac7ee]372{
[042f82]373 a.Scale(m);
374 return a;
[6ac7ee]375};
376
[042f82]377/** Sums two vectors \a and \b component-wise.
[6ac7ee]378 * \param a first vector
379 * \param b second vector
380 * \return a + b
381 */
[72e7fa]382Vector const Vector::operator+(const Vector& b) const
[6ac7ee]383{
[72e7fa]384 Vector x = *this;
[273382]385 x.AddVector(b);
[b84d5d]386 return x;
[6ac7ee]387};
388
[54a746]389/** Subtracts vector \a from \b component-wise.
390 * \param a first vector
391 * \param b second vector
392 * \return a - b
393 */
[72e7fa]394Vector const Vector::operator-(const Vector& b) const
[54a746]395{
[72e7fa]396 Vector x = *this;
[273382]397 x.SubtractVector(b);
[b84d5d]398 return x;
[54a746]399};
400
[6ac7ee]401/** Factors given vector \a a times \a m.
402 * \param a vector
403 * \param m factor
[54a746]404 * \return m * a
[6ac7ee]405 */
[b84d5d]406Vector const operator*(const Vector& a, const double m)
[6ac7ee]407{
[b84d5d]408 Vector x(a);
409 x.Scale(m);
410 return x;
[6ac7ee]411};
412
[54a746]413/** Factors given vector \a a times \a m.
414 * \param m factor
415 * \param a vector
416 * \return m * a
417 */
[b84d5d]418Vector const operator*(const double m, const Vector& a )
[54a746]419{
[b84d5d]420 Vector x(a);
421 x.Scale(m);
422 return x;
[54a746]423};
424
[9c20aa]425ostream& operator<<(ostream& ost, const Vector& m)
[6ac7ee]426{
[042f82]427 ost << "(";
428 for (int i=0;i<NDIM;i++) {
[0a4f7f]429 ost << m[i];
[042f82]430 if (i != 2)
431 ost << ",";
432 }
433 ost << ")";
434 return ost;
[6ac7ee]435};
436
437
[1bd79e]438void Vector::ScaleAll(const double *factor)
[6ac7ee]439{
[042f82]440 for (int i=NDIM;i--;)
[d466f0]441 at(i) *= factor[i];
[6ac7ee]442};
443
[b5bf84]444void Vector::ScaleAll(const Vector &factor){
[ce3d2b]445 gsl_vector_mul(content->content, factor.content->content);
[b5bf84]446}
[6ac7ee]447
[1bd79e]448
[776b64]449void Vector::Scale(const double factor)
[6ac7ee]450{
[ce3d2b]451 gsl_vector_scale(content->content,factor);
[6ac7ee]452};
453
[45ef76]454std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
455 double factor = ScalarProduct(rhs)/rhs.NormSquared();
456 Vector res= factor * rhs;
457 return make_pair(res,(*this)-res);
458}
459
460std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
461 Vector helper = *this;
462 pointset res;
463 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
464 pair<Vector,Vector> currPart = helper.partition(*iter);
465 res.push_back(currPart.first);
466 helper = currPart.second;
467 }
468 return make_pair(res,helper);
469}
470
[6ac7ee]471/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
472 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
473 * \param *x1 first vector
474 * \param *x2 second vector
475 * \param *x3 third vector
476 * \param *factors three-component vector with the factor for each given vector
477 */
[273382]478void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
[6ac7ee]479{
[273382]480 (*this) = (factors[0]*x1) +
481 (factors[1]*x2) +
482 (factors[2]*x3);
[6ac7ee]483};
484
485/** Calculates orthonormal vector to one given vectors.
486 * Just subtracts the projection onto the given vector from this vector.
[ef9df36]487 * The removed part of the vector is Vector::Projection()
[6ac7ee]488 * \param *x1 vector
489 * \return true - success, false - vector is zero
490 */
[0a4f7f]491bool Vector::MakeNormalTo(const Vector &y1)
[6ac7ee]492{
[042f82]493 bool result = false;
[753f02]494 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
[45ef76]495 Vector x1 = factor * y1;
[753f02]496 SubtractVector(x1);
[042f82]497 for (int i=NDIM;i--;)
[d466f0]498 result = result || (fabs(at(i)) > MYEPSILON);
[6ac7ee]499
[042f82]500 return result;
[6ac7ee]501};
502
503/** Creates this vector as one of the possible orthonormal ones to the given one.
504 * Just scan how many components of given *vector are unequal to zero and
505 * try to get the skp of both to be zero accordingly.
506 * \param *vector given vector
507 * \return true - success, false - failure (null vector given)
508 */
[273382]509bool Vector::GetOneNormalVector(const Vector &GivenVector)
[6ac7ee]510{
[042f82]511 int Components[NDIM]; // contains indices of non-zero components
512 int Last = 0; // count the number of non-zero entries in vector
513 int j; // loop variables
514 double norm;
515
516 for (j=NDIM;j--;)
517 Components[j] = -1;
[1829c4]518
519 // in two component-systems we need to find the one position that is zero
520 int zeroPos = -1;
[042f82]521 // find two components != 0
[1829c4]522 for (j=0;j<NDIM;j++){
[753f02]523 if (fabs(GivenVector[j]) > MYEPSILON)
[042f82]524 Components[Last++] = j;
[1829c4]525 else
526 // this our zero Position
527 zeroPos = j;
528 }
[042f82]529
530 switch(Last) {
531 case 3: // threecomponent system
[1829c4]532 // the position of the zero is arbitrary in three component systems
533 zeroPos = Components[2];
[042f82]534 case 2: // two component system
[753f02]535 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
[1829c4]536 at(zeroPos) = 0.;
[042f82]537 // in skp both remaining parts shall become zero but with opposite sign and third is zero
[1829c4]538 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
539 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
[042f82]540 return true;
541 break;
542 case 1: // one component system
543 // set sole non-zero component to 0, and one of the other zero component pendants to 1
[1829c4]544 at((Components[0]+2)%NDIM) = 0.;
545 at((Components[0]+1)%NDIM) = 1.;
546 at(Components[0]) = 0.;
[042f82]547 return true;
548 break;
549 default:
550 return false;
551 }
[6ac7ee]552};
553
554/** Adds vector \a *y componentwise.
555 * \param *y vector
556 */
[273382]557void Vector::AddVector(const Vector &y)
[6ac7ee]558{
[ce3d2b]559 gsl_vector_add(content->content, y.content->content);
[6ac7ee]560}
561
562/** Adds vector \a *y componentwise.
563 * \param *y vector
564 */
[273382]565void Vector::SubtractVector(const Vector &y)
[6ac7ee]566{
[ce3d2b]567 gsl_vector_sub(content->content, y.content->content);
[ef9df36]568}
569
[005e18]570
571// some comonly used vectors
572const Vector zeroVec(0,0,0);
573const Vector e1(1,0,0);
574const Vector e2(0,1,0);
575const Vector e3(0,0,1);
Note: See TracBrowser for help on using the repository browser.