source: src/LinearAlgebra/Vector.cpp@ 0275ad

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 0275ad was ad011c, checked in by Frederik Heber <heber@…>, 14 years ago

CodePatterns places all includes now in subfolder CodePatterns/.

  • change all includes accordingly.
  • this was necessary as Helpers and Patterns are not very distinctive names for include folders. Already now, we had a conflict between Helpers from CodePatterns and Helpers from this project.
  • changed compilation test in ax_codepatterns.m4 when changing CodePatterns includes.
  • Property mode set to 100644
File size: 14.0 KB
RevLine 
[bcf653]1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
[6ac7ee]8/** \file vector.cpp
9 *
10 * Function implementations for the class vector.
11 *
12 */
13
[bf3817]14// include config.h
15#ifdef HAVE_CONFIG_H
16#include <config.h>
17#endif
18
[ad011c]19#include "CodePatterns/MemDebug.hpp"
[edb93c]20
[6d5a10]21#include "Exceptions/MathException.hpp"
[57f243]22#include "LinearAlgebra/Vector.hpp"
[6d5a10]23#include "LinearAlgebra/VectorContent.hpp"
[ad011c]24#include "CodePatterns/Assert.hpp"
[e4fe8d]25#include "Helpers/defs.hpp"
[753f02]26#include "Helpers/fast_functions.hpp"
[ad011c]27#include "CodePatterns/Verbose.hpp"
[6d5a10]28#include "World.hpp"
[6ac7ee]29
[1bd79e]30#include <iostream>
[923b6c]31#include <gsl/gsl_blas.h>
[a439e5]32#include <gsl/gsl_vector.h>
[923b6c]33
[1bd79e]34
35using namespace std;
[6ac7ee]36
[97498a]37
[6ac7ee]38/************************************ Functions for class vector ************************************/
39
40/** Constructor of class vector.
41 */
[753f02]42Vector::Vector()
43{
[bbf1bd]44 content = new VectorContent((size_t) NDIM);
[753f02]45};
[6ac7ee]46
[bbf1bd]47/** Copy constructor.
48 * \param &src source Vector reference
[821907]49 */
[753f02]50Vector::Vector(const Vector& src)
[821907]51{
[bbf1bd]52 content = new VectorContent(*(src.content));
[1bd79e]53}
[821907]54
55/** Constructor of class vector.
[bbf1bd]56 * \param x1 first component
57 * \param x2 second component
58 * \param x3 third component
[821907]59 */
[753f02]60Vector::Vector(const double x1, const double x2, const double x3)
[821907]61{
[bbf1bd]62 content = new VectorContent((size_t) NDIM);
63 content->at(0) = x1;
64 content->at(1) = x2;
65 content->at(2) = x3;
[821907]66};
67
[d74077]68/** Constructor of class vector.
[bbf1bd]69 * \param x[3] three values to initialize Vector with
[d74077]70 */
71Vector::Vector(const double x[3])
72{
[bbf1bd]73 content = new VectorContent((size_t) NDIM);
74 for (size_t i = NDIM; i--; )
75 content->at(i) = x[i];
[d74077]76};
77
[bbf1bd]78/** Copy constructor of class vector from VectorContent.
79 * \note This is destructive, i.e. we take over _content.
80 */
81Vector::Vector(VectorContent *&_content) :
82 content(_content)
83{
84 _content = NULL;
85}
86
87/** Copy constructor of class vector from VectorContent.
88 * \note This is non-destructive, i.e. _content is copied.
89 */
90Vector::Vector(VectorContent &_content)
91{
92 content = new VectorContent(_content);
93}
[325390]94
[bbf1bd]95/** Assignment operator.
96 * \param &src source vector to assign \a *this to
97 * \return reference to \a *this
[6ac7ee]98 */
[0a4f7f]99Vector& Vector::operator=(const Vector& src){
100 // check for self assignment
101 if(&src!=this){
[bbf1bd]102 *content = *(src.content);
[0a4f7f]103 }
104 return *this;
105}
[6ac7ee]106
107/** Desctructor of class vector.
[bbf1bd]108 * Vector::content is deleted.
[6ac7ee]109 */
[d466f0]110Vector::~Vector() {
[ce3d2b]111 delete content;
[d466f0]112};
[6ac7ee]113
114/** Calculates square of distance between this and another vector.
115 * \param *y array to second vector
116 * \return \f$| x - y |^2\f$
117 */
[273382]118double Vector::DistanceSquared(const Vector &y) const
[6ac7ee]119{
[042f82]120 double res = 0.;
121 for (int i=NDIM;i--;)
[d466f0]122 res += (at(i)-y[i])*(at(i)-y[i]);
[042f82]123 return (res);
[6ac7ee]124};
125
126/** Calculates distance between this and another vector.
127 * \param *y array to second vector
128 * \return \f$| x - y |\f$
129 */
[1513a74]130double Vector::distance(const Vector &y) const
[6ac7ee]131{
[273382]132 return (sqrt(DistanceSquared(y)));
[6ac7ee]133};
134
[a439e5]135size_t Vector::GreatestComponent() const
136{
137 int greatest = 0;
138 for (int i=1;i<NDIM;i++) {
139 if (at(i) > at(greatest))
140 greatest = i;
141 }
142 return greatest;
143}
144
145size_t Vector::SmallestComponent() const
146{
147 int smallest = 0;
148 for (int i=1;i<NDIM;i++) {
149 if (at(i) < at(smallest))
150 smallest = i;
151 }
152 return smallest;
153}
154
155
[1513a74]156Vector Vector::getClosestPoint(const Vector &point) const{
157 // the closest point to a single point space is always the single point itself
158 return *this;
159}
160
[6ac7ee]161/** Calculates scalar product between this and another vector.
162 * \param *y array to second vector
163 * \return \f$\langle x, y \rangle\f$
164 */
[273382]165double Vector::ScalarProduct(const Vector &y) const
[6ac7ee]166{
[042f82]167 double res = 0.;
[ce3d2b]168 gsl_blas_ddot(content->content, y.content->content, &res);
[042f82]169 return (res);
[6ac7ee]170};
171
172
173/** Calculates VectorProduct between this and another vector.
[042f82]174 * -# returns the Product in place of vector from which it was initiated
175 * -# ATTENTION: Only three dim.
176 * \param *y array to vector with which to calculate crossproduct
177 * \return \f$ x \times y \f&
[6ac7ee]178 */
[273382]179void Vector::VectorProduct(const Vector &y)
[6ac7ee]180{
[042f82]181 Vector tmp;
[d466f0]182 for(int i=NDIM;i--;)
183 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
[753f02]184 (*this) = tmp;
[6ac7ee]185};
186
187
188/** projects this vector onto plane defined by \a *y.
189 * \param *y normal vector of plane
190 * \return \f$\langle x, y \rangle\f$
191 */
[273382]192void Vector::ProjectOntoPlane(const Vector &y)
[6ac7ee]193{
[042f82]194 Vector tmp;
[753f02]195 tmp = y;
[042f82]196 tmp.Normalize();
[753f02]197 tmp.Scale(ScalarProduct(tmp));
198 *this -= tmp;
[2319ed]199};
200
[821907]201/** Calculates the minimum distance of this vector to the plane.
202 * \sa Vector::GetDistanceVectorToPlane()
203 * \param *out output stream for debugging
204 * \param *PlaneNormal normal of plane
205 * \param *PlaneOffset offset of plane
206 * \return distance to plane
207 */
[d4c9ae]208double Vector::DistanceToSpace(const Space &space) const
[821907]209{
[d4c9ae]210 return space.distance(*this);
[c4d4df]211};
212
[6ac7ee]213/** Calculates the projection of a vector onto another \a *y.
214 * \param *y array to second vector
215 */
[273382]216void Vector::ProjectIt(const Vector &y)
[6ac7ee]217{
[753f02]218 (*this) += (-ScalarProduct(y))*y;
[ef9df36]219};
220
221/** Calculates the projection of a vector onto another \a *y.
222 * \param *y array to second vector
223 * \return Vector
224 */
[273382]225Vector Vector::Projection(const Vector &y) const
[ef9df36]226{
[753f02]227 Vector helper = y;
228 helper.Scale((ScalarProduct(y)/y.NormSquared()));
[ef9df36]229
230 return helper;
[6ac7ee]231};
232
233/** Calculates norm of this vector.
234 * \return \f$|x|\f$
235 */
236double Vector::Norm() const
237{
[694eae]238 return (content->Norm());
[6ac7ee]239};
240
[d4d0dd]241/** Calculates squared norm of this vector.
242 * \return \f$|x|^2\f$
243 */
244double Vector::NormSquared() const
245{
[694eae]246 return (content->NormSquared());
[d4d0dd]247};
248
[6ac7ee]249/** Normalizes this vector.
250 */
251void Vector::Normalize()
252{
[694eae]253 content->Normalize();
[6ac7ee]254};
255
[421a1f]256Vector Vector::getNormalized() const{
257 Vector res= *this;
258 res.Normalize();
259 return res;
260}
261
[6ac7ee]262/** Zeros all components of this vector.
263 */
264void Vector::Zero()
265{
[753f02]266 at(0)=at(1)=at(2)=0;
[6ac7ee]267};
268
269/** Zeros all components of this vector.
270 */
[776b64]271void Vector::One(const double one)
[6ac7ee]272{
[753f02]273 at(0)=at(1)=at(2)=one;
[6ac7ee]274};
275
[9c20aa]276/** Checks whether vector has all components zero.
277 * @return true - vector is zero, false - vector is not
278 */
[54a746]279bool Vector::IsZero() const
[9c20aa]280{
[d466f0]281 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
[54a746]282};
283
284/** Checks whether vector has length of 1.
285 * @return true - vector is normalized, false - vector is not
286 */
287bool Vector::IsOne() const
288{
289 return (fabs(Norm() - 1.) < MYEPSILON);
[9c20aa]290};
291
[ef9df36]292/** Checks whether vector is normal to \a *normal.
293 * @return true - vector is normalized, false - vector is not
294 */
[273382]295bool Vector::IsNormalTo(const Vector &normal) const
[ef9df36]296{
297 if (ScalarProduct(normal) < MYEPSILON)
298 return true;
299 else
300 return false;
301};
302
[b998c3]303/** Checks whether vector is normal to \a *normal.
304 * @return true - vector is normalized, false - vector is not
305 */
[273382]306bool Vector::IsEqualTo(const Vector &a) const
[b998c3]307{
308 bool status = true;
309 for (int i=0;i<NDIM;i++) {
[d466f0]310 if (fabs(at(i) - a[i]) > MYEPSILON)
[b998c3]311 status = false;
312 }
313 return status;
314};
315
[6ac7ee]316/** Calculates the angle between this and another vector.
317 * \param *y array to second vector
318 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
319 */
[273382]320double Vector::Angle(const Vector &y) const
[6ac7ee]321{
[753f02]322 double norm1 = Norm(), norm2 = y.Norm();
[ef9df36]323 double angle = -1;
[d4d0dd]324 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
325 angle = this->ScalarProduct(y)/norm1/norm2;
[02da9e]326 // -1-MYEPSILON occured due to numerical imprecision, catch ...
[e138de]327 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
[02da9e]328 if (angle < -1)
329 angle = -1;
330 if (angle > 1)
331 angle = 1;
[042f82]332 return acos(angle);
[6ac7ee]333};
334
[0a4f7f]335
336double& Vector::operator[](size_t i){
[753f02]337 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]338 return *gsl_vector_ptr (content->content, i);
[0a4f7f]339}
340
341const double& Vector::operator[](size_t i) const{
[753f02]342 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
[ce3d2b]343 return *gsl_vector_ptr (content->content, i);
[0a4f7f]344}
345
346double& Vector::at(size_t i){
347 return (*this)[i];
348}
349
350const double& Vector::at(size_t i) const{
351 return (*this)[i];
352}
353
[ae21cbd]354VectorContent* Vector::get() const
355{
[0c7ed8]356 return content;
[0a4f7f]357}
[6ac7ee]358
[ef9df36]359/** Compares vector \a to vector \a b component-wise.
360 * \param a base vector
361 * \param b vector components to add
362 * \return a == b
363 */
[72e7fa]364bool Vector::operator==(const Vector& b) const
[ef9df36]365{
[1bd79e]366 return IsEqualTo(b);
[ef9df36]367};
368
[fa5a6a]369bool Vector::operator!=(const Vector& b) const
370{
371 return !IsEqualTo(b);
372}
373
[6ac7ee]374/** Sums vector \a to this lhs component-wise.
375 * \param a base vector
376 * \param b vector components to add
377 * \return lhs + a
378 */
[72e7fa]379const Vector& Vector::operator+=(const Vector& b)
[6ac7ee]380{
[273382]381 this->AddVector(b);
[72e7fa]382 return *this;
[6ac7ee]383};
[54a746]384
385/** Subtracts vector \a from this lhs component-wise.
386 * \param a base vector
387 * \param b vector components to add
388 * \return lhs - a
389 */
[72e7fa]390const Vector& Vector::operator-=(const Vector& b)
[54a746]391{
[273382]392 this->SubtractVector(b);
[72e7fa]393 return *this;
[54a746]394};
395
[694eae]396/** factor each component of \a *this times \a m.
[6ac7ee]397 * \param m factor
[694eae]398 * \return \f$(\text{*this} \cdot m\f$
[6ac7ee]399 */
[694eae]400const Vector& Vector::operator*=(const double m)
[6ac7ee]401{
[694eae]402 Scale(m);
403 return *this;
[6ac7ee]404};
405
[042f82]406/** Sums two vectors \a and \b component-wise.
[6ac7ee]407 * \param a first vector
408 * \param b second vector
409 * \return a + b
410 */
[72e7fa]411Vector const Vector::operator+(const Vector& b) const
[6ac7ee]412{
[72e7fa]413 Vector x = *this;
[273382]414 x.AddVector(b);
[b84d5d]415 return x;
[6ac7ee]416};
417
[54a746]418/** Subtracts vector \a from \b component-wise.
419 * \param a first vector
420 * \param b second vector
421 * \return a - b
422 */
[72e7fa]423Vector const Vector::operator-(const Vector& b) const
[54a746]424{
[72e7fa]425 Vector x = *this;
[273382]426 x.SubtractVector(b);
[b84d5d]427 return x;
[54a746]428};
429
[694eae]430/** Factors given vector \a *this times \a m.
[6ac7ee]431 * \param m factor
[694eae]432 * \return \f$(\text{*this} \cdot m)\f$
[6ac7ee]433 */
[694eae]434const Vector Vector::operator*(const double m) const
[6ac7ee]435{
[694eae]436 Vector x(*this);
[b84d5d]437 x.Scale(m);
438 return x;
[6ac7ee]439};
440
[54a746]441/** Factors given vector \a a times \a m.
442 * \param m factor
443 * \param a vector
444 * \return m * a
445 */
[b84d5d]446Vector const operator*(const double m, const Vector& a )
[54a746]447{
[b84d5d]448 Vector x(a);
449 x.Scale(m);
450 return x;
[54a746]451};
452
[9c20aa]453ostream& operator<<(ostream& ost, const Vector& m)
[6ac7ee]454{
[042f82]455 ost << "(";
456 for (int i=0;i<NDIM;i++) {
[0a4f7f]457 ost << m[i];
[042f82]458 if (i != 2)
459 ost << ",";
460 }
461 ost << ")";
462 return ost;
[6ac7ee]463};
464
465
[1bd79e]466void Vector::ScaleAll(const double *factor)
[6ac7ee]467{
[042f82]468 for (int i=NDIM;i--;)
[d466f0]469 at(i) *= factor[i];
[6ac7ee]470};
471
[b5bf84]472void Vector::ScaleAll(const Vector &factor){
[ce3d2b]473 gsl_vector_mul(content->content, factor.content->content);
[b5bf84]474}
[6ac7ee]475
[1bd79e]476
[776b64]477void Vector::Scale(const double factor)
[6ac7ee]478{
[ce3d2b]479 gsl_vector_scale(content->content,factor);
[6ac7ee]480};
481
[45ef76]482std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
483 double factor = ScalarProduct(rhs)/rhs.NormSquared();
484 Vector res= factor * rhs;
485 return make_pair(res,(*this)-res);
486}
487
488std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
489 Vector helper = *this;
490 pointset res;
491 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
492 pair<Vector,Vector> currPart = helper.partition(*iter);
493 res.push_back(currPart.first);
494 helper = currPart.second;
495 }
496 return make_pair(res,helper);
497}
498
[6ac7ee]499/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
500 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
501 * \param *x1 first vector
502 * \param *x2 second vector
503 * \param *x3 third vector
504 * \param *factors three-component vector with the factor for each given vector
505 */
[273382]506void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
[6ac7ee]507{
[273382]508 (*this) = (factors[0]*x1) +
509 (factors[1]*x2) +
510 (factors[2]*x3);
[6ac7ee]511};
512
513/** Calculates orthonormal vector to one given vectors.
514 * Just subtracts the projection onto the given vector from this vector.
[ef9df36]515 * The removed part of the vector is Vector::Projection()
[6ac7ee]516 * \param *x1 vector
517 * \return true - success, false - vector is zero
518 */
[0a4f7f]519bool Vector::MakeNormalTo(const Vector &y1)
[6ac7ee]520{
[042f82]521 bool result = false;
[753f02]522 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
[45ef76]523 Vector x1 = factor * y1;
[753f02]524 SubtractVector(x1);
[042f82]525 for (int i=NDIM;i--;)
[d466f0]526 result = result || (fabs(at(i)) > MYEPSILON);
[6ac7ee]527
[042f82]528 return result;
[6ac7ee]529};
530
531/** Creates this vector as one of the possible orthonormal ones to the given one.
532 * Just scan how many components of given *vector are unequal to zero and
533 * try to get the skp of both to be zero accordingly.
534 * \param *vector given vector
535 * \return true - success, false - failure (null vector given)
536 */
[273382]537bool Vector::GetOneNormalVector(const Vector &GivenVector)
[6ac7ee]538{
[042f82]539 int Components[NDIM]; // contains indices of non-zero components
540 int Last = 0; // count the number of non-zero entries in vector
541 int j; // loop variables
542 double norm;
543
544 for (j=NDIM;j--;)
545 Components[j] = -1;
[1829c4]546
547 // in two component-systems we need to find the one position that is zero
548 int zeroPos = -1;
[042f82]549 // find two components != 0
[1829c4]550 for (j=0;j<NDIM;j++){
[753f02]551 if (fabs(GivenVector[j]) > MYEPSILON)
[042f82]552 Components[Last++] = j;
[1829c4]553 else
554 // this our zero Position
555 zeroPos = j;
556 }
[042f82]557
558 switch(Last) {
559 case 3: // threecomponent system
[1829c4]560 // the position of the zero is arbitrary in three component systems
561 zeroPos = Components[2];
[042f82]562 case 2: // two component system
[753f02]563 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
[1829c4]564 at(zeroPos) = 0.;
[042f82]565 // in skp both remaining parts shall become zero but with opposite sign and third is zero
[1829c4]566 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
567 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
[042f82]568 return true;
569 break;
570 case 1: // one component system
571 // set sole non-zero component to 0, and one of the other zero component pendants to 1
[1829c4]572 at((Components[0]+2)%NDIM) = 0.;
573 at((Components[0]+1)%NDIM) = 1.;
574 at(Components[0]) = 0.;
[042f82]575 return true;
576 break;
577 default:
578 return false;
579 }
[6ac7ee]580};
581
582/** Adds vector \a *y componentwise.
583 * \param *y vector
584 */
[273382]585void Vector::AddVector(const Vector &y)
[6ac7ee]586{
[ce3d2b]587 gsl_vector_add(content->content, y.content->content);
[6ac7ee]588}
589
590/** Adds vector \a *y componentwise.
591 * \param *y vector
592 */
[273382]593void Vector::SubtractVector(const Vector &y)
[6ac7ee]594{
[ce3d2b]595 gsl_vector_sub(content->content, y.content->content);
[ef9df36]596}
597
[005e18]598
599// some comonly used vectors
600const Vector zeroVec(0,0,0);
[407782]601const Vector unitVec[NDIM]={Vector(1,0,0),Vector(0,1,0),Vector(0,0,1)};
Note: See TracBrowser for help on using the repository browser.