/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010 University of Bonn. All rights reserved. * Please see the LICENSE file or "Copyright notice" in builder.cpp for details. */ /* * Subspace.cpp * * Created on: Nov 22, 2010 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "Helpers/MemDebug.hpp" #include #include #include "Helpers/Assert.hpp" #include "Helpers/Log.hpp" #include "Helpers/toString.hpp" #include "Helpers/Verbose.hpp" #include "Eigenspace.hpp" #include "Subspace.hpp" /** Constructor for class Subspace. * * @param _s indices that make up this subspace * @param _FullSpace reference to the full eigenspace */ Subspace::Subspace(indexset & _s, Eigenspace &_FullSpace) : Eigenspace(_s), ProjectToSubspace(_FullSpace.getIndices().size(), _s.size()), ProjectFromSubspace(_s.size(), _FullSpace.getIndices().size()), FullSpace(_FullSpace), ZeroVector(_FullSpace.getIndices().size()) { // TODO: away with both of this when calculateEigenSubspace() works // create projection matrices createProjectionMatrices(); // create eigenspace matrices projectFullSpaceMatrixToSubspace(); } /** Destructor for class Subspace. * */ Subspace::~Subspace() {} /** Diagonalizes the subspace matrix. * * @param fullmatrix full matrix to project into subspace and solve */ void Subspace::calculateEigenSubspace() { // project down createProjectionMatrices(); // remove subsubspace directions correctEigenvectorsFromSubIndices(); // solve projectFullSpaceMatrixToSubspace(); EigenvectorMatrix = EigenspaceMatrix; VectorContent *EigenvalueVector = new VectorContent(EigenvectorMatrix.transformToEigenbasis()); Eigenvalues.clear(); for(size_t i = 0; i< EigenvalueVector->getDimension(); ++i) { Eigenvalues.push_back( EigenvalueVector->at(i) ); } delete EigenvalueVector; Log() << Verbose(2) << "Eigenvector matrix is " << EigenvectorMatrix << std::endl; Log() << Verbose(2) << "Eigenvalues are " << Eigenvalues << std::endl; // create mapping createLocalMapping(); } /** Projects a given full matrix down into the subspace of this class. * * @param bigmatrix full matrix to project into subspace */ void Subspace::getSubspacematrixFromBigmatrix(const MatrixContent & bigmatrix) { // check whether subsystem is big enough for both index sets ASSERT(Indices.size() <= bigmatrix.getRows(), "embedEigenspaceMatrix() - bigmatrix has less rows "+toString(bigmatrix.getRows()) +" than needed by index set " +toString(Indices.size())+"!"); ASSERT(Indices.size() <= bigmatrix.getColumns(), "embedEigenspaceMatrix() - bigmatrix has less columns "+toString(bigmatrix.getColumns()) +" than needed by index set " +toString(Indices.size())+"!"); // construct small matrix MatrixContent *subsystem = new MatrixContent(Indices.size(), Indices.size()); size_t localrow = 0; // local row indices for the subsystem size_t localcolumn = 0; BOOST_FOREACH( size_t rowindex, Indices) { localcolumn = 0; BOOST_FOREACH( size_t columnindex, Indices) { ASSERT((rowindex < bigmatrix.getRows()) && (columnindex < bigmatrix.getColumns()), "current index pair (" +toString(rowindex)+","+toString(columnindex) +") is out of bounds of bigmatrix (" +toString(bigmatrix.getRows())+","+toString(bigmatrix.getColumns()) +")"); subsystem->at(localrow,localcolumn) = (*Eigenvectors[rowindex]) * (bigmatrix * (*Eigenvectors[columnindex])); localcolumn++; } localrow++; } } void Subspace::correctEigenvectorsFromSubIndices() { } /** Creates the inverse of LocalToGlobal. * Mapping is one-to-one and onto, hence it's simply turning around the map. */ void Subspace::invertLocalToGlobalMapping() { GlobalToLocal.clear(); for (mapping::const_iterator iter = LocalToGlobal.begin(); iter != LocalToGlobal.end(); ++iter) { GlobalToLocal.insert( make_pair(iter->second, iter->first) ); } } /** Project calculated Eigenvectors into full space. * * @return set of projected eigenvectors. */ const Eigenspace::eigenvectorset & Subspace::getEigenvectorsInFullSpace() { // check whether bigmatrix is at least as big as EigenspaceMatrix ASSERT(Eigenvectors.size() > 0, "embedEigenspaceMatrix() - no Eigenvectors given!"); ASSERT(EigenspaceMatrix.getRows() <= Eigenvectors[0]->getDimension(), "embedEigenspaceMatrix() - EigenspaceMatrix has more rows " +toString(EigenspaceMatrix.getRows())+" than eigenvectors " +toString(Eigenvectors[0]->getDimension())+"!"); ASSERT(EigenspaceMatrix.getColumns() <= Eigenvectors.size(), "embedEigenspaceMatrix() - EigenspaceMatrix has more columns " +toString(EigenspaceMatrix.getColumns())+" than eigenvectors " +toString(Eigenvectors.size())+"!"); // check whether EigenspaceMatrix is big enough for both index sets ASSERT(EigenspaceMatrix.getColumns() == EigenspaceMatrix.getRows(), "embedEigenspaceMatrix() - EigenspaceMatrix is not square " +toString(EigenspaceMatrix.getRows())+" than needed by index set " +toString(EigenspaceMatrix.getColumns())+"!"); ASSERT(Indices.size() == EigenspaceMatrix.getColumns(), "embedEigenspaceMatrix() - EigenspaceMatrix has not the same number of columns " +toString(EigenspaceMatrix.getColumns())+" compared to the index set " +toString(Indices.size())+"!"); // construct intermediate matrix MatrixContent *intermediatematrix = new MatrixContent(Eigenvectors[0]->getDimension(), Indices.size()); size_t localcolumn = 0; BOOST_FOREACH(size_t columnindex, Indices) { // create two vectors from each row and copy assign them boost::shared_ptr srceigenvector(Eigenvectors[columnindex]); boost::shared_ptr desteigenvector(intermediatematrix->getColumnVector(localcolumn)); *desteigenvector = *srceigenvector; localcolumn++; } // matrix product with eigenbasis EigenspaceMatrix matrix *intermediatematrix *= EigenspaceMatrix; // and place at right columns into bigmatrix MatrixContent *bigmatrix = new MatrixContent(Eigenvectors[0]->getDimension(), Eigenvectors.size()); bigmatrix->setZero(); localcolumn = 0; BOOST_FOREACH(size_t columnindex, Indices) { // create two vectors from each row and copy assign them boost::shared_ptr srceigenvector(intermediatematrix->getColumnVector(localcolumn)); boost::shared_ptr desteigenvector(bigmatrix->getColumnVector(columnindex)); *desteigenvector = *srceigenvector; localcolumn++; } return Eigenvectors; } /** Remove a subset of indices from the SubIndices. * * @param _s subset to remove * @return true - removed, false - not found */ bool Subspace::removeSubset(boost::shared_ptr &_s) { if (SubIndices.count(_s) != 0) { SubIndices.erase(_s); return true; } else { return false; } } /** Add a subspace set to SubIndices. * * @param _s subset to add * @return true - not present before, false - has already been present */ bool Subspace::addSubset(boost::shared_ptr & _s) { if (SubIndices.count(_s) != 0) return false; else { SubIndices.insert(_s); return true; } } /** Simply a getter for Eigenvectors, as they are stored as subspace eigenvectors. * * @return set of eigenvectors in subspace */ const MatrixContent & Subspace::getEigenvectorMatrixInFullSpace() { // check whether bigmatrix is at least as big as EigenspaceMatrix ASSERT(EigenspaceMatrix.getRows() <= Eigenvectors[0]->getDimension(), "embedEigenspaceMatrix() - EigenspaceMatrix has more rows " +toString(EigenspaceMatrix.getRows())+" than eigenvectors " +toString(Eigenvectors[0]->getDimension())+"!"); ASSERT(EigenspaceMatrix.getColumns() <= Eigenvectors.size(), "embedEigenspaceMatrix() - EigenspaceMatrix has more columns " +toString(EigenspaceMatrix.getColumns())+" than eigenvectors " +toString(Eigenvectors.size())+"!"); // check whether EigenspaceMatrix is big enough for both index sets ASSERT(EigenspaceMatrix.getColumns() == EigenspaceMatrix.getRows(), "embedEigenspaceMatrix() - EigenspaceMatrix is not square " +toString(EigenspaceMatrix.getRows())+" than needed by index set " +toString(EigenspaceMatrix.getColumns())+"!"); ASSERT(Indices.size() == EigenspaceMatrix.getColumns(), "embedEigenspaceMatrix() - EigenspaceMatrix has not the same number of columns " +toString(EigenspaceMatrix.getColumns())+" compared to the index set " +toString(Indices.size())+"!"); // construct intermediate matrix MatrixContent *intermediatematrix = new MatrixContent(Eigenvectors[0]->getDimension(), Indices.size()); size_t localcolumn = 0; BOOST_FOREACH(size_t columnindex, Indices) { // create two vectors from each row and copy assign them boost::shared_ptr srceigenvector(Eigenvectors[columnindex]); boost::shared_ptr desteigenvector(intermediatematrix->getColumnVector(localcolumn)); *desteigenvector = *srceigenvector; localcolumn++; } // matrix product with eigenbasis EigenspaceMatrix matrix *intermediatematrix *= EigenspaceMatrix; // and place at right columns into bigmatrix MatrixContent *bigmatrix = new MatrixContent(Eigenvectors[0]->getDimension(), Eigenvectors.size()); bigmatrix->setZero(); localcolumn = 0; BOOST_FOREACH(size_t columnindex, Indices) { // create two vectors from each row and copy assign them boost::shared_ptr srceigenvector(intermediatematrix->getColumnVector(localcolumn)); boost::shared_ptr desteigenvector(bigmatrix->getColumnVector(columnindex)); *desteigenvector = *srceigenvector; localcolumn++; } return *bigmatrix; } /** Creates the projection matrix from Subspace::FullSpace::EigenvectorMatrix. * We simply copy the respective eigenvectors from Subspace::FullSpace into * Subspace::Eigenvectors. */ void Subspace::createProjectionMatrices() { // first ProjectToSubspace // generate column vectors std::vector< boost::shared_ptr > ColumnVectors; for (size_t i = 0; i < Indices.size(); ++i) { boost::shared_ptr p(ProjectToSubspace.getColumnVector(i)); ColumnVectors.push_back( p ); } // then copy from real eigenvectors size_t localindex = 0; BOOST_FOREACH(size_t iter, Indices) { *ColumnVectors[localindex] = FullSpace.getEigenvector(iter); localindex++; } Log() << Verbose(2) << "ProjectionToSubspace matrix is " << ProjectToSubspace << std::endl; // then ProjectFromSubspace is just transposed ProjectFromSubspace = ((const MatrixContent)ProjectToSubspace).transpose(); Log() << Verbose(2) << "ProjectFromSubspace matrix is " << ProjectFromSubspace << std::endl; } /** Creates the subspace matrix by projecting down the FullSpace::EigenspaceMatrix. * We just perform \f$M = P^t \cdot A \cdot P\f$, when P are the projection matrix, * A the full matrix and M the subspace matrix. */ void Subspace::projectFullSpaceMatrixToSubspace() { // construct small matrix EigenspaceMatrix = ProjectFromSubspace * FullSpace.getEigenspaceMatrix() * ProjectToSubspace; Log() << Verbose(2) << "EigenspaceMatrix matrix is " << EigenspaceMatrix << std::endl; } /** We associate local Eigenvectors with ones from FullSpace by a paralellity * criterion. */ void Subspace::createLocalMapping() { // first LocalToGlobal LocalToGlobal.clear(); IndexSet CorrespondenceList(Indices); // is to ensure one-to-one mapping for (size_t localindex = 0; localindex< Indices.size(); ++localindex) { boost::shared_ptr &CurrentEigenvector = Eigenvectors[localindex]; Log() << Verbose(1) << "Current Eigenvector is " << *CurrentEigenvector << std::endl; // (for now settle with the one we are most parallel to) size_t mostparallel_index = FullSpace.getIndices().size(); double mostparallel_scalarproduct = 0.; BOOST_FOREACH( size_t indexiter, CorrespondenceList) { Log() << Verbose(2) << "Comparing to old " << indexiter << "th eigenvector " << FullSpace.getEigenvector(indexiter) << std::endl; const double scalarproduct = (FullSpace.getEigenvector(indexiter)) * ( ProjectToSubspace * (*CurrentEigenvector)); Log() << Verbose(2) << "SKP is " << scalarproduct << std::endl; if (fabs(scalarproduct) > fabs(mostparallel_scalarproduct)) { mostparallel_scalarproduct = scalarproduct; mostparallel_index = indexiter; } } // and make the assignment if we found one if (mostparallel_index != FullSpace.getIndices().size()) { // put into std::list for later use // invert if pointing in negative direction if (mostparallel_scalarproduct < 0) { *CurrentEigenvector *= -1.; Log() << Verbose(1) << "Associating (inverted) " << *CurrentEigenvector << " with " << mostparallel_index << "th's fullspace eigenvector." << std::endl; } else { Log() << Verbose(1) << "Associating " << *CurrentEigenvector << " with " << mostparallel_index << "th's fullspace eigenvector." << std::endl; } ASSERT( LocalToGlobal.count(localindex) == 0, "Subspace::createLocalMapping() - localindex "+toString(localindex)+" already assigned to " +toString(LocalToGlobal[localindex])+" !=? "+toString(mostparallel_index)+"."); LocalToGlobal.insert( make_pair(localindex, mostparallel_index) ); CorrespondenceList.erase(mostparallel_index); } } // then invert mapping GlobalToLocal.clear(); BOOST_FOREACH(mapping::value_type iter, LocalToGlobal) { ASSERT(GlobalToLocal.count(iter.second) == 0, "Subspace::createLocalMapping() - LocalToGlobal is not bijective, key " +toString(iter.second)+" present more than once!"); GlobalToLocal.insert( make_pair(iter.second, iter.first) ); } } /** Get the local eigenvector that is most parallel to the \a i'th full one. * We just the internal mapping Subspace::GlobalToLocal. * @param i index of global eigenvector * @return local eigenvector, most parallel */ const VectorContent Subspace::getEigenvectorParallelToFullOne(size_t i) { if (GlobalToLocal.count(i) == 0) { return ZeroVector; } else { return ProjectToSubspace*(*Eigenvectors[GlobalToLocal[i]]); } } /** Get the local eigenvalue of the eigenvector that is most parallel to the * \a i'th full one. * We just the internal mapping Subspace::GlobalToLocal. * @param i index of global eigenvector * @return eigenvalue of local eigenvector, most parallel */ const double Subspace::getEigenvalueOfEigenvectorParallelToFullOne(size_t i) { if (GlobalToLocal.count(i) == 0) { return 0.; } else { return Eigenvalues[GlobalToLocal[i]]; } }