| 1 | /*
|
|---|
| 2 | * Plane.cpp
|
|---|
| 3 | *
|
|---|
| 4 | * Created on: Apr 7, 2010
|
|---|
| 5 | * Author: crueger
|
|---|
| 6 | */
|
|---|
| 7 |
|
|---|
| 8 | #include "Helpers/MemDebug.hpp"
|
|---|
| 9 |
|
|---|
| 10 | #include "LinearAlgebra/Plane.hpp"
|
|---|
| 11 | #include "LinearAlgebra/Vector.hpp"
|
|---|
| 12 | #include "defs.hpp"
|
|---|
| 13 | #include "info.hpp"
|
|---|
| 14 | #include "log.hpp"
|
|---|
| 15 | #include "verbose.hpp"
|
|---|
| 16 | #include "Helpers/Assert.hpp"
|
|---|
| 17 | #include <cmath>
|
|---|
| 18 | #include "LinearAlgebra/Line.hpp"
|
|---|
| 19 | #include "Exceptions/MultipleSolutionsException.hpp"
|
|---|
| 20 |
|
|---|
| 21 | /**
|
|---|
| 22 | * generates a plane from three given vectors defining three points in space
|
|---|
| 23 | */
|
|---|
| 24 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
|
|---|
| 25 | normalVector(new Vector())
|
|---|
| 26 | {
|
|---|
| 27 | Vector x1 = y1 -y2;
|
|---|
| 28 | Vector x2 = y3 -y2;
|
|---|
| 29 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
|
|---|
| 30 | throw LinearDependenceException(__FILE__,__LINE__);
|
|---|
| 31 | }
|
|---|
| 32 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
|---|
| 33 | // x1.Output((ofstream *)&cout);
|
|---|
| 34 | // Log() << Verbose(0) << endl;
|
|---|
| 35 | // Log() << Verbose(4) << "second plane coordinates:";
|
|---|
| 36 | // x2.Output((ofstream *)&cout);
|
|---|
| 37 | // Log() << Verbose(0) << endl;
|
|---|
| 38 |
|
|---|
| 39 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
|---|
| 40 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
|---|
| 41 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
|---|
| 42 | normalVector->Normalize();
|
|---|
| 43 |
|
|---|
| 44 | offset=normalVector->ScalarProduct(y1);
|
|---|
| 45 | }
|
|---|
| 46 | /**
|
|---|
| 47 | * Constructs a plane from two direction vectors and a offset.
|
|---|
| 48 | */
|
|---|
| 49 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
|
|---|
| 50 | normalVector(new Vector()),
|
|---|
| 51 | offset(_offset)
|
|---|
| 52 | {
|
|---|
| 53 | Vector x1 = y1;
|
|---|
| 54 | Vector x2 = y2;
|
|---|
| 55 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
|
|---|
| 56 | throw ZeroVectorException(__FILE__,__LINE__);
|
|---|
| 57 | }
|
|---|
| 58 |
|
|---|
| 59 | if((fabs(x1.Angle(x2)) < MYEPSILON)) {
|
|---|
| 60 | throw LinearDependenceException(__FILE__,__LINE__);
|
|---|
| 61 | }
|
|---|
| 62 | // Log() << Verbose(4) << "relative, first plane coordinates:";
|
|---|
| 63 | // x1.Output((ofstream *)&cout);
|
|---|
| 64 | // Log() << Verbose(0) << endl;
|
|---|
| 65 | // Log() << Verbose(4) << "second plane coordinates:";
|
|---|
| 66 | // x2.Output((ofstream *)&cout);
|
|---|
| 67 | // Log() << Verbose(0) << endl;
|
|---|
| 68 |
|
|---|
| 69 | normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
|
|---|
| 70 | normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
|
|---|
| 71 | normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
|
|---|
| 72 | normalVector->Normalize();
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
|
|---|
| 76 | normalVector(new Vector(_normalVector)),
|
|---|
| 77 | offset(_offset)
|
|---|
| 78 | {
|
|---|
| 79 | if(normalVector->IsZero())
|
|---|
| 80 | throw ZeroVectorException(__FILE__,__LINE__);
|
|---|
| 81 | double factor = 1/normalVector->Norm();
|
|---|
| 82 | // normalize the plane parameters
|
|---|
| 83 | (*normalVector)*=factor;
|
|---|
| 84 | offset*=factor;
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
|
|---|
| 88 | normalVector(new Vector(_normalVector))
|
|---|
| 89 | {
|
|---|
| 90 | if(normalVector->IsZero()){
|
|---|
| 91 | throw ZeroVectorException(__FILE__,__LINE__);
|
|---|
| 92 | }
|
|---|
| 93 | normalVector->Normalize();
|
|---|
| 94 | offset = normalVector->ScalarProduct(_offsetVector);
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 | /**
|
|---|
| 98 | * copy constructor
|
|---|
| 99 | */
|
|---|
| 100 | Plane::Plane(const Plane& plane) :
|
|---|
| 101 | normalVector(new Vector(*plane.normalVector)),
|
|---|
| 102 | offset(plane.offset)
|
|---|
| 103 | {}
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | Plane::~Plane()
|
|---|
| 107 | {}
|
|---|
| 108 |
|
|---|
| 109 |
|
|---|
| 110 | Vector Plane::getNormal() const{
|
|---|
| 111 | return *normalVector;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | double Plane::getOffset() const{
|
|---|
| 115 | return offset;
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | Vector Plane::getOffsetVector() const {
|
|---|
| 119 | return getOffset()*getNormal();
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | vector<Vector> Plane::getPointsOnPlane() const{
|
|---|
| 123 | std::vector<Vector> res;
|
|---|
| 124 | res.reserve(3);
|
|---|
| 125 | // first point on the plane
|
|---|
| 126 | res.push_back(getOffsetVector());
|
|---|
| 127 | // get a vector that has direction of plane
|
|---|
| 128 | Vector direction;
|
|---|
| 129 | direction.GetOneNormalVector(getNormal());
|
|---|
| 130 | res.push_back(res[0]+direction);
|
|---|
| 131 | // get an orthogonal vector to direction and normal (has direction of plane)
|
|---|
| 132 | direction.VectorProduct(getNormal());
|
|---|
| 133 | direction.Normalize();
|
|---|
| 134 | res.push_back(res[0] +direction);
|
|---|
| 135 | return res;
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 |
|
|---|
| 139 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
|
|---|
| 140 | * According to [Bronstein] the vectorial plane equation is:
|
|---|
| 141 | * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
|
|---|
| 142 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
|
|---|
| 143 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
|
|---|
| 144 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
|
|---|
| 145 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
|
|---|
| 146 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
|
|---|
| 147 | * of the line yields the intersection point on the plane.
|
|---|
| 148 | * \param *Origin first vector of line
|
|---|
| 149 | * \param *LineVector second vector of line
|
|---|
| 150 | * \return true - \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
|
|---|
| 151 | */
|
|---|
| 152 | Vector Plane::GetIntersection(const Line& line) const
|
|---|
| 153 | {
|
|---|
| 154 | Info FunctionInfo(__func__);
|
|---|
| 155 | Vector res;
|
|---|
| 156 |
|
|---|
| 157 | double factor1 = getNormal().ScalarProduct(line.getDirection());
|
|---|
| 158 | if(fabs(factor1)<MYEPSILON){
|
|---|
| 159 | // the plane is parallel... under all circumstances this is bad luck
|
|---|
| 160 | // we no have either no or infinite solutions
|
|---|
| 161 | if(isContained(line.getOrigin())){
|
|---|
| 162 | throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
|
|---|
| 163 | }
|
|---|
| 164 | else{
|
|---|
| 165 | throw LinearDependenceException(__FILE__,__LINE__);
|
|---|
| 166 | }
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | double factor2 = getNormal().ScalarProduct(line.getOrigin());
|
|---|
| 170 | double scaleFactor = (offset-factor2)/factor1;
|
|---|
| 171 |
|
|---|
| 172 | res = line.getOrigin() + scaleFactor * line.getDirection();
|
|---|
| 173 |
|
|---|
| 174 | // tests to make sure the resulting vector really is on plane and line
|
|---|
| 175 | ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
|
|---|
| 176 | ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
|
|---|
| 177 | return res;
|
|---|
| 178 | };
|
|---|
| 179 |
|
|---|
| 180 | Vector Plane::mirrorVector(const Vector &rhs) const {
|
|---|
| 181 | Vector helper = getVectorToPoint(rhs);
|
|---|
| 182 | // substract twice the Vector to the plane
|
|---|
| 183 | return rhs+2*helper;
|
|---|
| 184 | }
|
|---|
| 185 |
|
|---|
| 186 | Line Plane::getOrthogonalLine(const Vector &origin) const{
|
|---|
| 187 | return Line(origin,getNormal());
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 | /************ Methods inherited from Space ****************/
|
|---|
| 191 |
|
|---|
| 192 | double Plane::distance(const Vector &point) const{
|
|---|
| 193 | double res = point.ScalarProduct(*normalVector)-offset;
|
|---|
| 194 | return fabs(res);
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | Vector Plane::getClosestPoint(const Vector &point) const{
|
|---|
| 198 | double factor = point.ScalarProduct(*normalVector)-offset;
|
|---|
| 199 | if(fabs(factor) < MYEPSILON){
|
|---|
| 200 | // the point itself lies on the plane
|
|---|
| 201 | return point;
|
|---|
| 202 | }
|
|---|
| 203 | Vector difference = factor * (*normalVector);
|
|---|
| 204 | return (point - difference);
|
|---|
| 205 | }
|
|---|
| 206 |
|
|---|
| 207 | // Operators
|
|---|
| 208 |
|
|---|
| 209 | ostream &operator << (ostream &ost,const Plane &p){
|
|---|
| 210 | ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
|
|---|
| 211 | return ost;
|
|---|
| 212 | }
|
|---|