| [bcf653] | 1 | /*
 | 
|---|
 | 2 |  * Project: MoleCuilder
 | 
|---|
 | 3 |  * Description: creates and alters molecular systems
 | 
|---|
 | 4 |  * Copyright (C)  2010 University of Bonn. All rights reserved.
 | 
|---|
 | 5 |  * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
 | 
|---|
 | 6 |  */
 | 
|---|
 | 7 | 
 | 
|---|
| [0a4f7f] | 8 | /*
 | 
|---|
 | 9 |  * Plane.cpp
 | 
|---|
 | 10 |  *
 | 
|---|
 | 11 |  *  Created on: Apr 7, 2010
 | 
|---|
 | 12 |  *      Author: crueger
 | 
|---|
 | 13 |  */
 | 
|---|
 | 14 | 
 | 
|---|
| [bf3817] | 15 | // include config.h
 | 
|---|
 | 16 | #ifdef HAVE_CONFIG_H
 | 
|---|
 | 17 | #include <config.h>
 | 
|---|
 | 18 | #endif
 | 
|---|
 | 19 | 
 | 
|---|
| [112b09] | 20 | #include "Helpers/MemDebug.hpp"
 | 
|---|
 | 21 | 
 | 
|---|
| [57f243] | 22 | #include "LinearAlgebra/Plane.hpp"
 | 
|---|
 | 23 | #include "LinearAlgebra/Vector.hpp"
 | 
|---|
| [2247a9] | 24 | #include "defs.hpp"
 | 
|---|
| [952f38] | 25 | #include "Helpers/Info.hpp"
 | 
|---|
 | 26 | #include "Helpers/Log.hpp"
 | 
|---|
 | 27 | #include "Helpers/Verbose.hpp"
 | 
|---|
| [0a4f7f] | 28 | #include "Helpers/Assert.hpp"
 | 
|---|
| [2247a9] | 29 | #include <cmath>
 | 
|---|
| [57f243] | 30 | #include "LinearAlgebra/Line.hpp"
 | 
|---|
| [27ac00] | 31 | #include "Exceptions/MultipleSolutionsException.hpp"
 | 
|---|
| [0a4f7f] | 32 | 
 | 
|---|
 | 33 | /**
 | 
|---|
 | 34 |  * generates a plane from three given vectors defining three points in space
 | 
|---|
 | 35 |  */
 | 
|---|
| [2cbe97] | 36 | Plane::Plane(const Vector &y1, const Vector &y2, const Vector &y3) throw(LinearDependenceException) :
 | 
|---|
| [0a4f7f] | 37 |   normalVector(new Vector())
 | 
|---|
 | 38 | {
 | 
|---|
| [273382] | 39 |   Vector x1 = y1 -y2;
 | 
|---|
 | 40 |   Vector x2 = y3 -y2;
 | 
|---|
 | 41 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 42 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 43 |   }
 | 
|---|
 | 44 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 45 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 46 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 47 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 48 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 49 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 52 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 53 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 54 |   normalVector->Normalize();
 | 
|---|
 | 55 | 
 | 
|---|
| [273382] | 56 |   offset=normalVector->ScalarProduct(y1);
 | 
|---|
| [0a4f7f] | 57 | }
 | 
|---|
 | 58 | /**
 | 
|---|
| [2cbe97] | 59 |  * Constructs a plane from two direction vectors and a offset.
 | 
|---|
| [0a4f7f] | 60 |  */
 | 
|---|
| [fa5a6a] | 61 | Plane::Plane(const Vector &y1, const Vector &y2, double _offset) throw(ZeroVectorException,LinearDependenceException) :
 | 
|---|
| [0a4f7f] | 62 |     normalVector(new Vector()),
 | 
|---|
 | 63 |     offset(_offset)
 | 
|---|
 | 64 | {
 | 
|---|
| [273382] | 65 |   Vector x1 = y1;
 | 
|---|
 | 66 |   Vector x2 = y2;
 | 
|---|
| [fa5a6a] | 67 |   if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON)) {
 | 
|---|
 | 68 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
 | 69 |   }
 | 
|---|
 | 70 | 
 | 
|---|
 | 71 |   if((fabs(x1.Angle(x2)) < MYEPSILON)) {
 | 
|---|
| [0a4f7f] | 72 |     throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 73 |   }
 | 
|---|
 | 74 | //  Log() << Verbose(4) << "relative, first plane coordinates:";
 | 
|---|
 | 75 | //  x1.Output((ofstream *)&cout);
 | 
|---|
 | 76 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 77 | //  Log() << Verbose(4) << "second plane coordinates:";
 | 
|---|
 | 78 | //  x2.Output((ofstream *)&cout);
 | 
|---|
 | 79 | //  Log() << Verbose(0) << endl;
 | 
|---|
 | 80 | 
 | 
|---|
 | 81 |   normalVector->at(0) = (x1[1]*x2[2] - x1[2]*x2[1]);
 | 
|---|
 | 82 |   normalVector->at(1) = (x1[2]*x2[0] - x1[0]*x2[2]);
 | 
|---|
 | 83 |   normalVector->at(2) = (x1[0]*x2[1] - x1[1]*x2[0]);
 | 
|---|
 | 84 |   normalVector->Normalize();
 | 
|---|
 | 85 | }
 | 
|---|
 | 86 | 
 | 
|---|
| [2cbe97] | 87 | Plane::Plane(const Vector &_normalVector, double _offset) throw(ZeroVectorException):
 | 
|---|
| [0a4f7f] | 88 |   normalVector(new Vector(_normalVector)),
 | 
|---|
 | 89 |   offset(_offset)
 | 
|---|
| [72e7fa] | 90 | {
 | 
|---|
| [2cbe97] | 91 |   if(normalVector->IsZero())
 | 
|---|
 | 92 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
| [72e7fa] | 93 |   double factor = 1/normalVector->Norm();
 | 
|---|
 | 94 |   // normalize the plane parameters
 | 
|---|
 | 95 |   (*normalVector)*=factor;
 | 
|---|
 | 96 |   offset*=factor;
 | 
|---|
 | 97 | }
 | 
|---|
| [0a4f7f] | 98 | 
 | 
|---|
| [2cbe97] | 99 | Plane::Plane(const Vector &_normalVector, const Vector &_offsetVector) throw(ZeroVectorException):
 | 
|---|
| [0a4f7f] | 100 |     normalVector(new Vector(_normalVector))
 | 
|---|
 | 101 | {
 | 
|---|
| [2cbe97] | 102 |   if(normalVector->IsZero()){
 | 
|---|
 | 103 |     throw ZeroVectorException(__FILE__,__LINE__);
 | 
|---|
 | 104 |   }
 | 
|---|
| [3cdd16] | 105 |   normalVector->Normalize();
 | 
|---|
| [273382] | 106 |   offset = normalVector->ScalarProduct(_offsetVector);
 | 
|---|
| [0a4f7f] | 107 | }
 | 
|---|
 | 108 | 
 | 
|---|
| [d4c9ae] | 109 | /**
 | 
|---|
 | 110 |  * copy constructor
 | 
|---|
 | 111 |  */
 | 
|---|
 | 112 | Plane::Plane(const Plane& plane) :
 | 
|---|
 | 113 |   normalVector(new Vector(*plane.normalVector)),
 | 
|---|
 | 114 |   offset(plane.offset)
 | 
|---|
 | 115 | {}
 | 
|---|
 | 116 | 
 | 
|---|
 | 117 | 
 | 
|---|
| [0a4f7f] | 118 | Plane::~Plane()
 | 
|---|
 | 119 | {}
 | 
|---|
 | 120 | 
 | 
|---|
 | 121 | 
 | 
|---|
| [fa5a6a] | 122 | Vector Plane::getNormal() const{
 | 
|---|
| [0a4f7f] | 123 |   return *normalVector;
 | 
|---|
 | 124 | }
 | 
|---|
 | 125 | 
 | 
|---|
| [fa5a6a] | 126 | double Plane::getOffset() const{
 | 
|---|
| [0a4f7f] | 127 |   return offset;
 | 
|---|
 | 128 | }
 | 
|---|
 | 129 | 
 | 
|---|
| [45ef76] | 130 | Vector Plane::getOffsetVector() const {
 | 
|---|
| [72e7fa] | 131 |   return getOffset()*getNormal();
 | 
|---|
 | 132 | }
 | 
|---|
| [c61c87] | 133 | 
 | 
|---|
| [45ef76] | 134 | vector<Vector> Plane::getPointsOnPlane() const{
 | 
|---|
| [1829c4] | 135 |   std::vector<Vector> res;
 | 
|---|
| [fa5a6a] | 136 |   res.reserve(3);
 | 
|---|
| [1829c4] | 137 |   // first point on the plane
 | 
|---|
| [fa5a6a] | 138 |   res.push_back(getOffsetVector());
 | 
|---|
 | 139 |   // get a vector that has direction of plane
 | 
|---|
| [c61c87] | 140 |   Vector direction;
 | 
|---|
| [fa5a6a] | 141 |   direction.GetOneNormalVector(getNormal());
 | 
|---|
 | 142 |   res.push_back(res[0]+direction);
 | 
|---|
 | 143 |   // get an orthogonal vector to direction and normal (has direction of plane)
 | 
|---|
 | 144 |   direction.VectorProduct(getNormal());
 | 
|---|
| [c61c87] | 145 |   direction.Normalize();
 | 
|---|
| [fa5a6a] | 146 |   res.push_back(res[0] +direction);
 | 
|---|
| [c61c87] | 147 |   return res;
 | 
|---|
| [1829c4] | 148 | }
 | 
|---|
| [c61c87] | 149 | 
 | 
|---|
| [72e7fa] | 150 | 
 | 
|---|
| [0a4f7f] | 151 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
 | 
|---|
 | 152 |  * According to [Bronstein] the vectorial plane equation is:
 | 
|---|
 | 153 |  *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
 | 
|---|
 | 154 |  * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
 | 
|---|
 | 155 |  * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
 | 
|---|
 | 156 |  * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
 | 
|---|
 | 157 |  * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
 | 
|---|
 | 158 |  * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
 | 
|---|
 | 159 |  * of the line yields the intersection point on the plane.
 | 
|---|
 | 160 |  * \param *Origin first vector of line
 | 
|---|
 | 161 |  * \param *LineVector second vector of line
 | 
|---|
 | 162 |  * \return true -  \a this contains intersection point on return, false - line is parallel to plane (even if in-plane)
 | 
|---|
 | 163 |  */
 | 
|---|
| [27ac00] | 164 | Vector Plane::GetIntersection(const Line& line) const
 | 
|---|
| [0a4f7f] | 165 | {
 | 
|---|
 | 166 |   Info FunctionInfo(__func__);
 | 
|---|
 | 167 |   Vector res;
 | 
|---|
 | 168 | 
 | 
|---|
| [27ac00] | 169 |   double factor1 = getNormal().ScalarProduct(line.getDirection());
 | 
|---|
 | 170 |   if(fabs(factor1)<MYEPSILON){
 | 
|---|
 | 171 |     // the plane is parallel... under all circumstances this is bad luck
 | 
|---|
 | 172 |     // we no have either no or infinite solutions
 | 
|---|
 | 173 |     if(isContained(line.getOrigin())){
 | 
|---|
 | 174 |       throw MultipleSolutionsException<Vector>(__FILE__,__LINE__,line.getOrigin());
 | 
|---|
 | 175 |     }
 | 
|---|
 | 176 |     else{
 | 
|---|
 | 177 |       throw LinearDependenceException(__FILE__,__LINE__);
 | 
|---|
 | 178 |     }
 | 
|---|
| [0a4f7f] | 179 |   }
 | 
|---|
 | 180 | 
 | 
|---|
| [27ac00] | 181 |   double factor2 = getNormal().ScalarProduct(line.getOrigin());
 | 
|---|
| [0a4f7f] | 182 |   double scaleFactor = (offset-factor2)/factor1;
 | 
|---|
 | 183 | 
 | 
|---|
| [27ac00] | 184 |   res = line.getOrigin() + scaleFactor * line.getDirection();
 | 
|---|
| [0a4f7f] | 185 | 
 | 
|---|
| [27ac00] | 186 |   // tests to make sure the resulting vector really is on plane and line
 | 
|---|
 | 187 |   ASSERT(isContained(res),"Calculated line-Plane intersection does not lie on plane.");
 | 
|---|
 | 188 |   ASSERT(line.isContained(res),"Calculated line-Plane intersection does not lie on line.");
 | 
|---|
| [0a4f7f] | 189 |   return res;
 | 
|---|
 | 190 | };
 | 
|---|
| [2247a9] | 191 | 
 | 
|---|
| [ccf826] | 192 | Vector Plane::mirrorVector(const Vector &rhs) const {
 | 
|---|
 | 193 |   Vector helper = getVectorToPoint(rhs);
 | 
|---|
 | 194 |   // substract twice the Vector to the plane
 | 
|---|
 | 195 |   return rhs+2*helper;
 | 
|---|
 | 196 | }
 | 
|---|
 | 197 | 
 | 
|---|
| [5589858] | 198 | Line Plane::getOrthogonalLine(const Vector &origin) const{
 | 
|---|
 | 199 |   return Line(origin,getNormal());
 | 
|---|
 | 200 | }
 | 
|---|
 | 201 | 
 | 
|---|
| [2247a9] | 202 | /************ Methods inherited from Space ****************/
 | 
|---|
 | 203 | 
 | 
|---|
| [005e18] | 204 | double Plane::distance(const Vector &point) const{
 | 
|---|
| [2247a9] | 205 |   double res = point.ScalarProduct(*normalVector)-offset;
 | 
|---|
 | 206 |   return fabs(res);
 | 
|---|
 | 207 | }
 | 
|---|
 | 208 | 
 | 
|---|
| [005e18] | 209 | Vector Plane::getClosestPoint(const Vector &point) const{
 | 
|---|
| [fa5a6a] | 210 |   double factor = point.ScalarProduct(*normalVector)-offset;
 | 
|---|
 | 211 |   if(fabs(factor) < MYEPSILON){
 | 
|---|
| [2247a9] | 212 |     // the point itself lies on the plane
 | 
|---|
 | 213 |     return point;
 | 
|---|
 | 214 |   }
 | 
|---|
| [fa5a6a] | 215 |   Vector difference = factor * (*normalVector);
 | 
|---|
 | 216 |   return (point - difference);
 | 
|---|
 | 217 | }
 | 
|---|
 | 218 | 
 | 
|---|
 | 219 | // Operators
 | 
|---|
 | 220 | 
 | 
|---|
 | 221 | ostream &operator << (ostream &ost,const Plane &p){
 | 
|---|
 | 222 |   ost << "<" << p.getNormal() << ";x> - " << p.getOffset() << "=0";
 | 
|---|
 | 223 |   return ost;
 | 
|---|
| [2247a9] | 224 | }
 | 
|---|