[3bc926] | 1 | /*
|
---|
| 2 | * MatrixContent.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Nov 14, 2010
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 |
|
---|
| 9 | // include config.h
|
---|
| 10 | #ifdef HAVE_CONFIG_H
|
---|
| 11 | #include <config.h>
|
---|
| 12 | #endif
|
---|
| 13 |
|
---|
| 14 | #include "Helpers/MemDebug.hpp"
|
---|
| 15 |
|
---|
[cca9ef] | 16 | #include "LinearAlgebra/RealSpaceMatrix.hpp"
|
---|
[3bc926] | 17 | #include "Exceptions/NotInvertibleException.hpp"
|
---|
| 18 | #include "Helpers/Assert.hpp"
|
---|
[e4fe8d] | 19 | #include "Helpers/defs.hpp"
|
---|
[6d5a10] | 20 | #include "Helpers/fast_functions.hpp"
|
---|
[3bc926] | 21 | #include "LinearAlgebra/Vector.hpp"
|
---|
| 22 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
| 23 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
| 24 |
|
---|
| 25 | #include <gsl/gsl_blas.h>
|
---|
| 26 | #include <gsl/gsl_eigen.h>
|
---|
[0d4424] | 27 | #include <gsl/gsl_linalg.h>
|
---|
[3bc926] | 28 | #include <gsl/gsl_matrix.h>
|
---|
| 29 | #include <gsl/gsl_multimin.h>
|
---|
| 30 | #include <gsl/gsl_vector.h>
|
---|
| 31 | #include <cmath>
|
---|
[b4cf2b] | 32 | #include <cassert>
|
---|
[3bc926] | 33 | #include <iostream>
|
---|
[b4cf2b] | 34 | #include <set>
|
---|
[3bc926] | 35 |
|
---|
| 36 | using namespace std;
|
---|
| 37 |
|
---|
| 38 |
|
---|
| 39 | /** Constructor for class MatrixContent.
|
---|
| 40 | * \param rows number of rows
|
---|
| 41 | * \param columns number of columns
|
---|
| 42 | */
|
---|
| 43 | MatrixContent::MatrixContent(size_t _rows, size_t _columns) :
|
---|
| 44 | rows(_rows),
|
---|
| 45 | columns(_columns)
|
---|
| 46 | {
|
---|
| 47 | content = gsl_matrix_calloc(rows, columns);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
[8e9ce1] | 50 | /** Constructor of class VectorContent.
|
---|
| 51 | * We need this MatrixBaseCase for the VectorContentView class.
|
---|
| 52 | * There no content should be allocated, as it is just a view with an internal
|
---|
| 53 | * gsl_vector_view. Hence, MatrixBaseCase is just dummy class to give the
|
---|
| 54 | * constructor a unique signature.
|
---|
| 55 | * \param MatrixBaseCase
|
---|
| 56 | */
|
---|
| 57 | MatrixContent::MatrixContent(size_t _rows, size_t _columns, MatrixBaseCase) :
|
---|
| 58 | rows(_rows),
|
---|
| 59 | columns(_columns)
|
---|
| 60 | {}
|
---|
| 61 |
|
---|
[3bc926] | 62 | /** Constructor for class MatrixContent.
|
---|
| 63 | * \param rows number of rows
|
---|
| 64 | * \param columns number of columns
|
---|
| 65 | * \param *src array with components to initialize matrix with
|
---|
| 66 | */
|
---|
| 67 | MatrixContent::MatrixContent(size_t _rows, size_t _columns, const double *src) :
|
---|
[8e9ce1] | 68 | rows(_rows),
|
---|
| 69 | columns(_columns)
|
---|
[3bc926] | 70 | {
|
---|
| 71 | content = gsl_matrix_calloc(rows, columns);
|
---|
| 72 | set(0,0, src[0]);
|
---|
| 73 | set(1,0, src[1]);
|
---|
| 74 | set(2,0, src[2]);
|
---|
| 75 |
|
---|
| 76 | set(0,1, src[3]);
|
---|
| 77 | set(1,1, src[4]);
|
---|
| 78 | set(2,1, src[5]);
|
---|
| 79 |
|
---|
| 80 | set(0,2, src[6]);
|
---|
| 81 | set(1,2, src[7]);
|
---|
| 82 | set(2,2, src[8]);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | /** Constructor for class MatrixContent.
|
---|
| 86 | * We embed the given gls_matrix pointer within this class and set it to NULL
|
---|
| 87 | * afterwards.
|
---|
| 88 | * \param *src source gsl_matrix vector to embed within this class
|
---|
| 89 | */
|
---|
| 90 | MatrixContent::MatrixContent(gsl_matrix *&src) :
|
---|
[8e9ce1] | 91 | rows(src->size1),
|
---|
| 92 | columns(src->size2)
|
---|
[3bc926] | 93 | {
|
---|
| 94 | content = gsl_matrix_alloc(src->size1, src->size2);
|
---|
| 95 | gsl_matrix_memcpy(content,src);
|
---|
| 96 | // content = src;
|
---|
| 97 | // src = NULL;
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | /** Copy constructor for class MatrixContent.
|
---|
| 101 | * \param &src reference to source MatrixContent
|
---|
| 102 | */
|
---|
| 103 | MatrixContent::MatrixContent(const MatrixContent &src) :
|
---|
[8e9ce1] | 104 | rows(src.rows),
|
---|
| 105 | columns(src.columns)
|
---|
[3bc926] | 106 | {
|
---|
| 107 | content = gsl_matrix_alloc(src.rows, src.columns);
|
---|
| 108 | gsl_matrix_memcpy(content,src.content);
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | /** Copy constructor for class MatrixContent.
|
---|
| 112 | * \param *src pointer to source MatrixContent
|
---|
| 113 | */
|
---|
| 114 | MatrixContent::MatrixContent(const MatrixContent *src) :
|
---|
[8e9ce1] | 115 | rows(src->rows),
|
---|
| 116 | columns(src->columns)
|
---|
[3bc926] | 117 | {
|
---|
| 118 | ASSERT(src != NULL, "MatrixContent::MatrixContent - pointer to source matrix is NULL!");
|
---|
| 119 | content = gsl_matrix_alloc(src->rows, src->columns);
|
---|
| 120 | gsl_matrix_memcpy(content,src->content);
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | /** Destructor for class MatrixContent.
|
---|
| 124 | */
|
---|
| 125 | MatrixContent::~MatrixContent()
|
---|
| 126 | {
|
---|
| 127 | gsl_matrix_free(content);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | /** Set matrix to identity.
|
---|
| 131 | */
|
---|
| 132 | void MatrixContent::setIdentity()
|
---|
| 133 | {
|
---|
| 134 | for(int i=rows;i--;){
|
---|
| 135 | for(int j=columns;j--;){
|
---|
| 136 | set(i,j,i==j);
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | /** Set all matrix components to zero.
|
---|
| 142 | */
|
---|
| 143 | void MatrixContent::setZero()
|
---|
| 144 | {
|
---|
| 145 | for(int i=rows;i--;){
|
---|
| 146 | for(int j=columns;j--;){
|
---|
| 147 | set(i,j,0.);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 |
|
---|
[0d4424] | 152 | /** Set all matrix components to a given value.
|
---|
| 153 | * \param _value value to set each component to
|
---|
| 154 | */
|
---|
| 155 | void MatrixContent::setValue(double _value)
|
---|
| 156 | {
|
---|
| 157 | for(int i=rows;i--;){
|
---|
| 158 | for(int j=columns;j--;){
|
---|
| 159 | set(i,j,_value);
|
---|
| 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 |
|
---|
[3bc926] | 164 | /** Copy operator for MatrixContent with self-assignment check.
|
---|
| 165 | * \param &src matrix to compare to
|
---|
| 166 | * \return reference to this
|
---|
| 167 | */
|
---|
| 168 | MatrixContent &MatrixContent::operator=(const MatrixContent &src)
|
---|
| 169 | {
|
---|
| 170 | if(&src!=this){
|
---|
| 171 | gsl_matrix_memcpy(content,src.content);
|
---|
| 172 | }
|
---|
| 173 | return *this;
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | /** Addition operator.
|
---|
| 177 | * \param &rhs matrix to add
|
---|
| 178 | * \return reference to this
|
---|
| 179 | */
|
---|
| 180 | const MatrixContent &MatrixContent::operator+=(const MatrixContent &rhs)
|
---|
| 181 | {
|
---|
| 182 | gsl_matrix_add(content, rhs.content);
|
---|
| 183 | return *this;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | /** Subtraction operator.
|
---|
| 187 | * \param &rhs matrix to subtract
|
---|
| 188 | * \return reference to this
|
---|
| 189 | */
|
---|
| 190 | const MatrixContent &MatrixContent::operator-=(const MatrixContent &rhs)
|
---|
| 191 | {
|
---|
| 192 | gsl_matrix_sub(content, rhs.content);
|
---|
| 193 | return *this;
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | /** Multiplication operator.
|
---|
| 197 | * Note that here matrix have to have same dimensions.
|
---|
| 198 | * \param &rhs matrix to multiply with
|
---|
| 199 | * \return reference to this
|
---|
| 200 | */
|
---|
| 201 | const MatrixContent &MatrixContent::operator*=(const MatrixContent &rhs)
|
---|
| 202 | {
|
---|
| 203 | ASSERT(rows == rhs.rows,
|
---|
| 204 | "MatrixContent::operator*=() - row dimension differ: "+toString(rows)+" != "+toString(rhs.rows)+".");
|
---|
| 205 | ASSERT(columns == rhs.columns,
|
---|
| 206 | "MatrixContent::operator*=() - columns dimension differ: "+toString(columns)+" != "+toString(rhs.columns)+".");
|
---|
| 207 | (*this) = (*this)*rhs;
|
---|
| 208 | return *this;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | /** Multiplication with copy operator.
|
---|
| 212 | * \param &rhs matrix to multiply with
|
---|
| 213 | * \return reference to newly allocated MatrixContent
|
---|
| 214 | */
|
---|
| 215 | const MatrixContent MatrixContent::operator*(const MatrixContent &rhs) const
|
---|
| 216 | {
|
---|
[b4cf2b] | 217 | gsl_matrix *res = gsl_matrix_alloc(rows, rhs.columns);
|
---|
[3bc926] | 218 | gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, content, rhs.content, 0.0, res);
|
---|
| 219 | // gsl_matrix is taken over by constructor, hence no free
|
---|
| 220 | MatrixContent tmp(res);
|
---|
| 221 | gsl_matrix_free(res);
|
---|
| 222 | return tmp;
|
---|
| 223 | }
|
---|
| 224 |
|
---|
[0d4424] | 225 | /* ========================== Accessing =============================== */
|
---|
| 226 |
|
---|
[3bc926] | 227 | /** Accessor for manipulating component (i,j).
|
---|
| 228 | * \param i row number
|
---|
| 229 | * \param j column number
|
---|
| 230 | * \return reference to component (i,j)
|
---|
| 231 | */
|
---|
| 232 | double &MatrixContent::at(size_t i, size_t j)
|
---|
| 233 | {
|
---|
| 234 | ASSERT((i>=0) && (i<rows),
|
---|
| 235 | "MatrixContent::at() - Index i="+toString(i)+" for Matrix access out of range [0,"+toString(rows)+"]");
|
---|
| 236 | ASSERT((j>=0) && (j<columns),
|
---|
| 237 | "MatrixContent::at() - Index j="+toString(j)+" for Matrix access out of range [0,"+toString(columns)+"]");
|
---|
| 238 | return *gsl_matrix_ptr (content, i, j);
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | /** Constant accessor for (value of) component (i,j).
|
---|
| 242 | * \param i row number
|
---|
| 243 | * \param j column number
|
---|
| 244 | * \return const component (i,j)
|
---|
| 245 | */
|
---|
| 246 | const double MatrixContent::at(size_t i, size_t j) const
|
---|
| 247 | {
|
---|
| 248 | ASSERT((i>=0) && (i<rows),
|
---|
| 249 | "MatrixContent::at() - Index i="+toString(i)+" for Matrix access out of range [0,"+toString(rows)+"]");
|
---|
| 250 | ASSERT((j>=0) && (j<columns),
|
---|
| 251 | "MatrixContent::at() - Index j="+toString(j)+" for Matrix access out of range [0,"+toString(columns)+"]");
|
---|
| 252 | return gsl_matrix_get(content, i, j);
|
---|
| 253 | }
|
---|
| 254 |
|
---|
[0d4424] | 255 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
[6c1cd1] | 256 | * If \a m or \a n lies outside the allowed range of 0 to MatrixContent::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
[0d4424] | 257 | * \param m index
|
---|
| 258 | * \return pointer to \a m-th element
|
---|
| 259 | */
|
---|
| 260 | double *MatrixContent::Pointer(size_t m, size_t n)
|
---|
| 261 | {
|
---|
| 262 | return gsl_matrix_ptr (content, m, n);
|
---|
| 263 | };
|
---|
| 264 |
|
---|
| 265 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
[6c1cd1] | 266 | * If \a m or \a n lies outside the allowed range of 0 to MatrixContent::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
[0d4424] | 267 | * \param m index
|
---|
| 268 | * \return const pointer to \a m-th element
|
---|
| 269 | */
|
---|
| 270 | const double *MatrixContent::const_Pointer(size_t m, size_t n) const
|
---|
| 271 | {
|
---|
| 272 | return gsl_matrix_const_ptr (content, m, n);
|
---|
| 273 | };
|
---|
| 274 |
|
---|
| 275 | /* ========================== Initializing =============================== */
|
---|
| 276 |
|
---|
[3bc926] | 277 | /** Setter for component (i,j).
|
---|
| 278 | * \param i row numbr
|
---|
| 279 | * \param j column numnber
|
---|
| 280 | * \param value value to set componnt (i,j) to
|
---|
| 281 | */
|
---|
| 282 | void MatrixContent::set(size_t i, size_t j, const double value)
|
---|
| 283 | {
|
---|
| 284 | ASSERT((i>=0) && (i<rows),
|
---|
| 285 | "MatrixContent::set() - Index i="+toString(i)+" for Matrix access out of range [0,"+toString(rows)+"]");
|
---|
| 286 | ASSERT((j>=0) && (j<columns),
|
---|
| 287 | "MatrixContent::set() - Index j="+toString(j)+" for Matrix access out of range [0,"+toString(columns)+"]");
|
---|
| 288 | gsl_matrix_set(content,i,j,value);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
[0d4424] | 291 | /** This function sets the matrix from a double array.
|
---|
| 292 | * Creates a matrix view of the array and performs a memcopy.
|
---|
| 293 | * \param *x array of values (no dimension check is performed)
|
---|
| 294 | */
|
---|
| 295 | void MatrixContent::setFromDoubleArray(double * x)
|
---|
| 296 | {
|
---|
| 297 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
| 298 | gsl_matrix_memcpy (content, &m.matrix);
|
---|
| 299 | };
|
---|
| 300 |
|
---|
| 301 | /* ====================== Exchanging elements ============================ */
|
---|
| 302 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
| 303 | * \param i i-th row to swap with ...
|
---|
| 304 | * \param j ... j-th row to swap against
|
---|
| 305 | */
|
---|
| 306 | bool MatrixContent::SwapRows(size_t i, size_t j)
|
---|
| 307 | {
|
---|
| 308 | return (gsl_matrix_swap_rows (content, i, j) == GSL_SUCCESS);
|
---|
| 309 | };
|
---|
| 310 |
|
---|
| 311 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
| 312 | * \param i i-th column to swap with ...
|
---|
| 313 | * \param j ... j-th column to swap against
|
---|
| 314 | */
|
---|
| 315 | bool MatrixContent::SwapColumns(size_t i, size_t j)
|
---|
| 316 | {
|
---|
| 317 | return (gsl_matrix_swap_columns (content, i, j) == GSL_SUCCESS);
|
---|
| 318 | };
|
---|
| 319 |
|
---|
| 320 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
| 321 | * The matrix must be square for this operation to be possible.
|
---|
| 322 | * \param i i-th row to swap with ...
|
---|
| 323 | * \param j ... j-th column to swap against
|
---|
| 324 | */
|
---|
| 325 | bool MatrixContent::SwapRowColumn(size_t i, size_t j)
|
---|
| 326 | {
|
---|
| 327 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
| 328 | return (gsl_matrix_swap_rowcol (content, i, j) == GSL_SUCCESS);
|
---|
| 329 | };
|
---|
| 330 |
|
---|
[3bc926] | 331 | /** Return transposed matrix.
|
---|
| 332 | * \return new matrix that is transposed of this.
|
---|
| 333 | */
|
---|
| 334 | MatrixContent MatrixContent::transpose() const
|
---|
| 335 | {
|
---|
[0d4424] | 336 | gsl_matrix *res = gsl_matrix_alloc(columns, rows); // column and row dimensions exchanged!
|
---|
[3bc926] | 337 | gsl_matrix_transpose_memcpy(res, content);
|
---|
| 338 | MatrixContent newContent(res);
|
---|
| 339 | gsl_matrix_free(res);
|
---|
| 340 | return newContent;
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | /** Turn this matrix into its transposed.
|
---|
| 344 | * Note that this is only possible if rows == columns.
|
---|
| 345 | */
|
---|
| 346 | MatrixContent &MatrixContent::transpose()
|
---|
| 347 | {
|
---|
| 348 | ASSERT( rows == columns,
|
---|
| 349 | "MatrixContent::transpose() - cannot transpose onto itself as matrix not square: "+toString(rows)+"!="+toString(columns)+"!");
|
---|
| 350 | double tmp;
|
---|
| 351 | for (size_t i=0;i<rows;i++)
|
---|
| 352 | for (size_t j=i+1;j<rows;j++) {
|
---|
| 353 | tmp = at(j,i);
|
---|
| 354 | at(j,i) = at(i,j);
|
---|
| 355 | at(i,j) = tmp;
|
---|
| 356 | }
|
---|
| 357 | return *this;
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | /** Transform the matrix to its eigenbasis ans return resulting eigenvalues.
|
---|
[b4cf2b] | 361 | * Note that we only return real-space part in case of non-symmetric matrix.
|
---|
[3bc926] | 362 | * \warn return vector has to be freed'd
|
---|
[b4cf2b] | 363 | * TODO: encapsulate return value in boost::shared_ptr or in VectorContent.
|
---|
[3bc926] | 364 | * \return gsl_vector pointer to vector of eigenvalues
|
---|
| 365 | */
|
---|
| 366 | gsl_vector* MatrixContent::transformToEigenbasis()
|
---|
| 367 | {
|
---|
[b4cf2b] | 368 | if (rows == columns) { // symmetric
|
---|
| 369 | gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(rows);
|
---|
| 370 | gsl_vector *eval = gsl_vector_alloc(rows);
|
---|
| 371 | gsl_matrix *evec = gsl_matrix_alloc(rows, rows);
|
---|
| 372 | gsl_eigen_symmv(content, eval, evec, T);
|
---|
| 373 | gsl_eigen_symmv_free(T);
|
---|
| 374 | gsl_matrix_memcpy(content, evec);
|
---|
| 375 | gsl_matrix_free(evec);
|
---|
| 376 | return eval;
|
---|
| 377 | } else { // non-symmetric
|
---|
| 378 | //ASSERT(false, "MatrixContent::transformToEigenbasis() - only implemented for square matrices: "+toString(rows)+"!="+toString(columns)+"!");
|
---|
| 379 |
|
---|
| 380 | // blow up gsl_matrix in content to square matrix, fill other components with zero
|
---|
| 381 | const size_t greaterDimension = rows > columns ? rows : columns;
|
---|
| 382 | gsl_matrix *content_square = gsl_matrix_alloc(greaterDimension, greaterDimension);
|
---|
| 383 | for (size_t i=0; i<greaterDimension; i++) {
|
---|
| 384 | for (size_t j=0; j<greaterDimension; j++) {
|
---|
| 385 | const double value = ((i < rows) && (j < columns)) ? gsl_matrix_get(content,i,j) : 0.;
|
---|
| 386 | gsl_matrix_set(content_square, i,j, value);
|
---|
| 387 | }
|
---|
| 388 | }
|
---|
| 389 |
|
---|
[8e9ce1] | 390 | // show squared matrix
|
---|
| 391 | MatrixContent *ContentSquare = new MatrixViewContent(gsl_matrix_submatrix(content,0,0,content->size1, content->size2));
|
---|
| 392 | std::cout << "The squared matrix is " << *ContentSquare << std::endl;
|
---|
| 393 | delete ContentSquare;
|
---|
| 394 |
|
---|
[b4cf2b] | 395 | // solve eigenvalue problem
|
---|
| 396 | gsl_eigen_nonsymmv_workspace *T = gsl_eigen_nonsymmv_alloc(rows);
|
---|
| 397 | gsl_vector_complex *eval = gsl_vector_complex_alloc(greaterDimension);
|
---|
| 398 | gsl_matrix_complex *evec = gsl_matrix_complex_alloc(greaterDimension, greaterDimension);
|
---|
| 399 | gsl_eigen_nonsymmv(content_square, eval, evec, T);
|
---|
| 400 | gsl_eigen_nonsymmv_free(T);
|
---|
| 401 |
|
---|
[8e9ce1] | 402 | // copy eigenvectors real-parts into content_square and ...
|
---|
| 403 | // ... show complex-valued eigenvector matrix
|
---|
[b4cf2b] | 404 | std::cout << "Resulting eigenvector matrix is [";
|
---|
| 405 | for (size_t i=0; i<greaterDimension; i++) {
|
---|
| 406 | for (size_t j=0; j<greaterDimension; j++) {
|
---|
| 407 | std::cout << "(" << GSL_REAL(gsl_matrix_complex_get(evec,i,j))
|
---|
| 408 | << "," << GSL_IMAG(gsl_matrix_complex_get(evec,i,j)) << ")";
|
---|
| 409 | if (j < greaterDimension-1)
|
---|
| 410 | std::cout << " ";
|
---|
| 411 | gsl_matrix_set(content_square, i,j, GSL_REAL(gsl_matrix_complex_get(evec,i,j)));
|
---|
| 412 | }
|
---|
| 413 | if (i < greaterDimension-1)
|
---|
| 414 | std::cout << "; ";
|
---|
| 415 | }
|
---|
| 416 | std::cout << "]" << std::endl;
|
---|
| 417 |
|
---|
| 418 | // scan for zero rows and columns to drop
|
---|
| 419 | std::set<size_t> RowDropList;
|
---|
| 420 | std::set<size_t> ColumnDropList;
|
---|
| 421 | for (size_t i=0; i<greaterDimension; i++) { // only copy real space part
|
---|
| 422 | double Rsum = 0.;
|
---|
| 423 | double Csum = 0.;
|
---|
| 424 | for (size_t j=0; j<greaterDimension; j++) {
|
---|
| 425 | Rsum += fabs(GSL_REAL(gsl_matrix_complex_get(evec,i,j)));
|
---|
| 426 | Csum += fabs(GSL_REAL(gsl_matrix_complex_get(evec,j,i)));
|
---|
| 427 | }
|
---|
| 428 | Rsum /= (double)greaterDimension;
|
---|
| 429 | Csum /= (double)greaterDimension;
|
---|
| 430 | if (Rsum < MYEPSILON)
|
---|
| 431 | RowDropList.insert(i);
|
---|
| 432 | if (Csum < MYEPSILON)
|
---|
| 433 | ColumnDropList.insert(i);
|
---|
| 434 | }
|
---|
| 435 |
|
---|
| 436 | // copy real-parts of complex eigenvalues and eigenvectors
|
---|
| 437 | gsl_vector *eval_real = gsl_vector_alloc(greaterDimension);
|
---|
| 438 | size_t I=0;
|
---|
| 439 | size_t J=0;
|
---|
| 440 | for (size_t i=0; i<greaterDimension; i++) { // only copy real space part
|
---|
| 441 | if (RowDropList.find(i) == RowDropList.end()) {
|
---|
| 442 | for (size_t j=0; j<greaterDimension; j++) {
|
---|
| 443 | if (ColumnDropList.find(j) == ColumnDropList.end()) {
|
---|
| 444 | if (fabs(GSL_IMAG(gsl_matrix_complex_get(evec,i,j))) > MYEPSILON)
|
---|
| 445 | std::cerr << "MatrixContent::transformToEigenbasis() - WARNING: eigenvectors are complex-valued!" << std::endl;
|
---|
| 446 | gsl_matrix_set(content, I,J, GSL_REAL(gsl_matrix_complex_get(evec,i,j)));
|
---|
| 447 | J++;
|
---|
| 448 | }
|
---|
| 449 | }
|
---|
| 450 | if (fabs(GSL_IMAG(gsl_vector_complex_get(eval,I))) > MYEPSILON)
|
---|
| 451 | std::cerr << "MatrixContent::transformToEigenbasis() - WARNING: eigenvectors are complex-valued!" << std::endl;
|
---|
| 452 | gsl_vector_set(eval_real, I, GSL_REAL(gsl_vector_complex_get(eval, i)));
|
---|
| 453 | I++;
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 | gsl_matrix_complex_free(evec);
|
---|
| 457 | gsl_vector_complex_free(eval);
|
---|
| 458 | return eval_real;
|
---|
| 459 | }
|
---|
[3bc926] | 460 | }
|
---|
| 461 |
|
---|
[0d4424] | 462 | /* ============================ Properties ============================== */
|
---|
| 463 | /** Checks whether matrix' elements are strictly null.
|
---|
| 464 | * \return true - is null, false - else
|
---|
| 465 | */
|
---|
| 466 | bool MatrixContent::IsNull() const
|
---|
| 467 | {
|
---|
| 468 | return gsl_matrix_isnull (content);
|
---|
| 469 | };
|
---|
| 470 |
|
---|
| 471 | /** Checks whether matrix' elements are strictly positive.
|
---|
| 472 | * \return true - is positive, false - else
|
---|
| 473 | */
|
---|
| 474 | bool MatrixContent::IsPositive() const
|
---|
| 475 | {
|
---|
| 476 | return gsl_matrix_ispos (content);
|
---|
| 477 | };
|
---|
| 478 |
|
---|
| 479 | /** Checks whether matrix' elements are strictly negative.
|
---|
| 480 | * \return true - is negative, false - else
|
---|
| 481 | */
|
---|
| 482 | bool MatrixContent::IsNegative() const
|
---|
| 483 | {
|
---|
| 484 | return gsl_matrix_isneg (content);
|
---|
| 485 | };
|
---|
| 486 |
|
---|
| 487 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
| 488 | * \return true - is non-negative, false - else
|
---|
| 489 | */
|
---|
| 490 | bool MatrixContent::IsNonNegative() const
|
---|
| 491 | {
|
---|
| 492 | return gsl_matrix_isnonneg (content);
|
---|
| 493 | };
|
---|
| 494 |
|
---|
| 495 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
| 496 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
| 497 | * \return true - matrix is positive-definite, false - else
|
---|
| 498 | */
|
---|
| 499 | bool MatrixContent::IsPositiveDefinite() const
|
---|
| 500 | {
|
---|
| 501 | if (rows != columns) // only possible for square matrices.
|
---|
| 502 | return false;
|
---|
| 503 | else
|
---|
| 504 | return (gsl_linalg_cholesky_decomp (content) != GSL_EDOM);
|
---|
| 505 | };
|
---|
| 506 |
|
---|
| 507 |
|
---|
| 508 | /** Calculates the determinant of the matrix.
|
---|
| 509 | * if matrix is square, uses LU decomposition.
|
---|
| 510 | */
|
---|
| 511 | double MatrixContent::Determinant() const
|
---|
| 512 | {
|
---|
| 513 | int signum = 0;
|
---|
| 514 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
| 515 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
| 516 | gsl_linalg_LU_decomp(content, p, &signum);
|
---|
| 517 | gsl_permutation_free(p);
|
---|
| 518 | return gsl_linalg_LU_det(content, signum);
|
---|
| 519 | };
|
---|
| 520 |
|
---|
| 521 | /* ============================= Operators =============================== */
|
---|
| 522 |
|
---|
[3bc926] | 523 | /** Scalar multiplication operator.
|
---|
| 524 | * \param factor factor to scale with
|
---|
| 525 | */
|
---|
| 526 | const MatrixContent &MatrixContent::operator*=(const double factor)
|
---|
| 527 | {
|
---|
| 528 | gsl_matrix_scale(content, factor);
|
---|
| 529 | return *this;
|
---|
| 530 | }
|
---|
| 531 |
|
---|
| 532 | /** Scalar multiplication and copy operator.
|
---|
| 533 | * \param factor factor to scale with
|
---|
| 534 | * \param &mat MatrixContent to scale
|
---|
| 535 | * \return copied and scaled MatrixContent
|
---|
| 536 | */
|
---|
| 537 | const MatrixContent operator*(const double factor,const MatrixContent& mat)
|
---|
| 538 | {
|
---|
| 539 | MatrixContent tmp = mat;
|
---|
| 540 | tmp*=factor;
|
---|
| 541 | return tmp;
|
---|
| 542 | }
|
---|
| 543 |
|
---|
| 544 | /** Scalar multiplication and copy operator (with operands exchanged).
|
---|
| 545 | * \param &mat MatrixContent to scale
|
---|
| 546 | * \param factor factor to scale with
|
---|
| 547 | * \return copied and scaled MatrixContent
|
---|
| 548 | */
|
---|
| 549 | const MatrixContent operator*(const MatrixContent &mat,const double factor)
|
---|
| 550 | {
|
---|
| 551 | return factor*mat;
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 | /** Equality operator.
|
---|
| 555 | * Note that we use numerical sensible checking, i.e. with threshold MYEPSILON.
|
---|
| 556 | * \param &rhs MatrixContent to checks against
|
---|
| 557 | */
|
---|
| 558 | bool MatrixContent::operator==(const MatrixContent &rhs) const
|
---|
| 559 | {
|
---|
| 560 | if ((rows == rhs.rows) && (columns == rhs.columns)) {
|
---|
| 561 | for(int i=rows;i--;){
|
---|
| 562 | for(int j=columns;j--;){
|
---|
| 563 | if(fabs(at(i,j)-rhs.at(i,j))>MYEPSILON){
|
---|
| 564 | return false;
|
---|
| 565 | }
|
---|
| 566 | }
|
---|
| 567 | }
|
---|
| 568 | return true;
|
---|
| 569 | }
|
---|
| 570 | return false;
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | Vector operator*(const MatrixContent &mat,const Vector &vec)
|
---|
| 574 | {
|
---|
[bbf1bd] | 575 | Vector result;
|
---|
| 576 | gsl_blas_dgemv( CblasNoTrans, 1.0, mat.content, vec.content->content, 0.0, result.content->content);
|
---|
| 577 | return result;
|
---|
[3bc926] | 578 | }
|
---|
[b4cf2b] | 579 |
|
---|
| 580 | std::ostream & operator<<(std::ostream &ost, const MatrixContent &mat)
|
---|
| 581 | {
|
---|
| 582 | ost << "[";
|
---|
| 583 | for (size_t i=0;i<mat.rows;i++) {
|
---|
| 584 | for (size_t j=0;j<mat.columns;j++) {
|
---|
| 585 | ost << mat.at(i,j);
|
---|
| 586 | if (j != mat.columns-1)
|
---|
| 587 | ost << " ";
|
---|
| 588 | }
|
---|
| 589 | if (i != mat.rows-1)
|
---|
| 590 | ost << "; ";
|
---|
| 591 | }
|
---|
| 592 | ost << "]";
|
---|
| 593 | return ost;
|
---|
| 594 | }
|
---|