[6f646d] | 1 | /*
|
---|
| 2 | * Line.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Apr 30, 2010
|
---|
| 5 | * Author: crueger
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[112b09] | 8 | #include "Helpers/MemDebug.hpp"
|
---|
| 9 |
|
---|
[57f243] | 10 | #include "LinearAlgebra/Line.hpp"
|
---|
[6f646d] | 11 |
|
---|
| 12 | #include <cmath>
|
---|
| 13 |
|
---|
[57f243] | 14 | #include "LinearAlgebra/Vector.hpp"
|
---|
[45ef76] | 15 | #include "log.hpp"
|
---|
| 16 | #include "verbose.hpp"
|
---|
[57f243] | 17 | #include "LinearAlgebra/gslmatrix.hpp"
|
---|
[45ef76] | 18 | #include "info.hpp"
|
---|
| 19 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
| 20 | #include "Exceptions/SkewException.hpp"
|
---|
[57f243] | 21 | #include "LinearAlgebra/Plane.hpp"
|
---|
[6f646d] | 22 |
|
---|
[45ef76] | 23 | using namespace std;
|
---|
| 24 |
|
---|
| 25 | Line::Line(const Vector &_origin, const Vector &_direction) :
|
---|
[6f646d] | 26 | direction(new Vector(_direction))
|
---|
| 27 | {
|
---|
| 28 | direction->Normalize();
|
---|
[45ef76] | 29 | origin.reset(new Vector(_origin.partition(*direction).second));
|
---|
[6f646d] | 30 | }
|
---|
| 31 |
|
---|
[45ef76] | 32 | Line::Line(const Line &src) :
|
---|
| 33 | origin(new Vector(*src.origin)),
|
---|
| 34 | direction(new Vector(*src.direction))
|
---|
| 35 | {}
|
---|
| 36 |
|
---|
[6f646d] | 37 | Line::~Line()
|
---|
| 38 | {}
|
---|
| 39 |
|
---|
| 40 |
|
---|
| 41 | double Line::distance(const Vector &point) const{
|
---|
[45ef76] | 42 | // get any vector from line to point
|
---|
| 43 | Vector helper = point - *origin;
|
---|
| 44 | // partition this vector along direction
|
---|
| 45 | // the residue points from the line to the point
|
---|
| 46 | return helper.partition(*direction).second.Norm();
|
---|
[6f646d] | 47 | }
|
---|
| 48 |
|
---|
| 49 | Vector Line::getClosestPoint(const Vector &point) const{
|
---|
[45ef76] | 50 | // get any vector from line to point
|
---|
| 51 | Vector helper = point - *origin;
|
---|
| 52 | // partition this vector along direction
|
---|
| 53 | // add only the part along the direction
|
---|
| 54 | return *origin + helper.partition(*direction).first;
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | Vector Line::getDirection() const{
|
---|
| 58 | return *direction;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | Vector Line::getOrigin() const{
|
---|
| 62 | return *origin;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | vector<Vector> Line::getPointsOnLine() const{
|
---|
| 66 | vector<Vector> res;
|
---|
| 67 | res.reserve(2);
|
---|
| 68 | res.push_back(*origin);
|
---|
| 69 | res.push_back(*origin+*direction);
|
---|
| 70 | return res;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
[643e76] | 73 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
| 74 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
| 75 | * \param *out output stream for debugging
|
---|
| 76 | * \param *Line1a first vector of first line
|
---|
| 77 | * \param *Line1b second vector of first line
|
---|
| 78 | * \param *Line2a first vector of second line
|
---|
| 79 | * \param *Line2b second vector of second line
|
---|
| 80 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
| 81 | */
|
---|
[45ef76] | 82 | Vector Line::getIntersection(const Line& otherLine) const{
|
---|
| 83 | Info FunctionInfo(__func__);
|
---|
| 84 |
|
---|
| 85 | pointset line1Points = getPointsOnLine();
|
---|
| 86 |
|
---|
| 87 | Vector Line1a = line1Points[0];
|
---|
| 88 | Vector Line1b = line1Points[1];
|
---|
| 89 |
|
---|
| 90 | pointset line2Points = otherLine.getPointsOnLine();
|
---|
| 91 |
|
---|
| 92 | Vector Line2a = line2Points[0];
|
---|
| 93 | Vector Line2b = line2Points[1];
|
---|
| 94 |
|
---|
| 95 | Vector res;
|
---|
| 96 |
|
---|
| 97 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4));
|
---|
| 98 |
|
---|
| 99 | M->SetAll(1.);
|
---|
| 100 | for (int i=0;i<3;i++) {
|
---|
| 101 | M->Set(0, i, Line1a[i]);
|
---|
| 102 | M->Set(1, i, Line1b[i]);
|
---|
| 103 | M->Set(2, i, Line2a[i]);
|
---|
| 104 | M->Set(3, i, Line2b[i]);
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
| 108 | //for (int i=0;i<4;i++) {
|
---|
| 109 | // for (int j=0;j<4;j++)
|
---|
| 110 | // cout << "\t" << M->Get(i,j);
|
---|
| 111 | // cout << endl;
|
---|
| 112 | //}
|
---|
| 113 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
| 114 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
| 115 | throw SkewException(__FILE__,__LINE__);
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
| 119 |
|
---|
| 120 |
|
---|
| 121 | // constuct a,b,c
|
---|
| 122 | Vector a = Line1b - Line1a;
|
---|
| 123 | Vector b = Line2b - Line2a;
|
---|
| 124 | Vector c = Line2a - Line1a;
|
---|
| 125 | Vector d = Line2b - Line1b;
|
---|
| 126 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
| 127 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
| 128 | res.Zero();
|
---|
| 129 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
| 130 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | // check for parallelity
|
---|
| 134 | Vector parallel;
|
---|
| 135 | double factor = 0.;
|
---|
| 136 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
| 137 | parallel = Line1a - Line2a;
|
---|
| 138 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 139 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 140 | res = Line2a;
|
---|
| 141 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 142 | return res;
|
---|
| 143 | } else {
|
---|
| 144 | parallel = Line1a - Line2b;
|
---|
| 145 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
| 146 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
| 147 | res = Line2b;
|
---|
| 148 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
| 149 | return res;
|
---|
| 150 | }
|
---|
| 151 | }
|
---|
| 152 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
| 153 | res.Zero();
|
---|
| 154 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | // obtain s
|
---|
| 158 | double s;
|
---|
| 159 | Vector temp1, temp2;
|
---|
| 160 | temp1 = c;
|
---|
| 161 | temp1.VectorProduct(b);
|
---|
| 162 | temp2 = a;
|
---|
| 163 | temp2.VectorProduct(b);
|
---|
| 164 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
| 165 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
| 166 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
| 167 | else
|
---|
| 168 | s = 0.;
|
---|
| 169 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
| 170 |
|
---|
| 171 | // construct intersection
|
---|
| 172 | res = a;
|
---|
| 173 | res.Scale(s);
|
---|
| 174 | res += Line1a;
|
---|
| 175 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl;
|
---|
| 176 |
|
---|
| 177 | return res;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
[42a101] | 180 | /** Rotates the vector by an angle of \a alpha around this line.
|
---|
| 181 | * \param rhs Vector to rotate
|
---|
| 182 | * \param alpha rotation angle in radian
|
---|
| 183 | */
|
---|
| 184 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{
|
---|
| 185 | Vector helper = rhs;
|
---|
| 186 |
|
---|
| 187 | // translate the coordinate system so that the line goes through (0,0,0)
|
---|
| 188 | helper -= *origin;
|
---|
| 189 |
|
---|
| 190 | // partition the vector into a part that gets rotated and a part that lies along the line
|
---|
| 191 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
| 192 |
|
---|
| 193 | // we just keep anything that is along the axis
|
---|
| 194 | Vector res = parts.first;
|
---|
| 195 |
|
---|
| 196 | // the rest has to be rotated
|
---|
| 197 | Vector a = parts.second;
|
---|
| 198 | // we only have to do the rest, if we actually could partition the vector
|
---|
| 199 | if(!a.IsZero()){
|
---|
| 200 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
| 201 | Vector y = a;
|
---|
| 202 | // direction is normalized, so the result has length |a|
|
---|
| 203 | y.VectorProduct(*direction);
|
---|
| 204 |
|
---|
| 205 | res += cos(alpha) * a + sin(alpha) * y;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | // translate the coordinate system back
|
---|
| 209 | res += *origin;
|
---|
| 210 | return res;
|
---|
| 211 | }
|
---|
| 212 |
|
---|
[5589858] | 213 | Plane Line::getOrthogonalPlane(const Vector &origin) const{
|
---|
| 214 | return Plane(getDirection(),origin);
|
---|
| 215 | }
|
---|
| 216 |
|
---|
[f932b7] | 217 | std::vector<Vector> Line::getSphereIntersections() const{
|
---|
| 218 | std::vector<Vector> res;
|
---|
| 219 |
|
---|
| 220 | // line is kept in normalized form, so we can skip a lot of calculations
|
---|
| 221 | double discriminant = 1-origin->NormSquared();
|
---|
| 222 | // we might have 2, 1 or 0 solutions, depending on discriminant
|
---|
| 223 | if(discriminant>=0){
|
---|
| 224 | if(discriminant==0){
|
---|
| 225 | res.push_back(*origin);
|
---|
| 226 | }
|
---|
| 227 | else{
|
---|
| 228 | Vector helper = sqrt(discriminant)*(*direction);
|
---|
| 229 | res.push_back(*origin+helper);
|
---|
| 230 | res.push_back(*origin-helper);
|
---|
| 231 | }
|
---|
| 232 | }
|
---|
| 233 | return res;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
[45ef76] | 236 | Line makeLineThrough(const Vector &x1, const Vector &x2){
|
---|
| 237 | if(x1==x2){
|
---|
| 238 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
| 239 | }
|
---|
| 240 | return Line(x1,x1-x2);
|
---|
[6f646d] | 241 | }
|
---|