/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Please see the COPYING file or "Copyright notice" in builder.cpp for details. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * LevMartester.cpp * * Created on: Sep 27, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include #include "CodePatterns/MemDebug.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "LinearAlgebra/Vector.hpp" #include "Fragmentation/Homology/HomologyContainer.hpp" #include "Fragmentation/SetValues/Fragment.hpp" #include "FunctionApproximation/Extractors.hpp" #include "FunctionApproximation/FunctionApproximation.hpp" #include "FunctionApproximation/FunctionModel.hpp" #include "FunctionApproximation/TrainingData.hpp" #include "FunctionApproximation/writeDistanceEnergyTable.hpp" #include "Helpers/defs.hpp" #include "Potentials/Specifics/PairPotential_Morse.hpp" #include "Potentials/Specifics/PairPotential_Angle.hpp" #include "Potentials/Specifics/SaturationPotential.hpp" namespace po = boost::program_options; using namespace boost::assign; HomologyGraph getFirstGraphWithThreeCarbons(const HomologyContainer &homologies) { FragmentNode SaturatedCarbon(6,4); // carbon has atomic number 6 and should have 4 bonds for C3H8 FragmentNode DanglingCarbon(6,3); // carbon has atomic number 6 and should have 3 pure bonds for C3H8 for (HomologyContainer::container_t::const_iterator iter = homologies.begin(); iter != homologies.end(); ++iter) { if ((iter->first.hasNode(SaturatedCarbon,2)) && (iter->first.hasNode(DanglingCarbon,1))) return iter->first; } return HomologyGraph(); } HomologyGraph getFirstGraphWithTwoCarbons(const HomologyContainer &homologies) { FragmentNode SaturatedCarbon(6,3); // carbon has atomic number 6 and should have 4 bonds for C2H6 for (HomologyContainer::container_t::const_iterator iter = homologies.begin(); iter != homologies.end(); ++iter) { if (iter->first.hasNode(SaturatedCarbon,2)) return iter->first; } return HomologyGraph(); } HomologyGraph getFirstGraphWithOneCarbon(const HomologyContainer &homologies) { FragmentNode SaturatedCarbon(6,2); // carbon has atomic number 6 and has 3 bonds (to other Hs) for (HomologyContainer::container_t::const_iterator iter = homologies.begin(); iter != homologies.end(); ++iter) { if (iter->first.hasNode(SaturatedCarbon,1)) return iter->first; } return HomologyGraph(); } /** This function returns the elements of the sum over index "k" for an * argument containing indices "i" and "j" * @param inputs vector of all configuration (containing each a vector of all arguments) * @param arg argument containing indices "i" and "j" * @param cutoff cutoff criterion for sum over k * @return vector of argument pairs (a vector) of ik and jk for at least all k * within distance of \a cutoff to i */ std::vector getTripleFromArgument(const FunctionApproximation::inputs_t &inputs, const argument_t &arg, const double cutoff) { typedef std::list arg_list_t; typedef std::map k_args_map_t; k_args_map_t tempresult; ASSERT( inputs.size() > arg.globalid, "getTripleFromArgument() - globalid "+toString(arg.globalid) +" is greater than all inputs "+toString(inputs.size())+"."); const FunctionModel::arguments_t &listofargs = inputs[arg.globalid]; for (FunctionModel::arguments_t::const_iterator argiter = listofargs.begin(); argiter != listofargs.end(); ++argiter) { // first index must be either i or j but second index not if (((argiter->indices.first == arg.indices.first) || (argiter->indices.first == arg.indices.second)) && ((argiter->indices.second != arg.indices.first) && (argiter->indices.second != arg.indices.second))) { // we need arguments ik and jk std::pair< k_args_map_t::iterator, bool> inserter = tempresult.insert( std::make_pair( argiter->indices.second, arg_list_t(1,*argiter))); if (!inserter.second) { // is present one ik or jk, if ik insert jk at back if (inserter.first->second.begin()->indices.first == arg.indices.first) inserter.first->second.push_back(*argiter); else // if jk, insert ik at front inserter.first->second.push_front(*argiter); } } // // or second index must be either i or j but first index not // else if (((argiter->indices.first != arg.indices.first) // && (argiter->indices.first != arg.indices.second)) // && ((argiter->indices.second == arg.indices.first) // || (argiter->indices.second == arg.indices.second))) { // // we need arguments ki and kj // std::pair< k_args_map_t::iterator, bool> inserter = // tempresult.insert( std::make_pair( argiter->indices.first, arg_list_t(1,*argiter))); // if (!inserter.second) { // // is present one ki or kj, if ki insert kj at back // if (inserter.first->second.begin()->indices.second == arg.indices.first) // inserter.first->second.push_back(*argiter); // else // if kj, insert ki at front // inserter.first->second.push_front(*argiter); // } // } } // check that i,j are NOT contained ASSERT( tempresult.count(arg.indices.first) == 0, "getTripleFromArgument() - first index of argument present in k_args_map?"); ASSERT( tempresult.count(arg.indices.second) == 0, "getTripleFromArgument() - first index of argument present in k_args_map?"); // convert std::vector result; for (k_args_map_t::const_iterator iter = tempresult.begin(); iter != tempresult.end(); ++iter) { ASSERT( iter->second.size() == 2, "getTripleFromArgument() - for index "+toString(iter->first)+" we did not find both ik and jk."); result.push_back( FunctionModel::arguments_t(iter->second.begin(), iter->second.end()) ); } return result; } int main(int argc, char **argv) { std::cout << "Hello to the World from LevMar!" << std::endl; // load homology file po::options_description desc("Allowed options"); desc.add_options() ("help", "produce help message") ("homology-file", po::value< boost::filesystem::path >(), "homology file to parse") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); if (vm.count("help")) { std::cout << desc << "\n"; return 1; } boost::filesystem::path homology_file; if (vm.count("homology-file")) { homology_file = vm["homology-file"].as(); LOG(1, "INFO: Parsing " << homology_file.string() << "."); } else { LOG(0, "homology-file level was not set."); } HomologyContainer homologies; if (boost::filesystem::exists(homology_file)) { std::ifstream returnstream(homology_file.string().c_str()); if (returnstream.good()) { boost::archive::text_iarchive ia(returnstream); ia >> homologies; } else { ELOG(2, "Failed to parse from " << homology_file.string() << "."); } returnstream.close(); } else { ELOG(0, homology_file << " does not exist."); } // first we try to look into the HomologyContainer LOG(1, "INFO: Listing all present homologies ..."); for (HomologyContainer::container_t::const_iterator iter = homologies.begin(); iter != homologies.end(); ++iter) { LOG(1, "INFO: graph " << iter->first << " has Fragment " << iter->second.first << " and associated energy " << iter->second.second << "."); } /******************** Angle TRAINING ********************/ { // then we ought to pick the right HomologyGraph ... const HomologyGraph graph = getFirstGraphWithThreeCarbons(homologies); LOG(1, "First representative graph containing three saturated carbons is " << graph << "."); // Afterwards we go through all of this type and gather the distance and the energy value TrainingData AngleData( boost::bind(&Extractors::reorderArgumentsByIncreasingDistance, boost::bind(&Extractors::gatherAllSymmetricDistanceArguments, boost::bind(&Extractors::gatherPositionOfTuples, _1, Fragment::charges_t(3,6.) ), _2 // gather carbon triples ) ) ); AngleData(homologies.getHomologousGraphs(graph)); LOG(1, "INFO: I gathered the following training data:\n" << _detail::writeDistanceEnergyTable(AngleData.getDistanceEnergyTable())); // NOTICE that distance are in bohrradi as they come from MPQC! // now perform the function approximation by optimizing the model function FunctionModel::parameters_t params(PairPotential_Angle::MAXPARAMS, 0.); params[PairPotential_Angle::energy_offset] = -1.; params[PairPotential_Angle::spring_constant] = 1.; params[PairPotential_Angle::equilibrium_distance] = 0.2; PairPotential_Angle angle; LOG(0, "INFO: Initial parameters are " << params << "."); angle.setParameters(params); FunctionModel &model = angle; FunctionApproximation approximator(AngleData, model); if (model.isBoxConstraint() && approximator.checkParameterDerivatives()) approximator(FunctionApproximation::ParameterDerivative); else ELOG(0, "We require parameter derivatives for a box constraint minimization."); params = model.getParameters(); LOG(0, "RESULT: Best parameters are " << params << "."); } /******************** MORSE TRAINING ********************/ { // then we ought to pick the right HomologyGraph ... const HomologyGraph graph = getFirstGraphWithTwoCarbons(homologies); LOG(1, "First representative graph containing two saturated carbons is " << graph << "."); // Afterwards we go through all of this type and gather the distance and the energy value TrainingData MorseData( boost::bind(&Extractors::gatherAllSymmetricDistanceArguments, boost::bind(&Extractors::gatherPositionOfTuples, _1, Fragment::charges_t(2,6.) ), _2 // gather first carbon pair ) ); MorseData(homologies.getHomologousGraphs(graph)); LOG(1, "INFO: I gathered the following training data:\n" << _detail::writeDistanceEnergyTable(MorseData.getDistanceEnergyTable())); // NOTICE that distance are in bohrradi as they come from MPQC! // now perform the function approximation by optimizing the model function FunctionModel::parameters_t params(PairPotential_Morse::MAXPARAMS, 0.); params[PairPotential_Morse::dissociation_energy] = 0.5; params[PairPotential_Morse::energy_offset] = -1.; params[PairPotential_Morse::spring_constant] = 1.; params[PairPotential_Morse::equilibrium_distance] = 2.9; PairPotential_Morse morse; morse.setParameters(params); FunctionModel &model = morse; FunctionApproximation approximator(MorseData, model); // we only give CC distance, hence 1 input dim if (model.isBoxConstraint() && approximator.checkParameterDerivatives()) approximator(FunctionApproximation::ParameterDerivative); else ELOG(0, "We require parameter derivatives for a box constraint minimization."); params = model.getParameters(); LOG(0, "RESULT: Best parameters are " << params << "."); } /******************* SATURATION TRAINING *******************/ FunctionModel::parameters_t params(SaturationPotential::MAXPARAMS, 0.); { // then we ought to pick the right HomologyGraph ... const HomologyGraph graph = getFirstGraphWithOneCarbon(homologies); LOG(1, "First representative graph containing one saturated carbon is " << graph << "."); // Afterwards we go through all of this type and gather the distance and the energy value TrainingData TersoffData( TrainingData::extractor_t(&Extractors::gatherAllDistances) // gather first carbon pair ); TersoffData( homologies.getHomologousGraphs(graph) ); LOG(1, "INFO: I gathered the following training data:\n" << _detail::writeDistanceEnergyTable(TersoffData.getDistanceEnergyTable())); // NOTICE that distance are in bohrradi as they come from MPQC! // now perform the function approximation by optimizing the model function boost::function< std::vector(const argument_t &, const double)> triplefunction = boost::bind(&getTripleFromArgument, boost::cref(TersoffData.getTrainingInputs()), _1, _2); srand((unsigned)time(0)); // seed with current time LOG(0, "INFO: Initial parameters are " << params << "."); SaturationPotential saturation(triplefunction); saturation.setParameters(params); FunctionModel &model = saturation; FunctionApproximation approximator(TersoffData, model); // CH4 has 5 atoms, hence 5*4/2 distances if (model.isBoxConstraint() && approximator.checkParameterDerivatives()) approximator(FunctionApproximation::ParameterDerivative); else ELOG(0, "We require parameter derivatives for a box constraint minimization."); params = model.getParameters(); LOG(0, "RESULT: Best parameters are " << params << "."); // std::cout << "\tsaturationparticle:"; // std::cout << "\tparticle_type=C,"; // std::cout << "\tA=" << params[SaturationPotential::A] << ","; // std::cout << "\tB=" << params[SaturationPotential::B] << ","; // std::cout << "\tlambda=" << params[SaturationPotential::lambda] << ","; // std::cout << "\tmu=" << params[SaturationPotential::mu] << ","; // std::cout << "\tbeta=" << params[SaturationPotential::beta] << ","; // std::cout << "\tn=" << params[SaturationPotential::n] << ","; // std::cout << "\tc=" << params[SaturationPotential::c] << ","; // std::cout << "\td=" << params[SaturationPotential::d] << ","; // std::cout << "\th=" << params[SaturationPotential::h] << ","; //// std::cout << "\toffset=" << params[SaturationPotential::offset] << ","; // std::cout << "\tR=" << saturation.R << ","; // std::cout << "\tS=" << saturation.S << ";"; // std::cout << std::endl; // check L2 and Lmax error against training set LOG(1, "INFO: L2sum = " << TersoffData.getL2Error(model) << ", LMax = " << TersoffData.getLMaxError(model) << "."); } return 0; }