/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Please see the COPYING file or "Copyright notice" in builder.cpp for details.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* LevMartester.cpp
*
* Created on: Sep 27, 2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "Fragmentation/Homology/HomologyContainer.hpp"
#include "Fragmentation/SetValues/Fragment.hpp"
#include "FunctionApproximation/Extractors.hpp"
#include "FunctionApproximation/FunctionApproximation.hpp"
#include "FunctionApproximation/FunctionModel.hpp"
#include "FunctionApproximation/TrainingData.hpp"
#include "FunctionApproximation/writeDistanceEnergyTable.hpp"
#include "Helpers/defs.hpp"
#include "Potentials/Specifics/PairPotential_Morse.hpp"
#include "Potentials/Specifics/PairPotential_Angle.hpp"
#include "Potentials/Specifics/SaturationPotential.hpp"
namespace po = boost::program_options;
using namespace boost::assign;
HomologyGraph getFirstGraphWithThreeCarbons(const HomologyContainer &homologies)
{
FragmentNode SaturatedCarbon(6,4); // carbon has atomic number 6 and should have 4 bonds for C3H8
FragmentNode DanglingCarbon(6,3); // carbon has atomic number 6 and should have 3 pure bonds for C3H8
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
if ((iter->first.hasNode(SaturatedCarbon,2)) && (iter->first.hasNode(DanglingCarbon,1)))
return iter->first;
}
return HomologyGraph();
}
HomologyGraph getFirstGraphWithTwoCarbons(const HomologyContainer &homologies)
{
FragmentNode SaturatedCarbon(6,3); // carbon has atomic number 6 and should have 4 bonds for C2H6
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
if (iter->first.hasNode(SaturatedCarbon,2))
return iter->first;
}
return HomologyGraph();
}
HomologyGraph getFirstGraphWithOneCarbon(const HomologyContainer &homologies)
{
FragmentNode SaturatedCarbon(6,2); // carbon has atomic number 6 and has 3 bonds (to other Hs)
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
if (iter->first.hasNode(SaturatedCarbon,1))
return iter->first;
}
return HomologyGraph();
}
/** This function returns the elements of the sum over index "k" for an
* argument containing indices "i" and "j"
* @param inputs vector of all configuration (containing each a vector of all arguments)
* @param arg argument containing indices "i" and "j"
* @param cutoff cutoff criterion for sum over k
* @return vector of argument pairs (a vector) of ik and jk for at least all k
* within distance of \a cutoff to i
*/
std::vector
getTripleFromArgument(const FunctionApproximation::inputs_t &inputs, const argument_t &arg, const double cutoff)
{
typedef std::list arg_list_t;
typedef std::map k_args_map_t;
k_args_map_t tempresult;
ASSERT( inputs.size() > arg.globalid,
"getTripleFromArgument() - globalid "+toString(arg.globalid)
+" is greater than all inputs "+toString(inputs.size())+".");
const FunctionModel::arguments_t &listofargs = inputs[arg.globalid];
for (FunctionModel::arguments_t::const_iterator argiter = listofargs.begin();
argiter != listofargs.end();
++argiter) {
// first index must be either i or j but second index not
if (((argiter->indices.first == arg.indices.first)
|| (argiter->indices.first == arg.indices.second))
&& ((argiter->indices.second != arg.indices.first)
&& (argiter->indices.second != arg.indices.second))) {
// we need arguments ik and jk
std::pair< k_args_map_t::iterator, bool> inserter =
tempresult.insert( std::make_pair( argiter->indices.second, arg_list_t(1,*argiter)));
if (!inserter.second) {
// is present one ik or jk, if ik insert jk at back
if (inserter.first->second.begin()->indices.first == arg.indices.first)
inserter.first->second.push_back(*argiter);
else // if jk, insert ik at front
inserter.first->second.push_front(*argiter);
}
}
// // or second index must be either i or j but first index not
// else if (((argiter->indices.first != arg.indices.first)
// && (argiter->indices.first != arg.indices.second))
// && ((argiter->indices.second == arg.indices.first)
// || (argiter->indices.second == arg.indices.second))) {
// // we need arguments ki and kj
// std::pair< k_args_map_t::iterator, bool> inserter =
// tempresult.insert( std::make_pair( argiter->indices.first, arg_list_t(1,*argiter)));
// if (!inserter.second) {
// // is present one ki or kj, if ki insert kj at back
// if (inserter.first->second.begin()->indices.second == arg.indices.first)
// inserter.first->second.push_back(*argiter);
// else // if kj, insert ki at front
// inserter.first->second.push_front(*argiter);
// }
// }
}
// check that i,j are NOT contained
ASSERT( tempresult.count(arg.indices.first) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
ASSERT( tempresult.count(arg.indices.second) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
// convert
std::vector result;
for (k_args_map_t::const_iterator iter = tempresult.begin();
iter != tempresult.end();
++iter) {
ASSERT( iter->second.size() == 2,
"getTripleFromArgument() - for index "+toString(iter->first)+" we did not find both ik and jk.");
result.push_back( FunctionModel::arguments_t(iter->second.begin(), iter->second.end()) );
}
return result;
}
int main(int argc, char **argv)
{
std::cout << "Hello to the World from LevMar!" << std::endl;
// load homology file
po::options_description desc("Allowed options");
desc.add_options()
("help", "produce help message")
("homology-file", po::value< boost::filesystem::path >(), "homology file to parse")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("help")) {
std::cout << desc << "\n";
return 1;
}
boost::filesystem::path homology_file;
if (vm.count("homology-file")) {
homology_file = vm["homology-file"].as();
LOG(1, "INFO: Parsing " << homology_file.string() << ".");
} else {
LOG(0, "homology-file level was not set.");
}
HomologyContainer homologies;
if (boost::filesystem::exists(homology_file)) {
std::ifstream returnstream(homology_file.string().c_str());
if (returnstream.good()) {
boost::archive::text_iarchive ia(returnstream);
ia >> homologies;
} else {
ELOG(2, "Failed to parse from " << homology_file.string() << ".");
}
returnstream.close();
} else {
ELOG(0, homology_file << " does not exist.");
}
// first we try to look into the HomologyContainer
LOG(1, "INFO: Listing all present homologies ...");
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
LOG(1, "INFO: graph " << iter->first << " has Fragment "
<< iter->second.first << " and associated energy " << iter->second.second << ".");
}
/******************** Angle TRAINING ********************/
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphWithThreeCarbons(homologies);
LOG(1, "First representative graph containing three saturated carbons is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
TrainingData AngleData(
boost::bind(&Extractors::reorderArgumentsByIncreasingDistance,
boost::bind(&Extractors::gatherAllSymmetricDistanceArguments,
boost::bind(&Extractors::gatherPositionOfTuples,
_1, Fragment::charges_t(3,6.)
), _2 // gather carbon triples
)
)
);
AngleData(homologies.getHomologousGraphs(graph));
LOG(1, "INFO: I gathered the following training data:\n" <<
_detail::writeDistanceEnergyTable(AngleData.getDistanceEnergyTable()));
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
FunctionModel::parameters_t params(PairPotential_Angle::MAXPARAMS, 0.);
params[PairPotential_Angle::energy_offset] = -1.;
params[PairPotential_Angle::spring_constant] = 1.;
params[PairPotential_Angle::equilibrium_distance] = 0.2;
PairPotential_Angle angle;
LOG(0, "INFO: Initial parameters are " << params << ".");
angle.setParameters(params);
FunctionModel &model = angle;
FunctionApproximation approximator(AngleData, model);
if (model.isBoxConstraint() && approximator.checkParameterDerivatives())
approximator(FunctionApproximation::ParameterDerivative);
else
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
params = model.getParameters();
LOG(0, "RESULT: Best parameters are " << params << ".");
}
/******************** MORSE TRAINING ********************/
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphWithTwoCarbons(homologies);
LOG(1, "First representative graph containing two saturated carbons is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
TrainingData MorseData(
boost::bind(&Extractors::gatherAllSymmetricDistanceArguments,
boost::bind(&Extractors::gatherPositionOfTuples,
_1, Fragment::charges_t(2,6.)
), _2 // gather first carbon pair
)
);
MorseData(homologies.getHomologousGraphs(graph));
LOG(1, "INFO: I gathered the following training data:\n" <<
_detail::writeDistanceEnergyTable(MorseData.getDistanceEnergyTable()));
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
FunctionModel::parameters_t params(PairPotential_Morse::MAXPARAMS, 0.);
params[PairPotential_Morse::dissociation_energy] = 0.5;
params[PairPotential_Morse::energy_offset] = -1.;
params[PairPotential_Morse::spring_constant] = 1.;
params[PairPotential_Morse::equilibrium_distance] = 2.9;
PairPotential_Morse morse;
morse.setParameters(params);
FunctionModel &model = morse;
FunctionApproximation approximator(MorseData, model); // we only give CC distance, hence 1 input dim
if (model.isBoxConstraint() && approximator.checkParameterDerivatives())
approximator(FunctionApproximation::ParameterDerivative);
else
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
params = model.getParameters();
LOG(0, "RESULT: Best parameters are " << params << ".");
}
/******************* SATURATION TRAINING *******************/
FunctionModel::parameters_t params(SaturationPotential::MAXPARAMS, 0.);
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphWithOneCarbon(homologies);
LOG(1, "First representative graph containing one saturated carbon is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
TrainingData TersoffData(
TrainingData::extractor_t(&Extractors::gatherAllDistances) // gather first carbon pair
);
TersoffData( homologies.getHomologousGraphs(graph) );
LOG(1, "INFO: I gathered the following training data:\n" <<
_detail::writeDistanceEnergyTable(TersoffData.getDistanceEnergyTable()));
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
boost::function< std::vector(const argument_t &, const double)> triplefunction =
boost::bind(&getTripleFromArgument, boost::cref(TersoffData.getTrainingInputs()), _1, _2);
srand((unsigned)time(0)); // seed with current time
LOG(0, "INFO: Initial parameters are " << params << ".");
SaturationPotential saturation(triplefunction);
saturation.setParameters(params);
FunctionModel &model = saturation;
FunctionApproximation approximator(TersoffData, model); // CH4 has 5 atoms, hence 5*4/2 distances
if (model.isBoxConstraint() && approximator.checkParameterDerivatives())
approximator(FunctionApproximation::ParameterDerivative);
else
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
params = model.getParameters();
LOG(0, "RESULT: Best parameters are " << params << ".");
// std::cout << "\tsaturationparticle:";
// std::cout << "\tparticle_type=C,";
// std::cout << "\tA=" << params[SaturationPotential::A] << ",";
// std::cout << "\tB=" << params[SaturationPotential::B] << ",";
// std::cout << "\tlambda=" << params[SaturationPotential::lambda] << ",";
// std::cout << "\tmu=" << params[SaturationPotential::mu] << ",";
// std::cout << "\tbeta=" << params[SaturationPotential::beta] << ",";
// std::cout << "\tn=" << params[SaturationPotential::n] << ",";
// std::cout << "\tc=" << params[SaturationPotential::c] << ",";
// std::cout << "\td=" << params[SaturationPotential::d] << ",";
// std::cout << "\th=" << params[SaturationPotential::h] << ",";
//// std::cout << "\toffset=" << params[SaturationPotential::offset] << ",";
// std::cout << "\tR=" << saturation.R << ",";
// std::cout << "\tS=" << saturation.S << ";";
// std::cout << std::endl;
// check L2 and Lmax error against training set
LOG(1, "INFO: L2sum = " << TersoffData.getL2Error(model)
<< ", LMax = " << TersoffData.getLMaxError(model) << ".");
}
return 0;
}