/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Please see the COPYING file or "Copyright notice" in builder.cpp for details.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* LevMartester.cpp
*
* Created on: Sep 27, 2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "Fragmentation/Homology/HomologyContainer.hpp"
#include "Fragmentation/SetValues/Fragment.hpp"
#include "FunctionApproximation/FunctionApproximation.hpp"
#include "FunctionApproximation/FunctionModel.hpp"
#include "Helpers/defs.hpp"
#include "Potentials/Specifics/PairPotential_Morse.hpp"
#include "Potentials/Specifics/SaturationPotential.hpp"
namespace po = boost::program_options;
HomologyGraph getFirstGraphWithTwoCarbons(const HomologyContainer &homologies)
{
FragmentNode SaturatedCarbon(6,4); // carbon has atomic number 6 and should have 4 bonds for C2H6
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
if (iter->first.hasNode(SaturatedCarbon,2))
return iter->first;
}
return HomologyGraph();
}
HomologyGraph getFirstGraphWithOneCarbon(const HomologyContainer &homologies)
{
FragmentNode SaturatedCarbon(6,3); // carbon has atomic number 6 and has 3 bonds (to other Hs)
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
if (iter->first.hasNode(SaturatedCarbon,1))
return iter->first;
}
return HomologyGraph();
}
FunctionModel::arguments_t
gatherAllDistanceArguments(
const Fragment::charges_t &charges,
const Fragment::positions_t &positions,
const size_t globalid)
{
FunctionModel::arguments_t result;
// go through current configuration and gather all other distances
Fragment::charges_t::const_iterator firstchargeiter = charges.begin();
Fragment::positions_t::const_iterator firstpositer = positions.begin();
for (;firstchargeiter != charges.end();
++firstchargeiter, ++firstpositer) {
Fragment::charges_t::const_iterator secondchargeiter = charges.begin();//firstchargeiter;
Fragment::positions_t::const_iterator secondpositer = positions.begin();//firstpositer;
for (;
secondchargeiter != charges.end();
++secondchargeiter, ++secondpositer) {
if (firstchargeiter == secondchargeiter)
continue;
argument_t arg;
const Vector firsttemp((*firstpositer)[0],(*firstpositer)[1],(*firstpositer)[2]);
const Vector secondtemp((*secondpositer)[0],(*secondpositer)[1],(*secondpositer)[2]);
arg.distance = firsttemp.distance(secondtemp);
arg.indices = std::make_pair(
std::distance(
charges.begin(), firstchargeiter),
std::distance(
charges.begin(), secondchargeiter)
);
arg.globalid = globalid;
result.push_back(arg);
}
ASSERT( secondpositer == positions.end(),
"gatherAllDistanceArguments() - there are not as many positions as charges.");
}
ASSERT( firstpositer == positions.end(),
"gatherAllDistanceArguments() - there are not as many positions as charges.");
return result;
}
/** This function returns the elements of the sum over index "k" for an
* argument containing indices "i" and "j"
* @param inputs vector of all configuration (containing each a vector of all arguments)
* @param arg argument containing indices "i" and "j"
* @param cutoff cutoff criterion for sum over k
* @return vector of argument pairs (a vector) of ik and jk for at least all k
* within distance of \a cutoff to i
*/
std::vector
getTripleFromArgument(const FunctionApproximation::inputs_t &inputs, const argument_t &arg, const double cutoff)
{
typedef std::list arg_list_t;
typedef std::map k_args_map_t;
k_args_map_t tempresult;
ASSERT( inputs.size() > arg.globalid,
"getTripleFromArgument() - globalid "+toString(arg.globalid)
+" is greater than all inputs "+toString(inputs.size())+".");
const FunctionModel::arguments_t &listofargs = inputs[arg.globalid];
for (FunctionModel::arguments_t::const_iterator argiter = listofargs.begin();
argiter != listofargs.end();
++argiter) {
// first index must be either i or j but second index not
if (((argiter->indices.first == arg.indices.first)
|| (argiter->indices.first == arg.indices.second))
&& ((argiter->indices.second != arg.indices.first)
&& (argiter->indices.second != arg.indices.second))) {
// we need arguments ik and jk
std::pair< k_args_map_t::iterator, bool> inserter =
tempresult.insert( std::make_pair( argiter->indices.second, arg_list_t(1,*argiter)));
if (!inserter.second) {
// is present one ik or jk, if ik insert jk at back
if (inserter.first->second.begin()->indices.first == arg.indices.first)
inserter.first->second.push_back(*argiter);
else // if jk, insert ik at front
inserter.first->second.push_front(*argiter);
}
}
// // or second index must be either i or j but first index not
// else if (((argiter->indices.first != arg.indices.first)
// && (argiter->indices.first != arg.indices.second))
// && ((argiter->indices.second == arg.indices.first)
// || (argiter->indices.second == arg.indices.second))) {
// // we need arguments ki and kj
// std::pair< k_args_map_t::iterator, bool> inserter =
// tempresult.insert( std::make_pair( argiter->indices.first, arg_list_t(1,*argiter)));
// if (!inserter.second) {
// // is present one ki or kj, if ki insert kj at back
// if (inserter.first->second.begin()->indices.second == arg.indices.first)
// inserter.first->second.push_back(*argiter);
// else // if kj, insert ki at front
// inserter.first->second.push_front(*argiter);
// }
// }
}
// check that i,j are NOT contained
ASSERT( tempresult.count(arg.indices.first) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
ASSERT( tempresult.count(arg.indices.second) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
// convert
std::vector result;
for (k_args_map_t::const_iterator iter = tempresult.begin();
iter != tempresult.end();
++iter) {
ASSERT( iter->second.size() == 2,
"getTripleFromArgument() - for index "+toString(iter->first)+" we did not find both ik and jk.");
result.push_back( FunctionModel::arguments_t(iter->second.begin(), iter->second.end()) );
}
return result;
}
int main(int argc, char **argv)
{
std::cout << "Hello to the World from LevMar!" << std::endl;
// load homology file
po::options_description desc("Allowed options");
desc.add_options()
("help", "produce help message")
("homology-file", po::value< boost::filesystem::path >(), "homology file to parse")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("help")) {
std::cout << desc << "\n";
return 1;
}
boost::filesystem::path homology_file;
if (vm.count("homology-file")) {
homology_file = vm["homology-file"].as();
LOG(1, "INFO: Parsing " << homology_file.string() << ".");
} else {
LOG(0, "homology-file level was not set.");
}
HomologyContainer homologies;
if (boost::filesystem::exists(homology_file)) {
std::ifstream returnstream(homology_file.string().c_str());
if (returnstream.good()) {
boost::archive::text_iarchive ia(returnstream);
ia >> homologies;
} else {
ELOG(2, "Failed to parse from " << homology_file.string() << ".");
}
returnstream.close();
} else {
ELOG(0, homology_file << " does not exist.");
}
// first we try to look into the HomologyContainer
LOG(1, "INFO: Listing all present homologies ...");
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
LOG(1, "INFO: graph " << iter->first << " has Fragment "
<< iter->second.first << " and associated energy " << iter->second.second << ".");
}
/******************** MORSE TRAINING ********************/
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphWithTwoCarbons(homologies);
LOG(1, "First representative graph containing two saturated carbons is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
typedef std::pair<
FunctionApproximation::inputs_t,
FunctionApproximation::outputs_t> InputOutputVector_t;
InputOutputVector_t DistanceEnergyVector;
std::pair range =
homologies.getHomologousGraphs(graph);
for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
// get distance out of Fragment
const double &energy = iter->second.second;
const Fragment &fragment = iter->second.first;
const Fragment::charges_t charges = fragment.getCharges();
const Fragment::positions_t positions = fragment.getPositions();
std::vector< std::pair > DistanceVectors;
for (Fragment::charges_t::const_iterator chargeiter = charges.begin();
chargeiter != charges.end(); ++chargeiter) {
if (*chargeiter == 6) {
Fragment::positions_t::const_iterator positer = positions.begin();
const size_t steps = std::distance(charges.begin(), chargeiter);
std::advance(positer, steps);
DistanceVectors.push_back(
std::make_pair(Vector((*positer)[0], (*positer)[1], (*positer)[2]),
steps));
}
}
if (DistanceVectors.size() == (size_t)2) {
argument_t arg;
arg.indices.first = DistanceVectors[0].second;
arg.indices.second = DistanceVectors[1].second;
arg.distance = DistanceVectors[0].first.distance(DistanceVectors[1].first);
arg.globalid = DistanceEnergyVector.first.size();
DistanceEnergyVector.first.push_back( FunctionModel::arguments_t(1,arg) );
DistanceEnergyVector.second.push_back( FunctionModel::results_t(1,energy) );
} else {
ELOG(2, "main() - found not exactly two carbon atoms in fragment "
<< fragment << ".");
}
}
// print training data for debugging
{
LOG(1, "INFO: I gathered the following (" << DistanceEnergyVector.first.size()
<< "," << DistanceEnergyVector.second.size() << ") data pairs: ");
FunctionApproximation::inputs_t::const_iterator initer = DistanceEnergyVector.first.begin();
FunctionApproximation::outputs_t::const_iterator outiter = DistanceEnergyVector.second.begin();
for (; initer != DistanceEnergyVector.first.end(); ++initer, ++outiter) {
LOG(1, "INFO: (" << (*initer)[0].indices.first << "," << (*initer)[0].indices.second
<< ") " << (*initer)[0].distance << " with energy " << *outiter);
}
}
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
FunctionModel::parameters_t params(PairPotential_Morse::MAXPARAMS, 0.);
params[PairPotential_Morse::dissociation_energy] = 0.5;
params[PairPotential_Morse::energy_offset] = -1.;
params[PairPotential_Morse::spring_constant] = 1.;
params[PairPotential_Morse::equilibrium_distance] = 2.9;
PairPotential_Morse morse;
morse.setParameters(params);
FunctionModel &model = morse;
FunctionApproximation approximator(1, 1, model);
approximator.setTrainingData(DistanceEnergyVector.first,DistanceEnergyVector.second);
if (model.isBoxConstraint() && approximator.checkParameterDerivatives())
approximator(FunctionApproximation::ParameterDerivative);
else
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
params = model.getParameters();
LOG(0, "RESULT: Best parameters are " << params << ".");
}
/******************* SATURATION TRAINING *******************/
FunctionModel::parameters_t params(SaturationPotential::MAXPARAMS, 0.);
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphWithOneCarbon(homologies);
LOG(1, "First representative graph containing one saturated carbon is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
typedef std::pair<
FunctionApproximation::inputs_t,
FunctionApproximation::outputs_t> InputOutputVector_t;
InputOutputVector_t DistanceEnergyVector;
std::pair range =
homologies.getHomologousGraphs(graph);
double EnergySum = 0.; //std::numeric_limits::max();
size_t counter = 0.;
for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
const double &energy = iter->second.second;
// if (energy <= EnergySum)
// EnergySum = energy;
EnergySum += energy;
++counter;
}
EnergySum *= 1./(double)counter;
for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
// get distance out of Fragment
const double &energy = iter->second.second;
const Fragment &fragment = iter->second.first;
const Fragment::charges_t charges = fragment.getCharges();
const Fragment::positions_t positions = fragment.getPositions();
FunctionModel::arguments_t args =
gatherAllDistanceArguments(charges, positions, DistanceEnergyVector.first.size());
DistanceEnergyVector.first.push_back( args );
DistanceEnergyVector.second.push_back( FunctionModel::results_t(1,energy-EnergySum) );
}
// print training data for debugging
{
LOG(1, "INFO: I gathered the following (" << DistanceEnergyVector.first.size()
<< "," << DistanceEnergyVector.second.size() << ") data pairs: ");
FunctionApproximation::inputs_t::const_iterator initer = DistanceEnergyVector.first.begin();
FunctionApproximation::outputs_t::const_iterator outiter = DistanceEnergyVector.second.begin();
for (; initer != DistanceEnergyVector.first.end(); ++initer, ++outiter) {
std::stringstream stream;
for (size_t index = 0; index < (*initer).size(); ++index)
stream << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
<< ") " << (*initer)[index].distance;
stream << " with energy " << *outiter;
LOG(1, "INFO: " << stream.str());
}
}
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
boost::function< std::vector(const argument_t &, const double)> triplefunction =
boost::bind(&getTripleFromArgument, DistanceEnergyVector.first, _1, _2);
srand((unsigned)time(0)); // seed with current time
LOG(0, "INFO: Initial parameters are " << params << ".");
SaturationPotential saturation(triplefunction);
saturation.setParameters(params);
FunctionModel &model = saturation;
FunctionApproximation approximator(
DistanceEnergyVector.first.begin()->size(),
DistanceEnergyVector.second.begin()->size(),
model); // CH4 has 5 atoms, hence 5*4/2 distances
approximator.setTrainingData(DistanceEnergyVector.first,DistanceEnergyVector.second);
if (model.isBoxConstraint() && approximator.checkParameterDerivatives())
approximator(FunctionApproximation::ParameterDerivative);
else
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
params = model.getParameters();
LOG(0, "RESULT: Best parameters are " << params << ".");
// std::cout << "\tsaturationparticle:";
// std::cout << "\tparticle_type=C,";
// std::cout << "\tA=" << params[SaturationPotential::A] << ",";
// std::cout << "\tB=" << params[SaturationPotential::B] << ",";
// std::cout << "\tlambda=" << params[SaturationPotential::lambda] << ",";
// std::cout << "\tmu=" << params[SaturationPotential::mu] << ",";
// std::cout << "\tbeta=" << params[SaturationPotential::beta] << ",";
// std::cout << "\tn=" << params[SaturationPotential::n] << ",";
// std::cout << "\tc=" << params[SaturationPotential::c] << ",";
// std::cout << "\td=" << params[SaturationPotential::d] << ",";
// std::cout << "\th=" << params[SaturationPotential::h] << ",";
//// std::cout << "\toffset=" << params[SaturationPotential::offset] << ",";
// std::cout << "\tR=" << saturation.R << ",";
// std::cout << "\tS=" << saturation.S << ";";
// std::cout << std::endl;
// check L2 and Lmax error against training set
double L2sum = 0.;
double Lmax = 0.;
size_t maxindex = -1;
FunctionApproximation::inputs_t::const_iterator initer = DistanceEnergyVector.first.begin();
FunctionApproximation::outputs_t::const_iterator outiter = DistanceEnergyVector.second.begin();
for (; initer != DistanceEnergyVector.first.end(); ++initer, ++outiter) {
const FunctionModel::results_t result = model((*initer));
const double temp = fabs((*outiter)[0] - result[0]);
LOG(2, "DEBUG: L2 contribution = " << (*outiter)[0] << "-" << result[0] << "=" << temp);
if (temp > Lmax) {
Lmax = temp;
maxindex = std::distance(const_cast(DistanceEnergyVector.first).begin(), initer);
}
L2sum += temp*temp;
}
LOG(1, "INFO: L2sum = " << L2sum << ", LMax = " << Lmax << " from " << maxindex);
}
return 0;
}