/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2012 University of Bonn. All rights reserved. * Please see the COPYING file or "Copyright notice" in builder.cpp for details. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * LevMartester.cpp * * Created on: Sep 27, 2012 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include #include "CodePatterns/MemDebug.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CodePatterns/Assert.hpp" #include "CodePatterns/Log.hpp" #include "LinearAlgebra/Vector.hpp" #include "Fragmentation/Homology/HomologyContainer.hpp" #include "Fragmentation/SetValues/Fragment.hpp" #include "FunctionApproximation/Extractors.hpp" #include "FunctionApproximation/FunctionApproximation.hpp" #include "FunctionApproximation/FunctionModel.hpp" #include "FunctionApproximation/TrainingData.hpp" #include "FunctionApproximation/writeDistanceEnergyTable.hpp" #include "Helpers/defs.hpp" #include "Potentials/PotentialFactory.hpp" #include "Potentials/PotentialRegistry.hpp" #include "Potentials/Specifics/PairPotential_Morse.hpp" #include "Potentials/Specifics/PairPotential_Angle.hpp" #include "Potentials/Specifics/SaturationPotential.hpp" #include "types.hpp" namespace po = boost::program_options; using namespace boost::assign; HomologyGraph getFirstGraphwithSpecifiedElements( const HomologyContainer &homologies, const SerializablePotential::ParticleTypes_t &types) { ASSERT( !types.empty(), "getFirstGraphwithSpecifiedElements() - charges is empty?"); // create charges Fragment::charges_t charges; charges.resize(types.size()); std::transform(types.begin(), types.end(), charges.begin(), boost::lambda::_1); // convert into count map Extractors::elementcounts_t counts_per_charge = Extractors::_detail::getElementCounts(charges); ASSERT( !counts_per_charge.empty(), "getFirstGraphwithSpecifiedElements() - charge counts are empty?"); LOG(2, "DEBUG: counts_per_charge is " << counts_per_charge << "."); // we want to check each (unique) key only once HomologyContainer::const_key_iterator olditer = homologies.key_end(); for (HomologyContainer::const_key_iterator iter = homologies.key_begin(); iter != homologies.key_end(); olditer = iter++) { // if it's the same as the old one, skip it if (*olditer == *iter) continue; // if it's a new key, check if every element has the right number of counts Extractors::elementcounts_t::const_iterator countiter = counts_per_charge.begin(); for (; countiter != counts_per_charge.end(); ++countiter) if (!(*iter).hasTimesAtomicNumber(countiter->first,countiter->second)) break; if( countiter == counts_per_charge.end()) return *iter; } return HomologyGraph(); } /** This function returns the elements of the sum over index "k" for an * argument containing indices "i" and "j" * @param inputs vector of all configuration (containing each a vector of all arguments) * @param arg argument containing indices "i" and "j" * @param cutoff cutoff criterion for sum over k * @return vector of argument pairs (a vector) of ik and jk for at least all k * within distance of \a cutoff to i */ std::vector getTripleFromArgument(const FunctionApproximation::inputs_t &inputs, const argument_t &arg, const double cutoff) { typedef std::list arg_list_t; typedef std::map k_args_map_t; k_args_map_t tempresult; ASSERT( inputs.size() > arg.globalid, "getTripleFromArgument() - globalid "+toString(arg.globalid) +" is greater than all inputs "+toString(inputs.size())+"."); const FunctionModel::arguments_t &listofargs = inputs[arg.globalid]; for (FunctionModel::arguments_t::const_iterator argiter = listofargs.begin(); argiter != listofargs.end(); ++argiter) { // first index must be either i or j but second index not if (((argiter->indices.first == arg.indices.first) || (argiter->indices.first == arg.indices.second)) && ((argiter->indices.second != arg.indices.first) && (argiter->indices.second != arg.indices.second))) { // we need arguments ik and jk std::pair< k_args_map_t::iterator, bool> inserter = tempresult.insert( std::make_pair( argiter->indices.second, arg_list_t(1,*argiter))); if (!inserter.second) { // is present one ik or jk, if ik insert jk at back if (inserter.first->second.begin()->indices.first == arg.indices.first) inserter.first->second.push_back(*argiter); else // if jk, insert ik at front inserter.first->second.push_front(*argiter); } } // // or second index must be either i or j but first index not // else if (((argiter->indices.first != arg.indices.first) // && (argiter->indices.first != arg.indices.second)) // && ((argiter->indices.second == arg.indices.first) // || (argiter->indices.second == arg.indices.second))) { // // we need arguments ki and kj // std::pair< k_args_map_t::iterator, bool> inserter = // tempresult.insert( std::make_pair( argiter->indices.first, arg_list_t(1,*argiter))); // if (!inserter.second) { // // is present one ki or kj, if ki insert kj at back // if (inserter.first->second.begin()->indices.second == arg.indices.first) // inserter.first->second.push_back(*argiter); // else // if kj, insert ki at front // inserter.first->second.push_front(*argiter); // } // } } // check that i,j are NOT contained ASSERT( tempresult.count(arg.indices.first) == 0, "getTripleFromArgument() - first index of argument present in k_args_map?"); ASSERT( tempresult.count(arg.indices.second) == 0, "getTripleFromArgument() - first index of argument present in k_args_map?"); // convert std::vector result; for (k_args_map_t::const_iterator iter = tempresult.begin(); iter != tempresult.end(); ++iter) { ASSERT( iter->second.size() == 2, "getTripleFromArgument() - for index "+toString(iter->first)+" we did not find both ik and jk."); result.push_back( FunctionModel::arguments_t(iter->second.begin(), iter->second.end()) ); } return result; } int main(int argc, char **argv) { std::cout << "Hello to the World from LevMar!" << std::endl; // setVerbosity(4); // load homology file po::options_description desc("Allowed options"); desc.add_options() ("help", "produce help message") ("homology-file", po::value< boost::filesystem::path >(), "homology file to parse") ("fit-potential", po::value< std::string >(), "potential type to fit") ("charges", po::value< SerializablePotential::ParticleTypes_t >()->multitoken(), "charges specifying the potential") ("fragment", po::value< SerializablePotential::ParticleTypes_t >()->multitoken(), "all charges in the fragment") ; po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); if (vm.count("help")) { std::cout << desc << "\n"; return 1; } // homology-file boost::filesystem::path homology_file; if (vm.count("homology-file")) { homology_file = vm["homology-file"].as(); LOG(1, "INFO: Parsing " << homology_file.string() << "."); } else { ELOG(0, "homology file (homology-file) was not set."); return 1; } // type of potential to fit std::string potentialtype; if (vm.count("fit-potential")) { potentialtype = vm["fit-potential"].as(); } else { ELOG(0, "potential type to fit (fit-potential) was not set."); return 1; } // charges SerializablePotential::ParticleTypes_t charges; if (vm.count("charges")) { charges = vm["charges"].as< SerializablePotential::ParticleTypes_t >(); } else { ELOG(0, "Vector of charges specifying the potential (charges) was not set."); return 1; } // fragment SerializablePotential::ParticleTypes_t fragment; if (vm.count("fragment")) { fragment = vm["fragment"].as< SerializablePotential::ParticleTypes_t >(); } else { ELOG(0, "Vector of charges specifying the fragment (charges) was not set."); return 1; } // parse homologies into container HomologyContainer homologies; if (boost::filesystem::exists(homology_file)) { std::ifstream returnstream(homology_file.string().c_str()); if (returnstream.good()) { boost::archive::text_iarchive ia(returnstream); ia >> homologies; } else { ELOG(0, "Failed to parse from " << homology_file.string() << "."); return 1; } returnstream.close(); } else { ELOG(0, homology_file << " does not exist."); return 1; } // first we try to look into the HomologyContainer LOG(1, "INFO: Listing all present homologies ..."); for (HomologyContainer::container_t::const_iterator iter = homologies.begin(); iter != homologies.end(); ++iter) { LOG(1, "INFO: graph " << iter->first << " has Fragment " << iter->second.first << " and associated energy " << iter->second.second << "."); } LOG(0, "STATUS: I'm training now a " << potentialtype << " potential on charges " << charges << "."); /******************** TRAINING ********************/ // fit potential FunctionModel *model = PotentialFactory::getInstance().createInstance( potentialtype, charges); ASSERT( model != NULL, "main() - model returned from PotentialFactory is NULL."); FunctionModel::parameters_t params(model->getParameterDimension(), 0.); { // then we ought to pick the right HomologyGraph ... const HomologyGraph graph = getFirstGraphwithSpecifiedElements(homologies,fragment); if (graph != HomologyGraph()) { LOG(1, "First representative graph containing fragment " << fragment << " is " << graph << "."); // Afterwards we go through all of this type and gather the distance and the energy value TrainingData data(model->getFragmentSpecificExtractor()); data(homologies.getHomologousGraphs(graph)); if (!data.getTrainingInputs().empty()) { // print which distance is which size_t counter=1; const FunctionModel::arguments_t &inputs = data.getTrainingInputs()[0]; for (FunctionModel::arguments_t::const_iterator iter = inputs.begin(); iter != inputs.end(); ++iter) { const argument_t &arg = *iter; LOG(1, "INFO: distance " << counter++ << " is between (#" << arg.indices.first << "c" << arg.types.first << "," << arg.indices.second << "c" << arg.types.second << ")."); } // print table LOG(1, "INFO: I gathered the following training data:\n" << _detail::writeDistanceEnergyTable(data.getDistanceEnergyTable())); } // NOTICE that distance are in bohrradi as they come from MPQC! // now perform the function approximation by optimizing the model function FunctionApproximation approximator(data, *model); if (model->isBoxConstraint() && approximator.checkParameterDerivatives()) { // we set parameters here because we want to test with default ones srand((unsigned)time(0)); // seed with current time model->setParametersToRandomInitialValues(data); LOG(0, "INFO: Initial parameters are " << model->getParameters() << "."); approximator(FunctionApproximation::ParameterDerivative); } else { ELOG(0, "We require parameter derivatives for a box constraint minimization."); return 1; } // create a map of each fragment with error. typedef std::multimap< double, size_t > WorseFragmentMap_t; WorseFragmentMap_t WorseFragmentMap; HomologyContainer::range_t fragmentrange = homologies.getHomologousGraphs(graph); // fragments make it into the container in reversed order, hence count from top down size_t index= std::distance(fragmentrange.first, fragmentrange.second)-1; for (HomologyContainer::const_iterator iter = fragmentrange.first; iter != fragmentrange.second; ++iter) { const Fragment& fragment = iter->second.first; const double &energy = iter->second.second; // create arguments from the fragment FunctionModel::extractor_t extractor = model->getFragmentSpecificExtractor(); FunctionModel::arguments_t args = extractor(fragment, 1); // calculate value from potential const double fitvalue = (*model)(args)[0]; // insert difference into map const double error = fabs(energy - fitvalue); WorseFragmentMap.insert( std::make_pair( error, index-- ) ); { // give only the distances in the debugging text std::stringstream streamargs; BOOST_FOREACH (argument_t arg, args) { streamargs << " " << arg.distance*AtomicLengthToAngstroem; } LOG(2, "DEBUG: frag.#" << index+1 << "'s error is |" << energy << " - " << fitvalue << "| = " << error << " for args " << streamargs.str() << "."); } } LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << "."); params = model->getParameters(); SerializablePotential *potential = dynamic_cast(model); if (potential != NULL) { LOG(1, "STATUS: Resulting parameters are " << std::endl << *potential << "."); } else { LOG(1, "INFO: FunctionModel is no serializable potential."); } } } delete model; // remove static instances PotentialFactory::purgeInstance(); return 0; }