/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2012 University of Bonn. All rights reserved.
* Please see the COPYING file or "Copyright notice" in builder.cpp for details.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* LevMartester.cpp
*
* Created on: Sep 27, 2012
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "Fragmentation/Homology/HomologyContainer.hpp"
#include "Fragmentation/SetValues/Fragment.hpp"
#include "FunctionApproximation/Extractors.hpp"
#include "FunctionApproximation/FunctionApproximation.hpp"
#include "FunctionApproximation/FunctionModel.hpp"
#include "FunctionApproximation/TrainingData.hpp"
#include "FunctionApproximation/writeDistanceEnergyTable.hpp"
#include "Helpers/defs.hpp"
#include "Potentials/PotentialFactory.hpp"
#include "Potentials/PotentialRegistry.hpp"
#include "Potentials/Specifics/PairPotential_Morse.hpp"
#include "Potentials/Specifics/PairPotential_Angle.hpp"
#include "Potentials/Specifics/SaturationPotential.hpp"
#include "types.hpp"
namespace po = boost::program_options;
using namespace boost::assign;
HomologyGraph getFirstGraphwithSpecifiedElements(
const HomologyContainer &homologies,
const SerializablePotential::ParticleTypes_t &types)
{
ASSERT( !types.empty(),
"getFirstGraphwithSpecifiedElements() - charges is empty?");
// create charges
Fragment::charges_t charges;
charges.resize(types.size());
std::transform(types.begin(), types.end(),
charges.begin(), boost::lambda::_1);
// convert into count map
Extractors::elementcounts_t counts_per_charge =
Extractors::_detail::getElementCounts(charges);
ASSERT( !counts_per_charge.empty(),
"getFirstGraphwithSpecifiedElements() - charge counts are empty?");
LOG(2, "DEBUG: counts_per_charge is " << counts_per_charge << ".");
// we want to check each (unique) key only once
HomologyContainer::const_key_iterator olditer = homologies.key_end();
for (HomologyContainer::const_key_iterator iter =
homologies.key_begin(); iter != homologies.key_end(); olditer = iter++) {
// if it's the same as the old one, skip it
if (*olditer == *iter)
continue;
// if it's a new key, check if every element has the right number of counts
Extractors::elementcounts_t::const_iterator countiter = counts_per_charge.begin();
for (; countiter != counts_per_charge.end(); ++countiter)
if (!(*iter).hasTimesAtomicNumber(countiter->first,countiter->second))
break;
if( countiter == counts_per_charge.end())
return *iter;
}
return HomologyGraph();
}
/** This function returns the elements of the sum over index "k" for an
* argument containing indices "i" and "j"
* @param inputs vector of all configuration (containing each a vector of all arguments)
* @param arg argument containing indices "i" and "j"
* @param cutoff cutoff criterion for sum over k
* @return vector of argument pairs (a vector) of ik and jk for at least all k
* within distance of \a cutoff to i
*/
std::vector
getTripleFromArgument(const FunctionApproximation::inputs_t &inputs, const argument_t &arg, const double cutoff)
{
typedef std::list arg_list_t;
typedef std::map k_args_map_t;
k_args_map_t tempresult;
ASSERT( inputs.size() > arg.globalid,
"getTripleFromArgument() - globalid "+toString(arg.globalid)
+" is greater than all inputs "+toString(inputs.size())+".");
const FunctionModel::arguments_t &listofargs = inputs[arg.globalid];
for (FunctionModel::arguments_t::const_iterator argiter = listofargs.begin();
argiter != listofargs.end();
++argiter) {
// first index must be either i or j but second index not
if (((argiter->indices.first == arg.indices.first)
|| (argiter->indices.first == arg.indices.second))
&& ((argiter->indices.second != arg.indices.first)
&& (argiter->indices.second != arg.indices.second))) {
// we need arguments ik and jk
std::pair< k_args_map_t::iterator, bool> inserter =
tempresult.insert( std::make_pair( argiter->indices.second, arg_list_t(1,*argiter)));
if (!inserter.second) {
// is present one ik or jk, if ik insert jk at back
if (inserter.first->second.begin()->indices.first == arg.indices.first)
inserter.first->second.push_back(*argiter);
else // if jk, insert ik at front
inserter.first->second.push_front(*argiter);
}
}
// // or second index must be either i or j but first index not
// else if (((argiter->indices.first != arg.indices.first)
// && (argiter->indices.first != arg.indices.second))
// && ((argiter->indices.second == arg.indices.first)
// || (argiter->indices.second == arg.indices.second))) {
// // we need arguments ki and kj
// std::pair< k_args_map_t::iterator, bool> inserter =
// tempresult.insert( std::make_pair( argiter->indices.first, arg_list_t(1,*argiter)));
// if (!inserter.second) {
// // is present one ki or kj, if ki insert kj at back
// if (inserter.first->second.begin()->indices.second == arg.indices.first)
// inserter.first->second.push_back(*argiter);
// else // if kj, insert ki at front
// inserter.first->second.push_front(*argiter);
// }
// }
}
// check that i,j are NOT contained
ASSERT( tempresult.count(arg.indices.first) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
ASSERT( tempresult.count(arg.indices.second) == 0,
"getTripleFromArgument() - first index of argument present in k_args_map?");
// convert
std::vector result;
for (k_args_map_t::const_iterator iter = tempresult.begin();
iter != tempresult.end();
++iter) {
ASSERT( iter->second.size() == 2,
"getTripleFromArgument() - for index "+toString(iter->first)+" we did not find both ik and jk.");
result.push_back( FunctionModel::arguments_t(iter->second.begin(), iter->second.end()) );
}
return result;
}
int main(int argc, char **argv)
{
std::cout << "Hello to the World from LevMar!" << std::endl;
// setVerbosity(4);
// load homology file
po::options_description desc("Allowed options");
desc.add_options()
("help", "produce help message")
("homology-file", po::value< boost::filesystem::path >(), "homology file to parse")
("fit-potential", po::value< std::string >(), "potential type to fit")
("charges", po::value< SerializablePotential::ParticleTypes_t >()->multitoken(), "charges specifying the potential")
("fragment", po::value< SerializablePotential::ParticleTypes_t >()->multitoken(), "all charges in the fragment")
;
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
po::notify(vm);
if (vm.count("help")) {
std::cout << desc << "\n";
return 1;
}
// homology-file
boost::filesystem::path homology_file;
if (vm.count("homology-file")) {
homology_file = vm["homology-file"].as();
LOG(1, "INFO: Parsing " << homology_file.string() << ".");
} else {
ELOG(0, "homology file (homology-file) was not set.");
return 1;
}
// type of potential to fit
std::string potentialtype;
if (vm.count("fit-potential")) {
potentialtype = vm["fit-potential"].as();
} else {
ELOG(0, "potential type to fit (fit-potential) was not set.");
return 1;
}
// charges
SerializablePotential::ParticleTypes_t charges;
if (vm.count("charges")) {
charges = vm["charges"].as< SerializablePotential::ParticleTypes_t >();
} else {
ELOG(0, "Vector of charges specifying the potential (charges) was not set.");
return 1;
}
// fragment
SerializablePotential::ParticleTypes_t fragment;
if (vm.count("fragment")) {
fragment = vm["fragment"].as< SerializablePotential::ParticleTypes_t >();
} else {
ELOG(0, "Vector of charges specifying the fragment (charges) was not set.");
return 1;
}
// parse homologies into container
HomologyContainer homologies;
if (boost::filesystem::exists(homology_file)) {
std::ifstream returnstream(homology_file.string().c_str());
if (returnstream.good()) {
boost::archive::text_iarchive ia(returnstream);
ia >> homologies;
} else {
ELOG(0, "Failed to parse from " << homology_file.string() << ".");
return 1;
}
returnstream.close();
} else {
ELOG(0, homology_file << " does not exist.");
return 1;
}
// first we try to look into the HomologyContainer
LOG(1, "INFO: Listing all present homologies ...");
for (HomologyContainer::container_t::const_iterator iter =
homologies.begin(); iter != homologies.end(); ++iter) {
LOG(1, "INFO: graph " << iter->first << " has Fragment " << iter->second.first
<< " and associated energy " << iter->second.second << ".");
}
LOG(0, "STATUS: I'm training now a " << potentialtype << " potential on charges "
<< charges << ".");
/******************** TRAINING ********************/
// fit potential
FunctionModel *model =
PotentialFactory::getInstance().createInstance(
potentialtype,
charges);
ASSERT( model != NULL,
"main() - model returned from PotentialFactory is NULL.");
FunctionModel::parameters_t params(model->getParameterDimension(), 0.);
{
// then we ought to pick the right HomologyGraph ...
const HomologyGraph graph = getFirstGraphwithSpecifiedElements(homologies,fragment);
if (graph != HomologyGraph()) {
LOG(1, "First representative graph containing fragment "
<< fragment << " is " << graph << ".");
// Afterwards we go through all of this type and gather the distance and the energy value
TrainingData data(model->getFragmentSpecificExtractor());
data(homologies.getHomologousGraphs(graph));
if (!data.getTrainingInputs().empty()) {
// print which distance is which
size_t counter=1;
const FunctionModel::arguments_t &inputs = data.getTrainingInputs()[0];
for (FunctionModel::arguments_t::const_iterator iter = inputs.begin();
iter != inputs.end(); ++iter) {
const argument_t &arg = *iter;
LOG(1, "INFO: distance " << counter++ << " is between (#"
<< arg.indices.first << "c" << arg.types.first << ","
<< arg.indices.second << "c" << arg.types.second << ").");
}
// print table
LOG(1, "INFO: I gathered the following training data:\n" <<
_detail::writeDistanceEnergyTable(data.getDistanceEnergyTable()));
}
// NOTICE that distance are in bohrradi as they come from MPQC!
// now perform the function approximation by optimizing the model function
FunctionApproximation approximator(data, *model);
if (model->isBoxConstraint() && approximator.checkParameterDerivatives()) {
// we set parameters here because we want to test with default ones
srand((unsigned)time(0)); // seed with current time
model->setParametersToRandomInitialValues(data);
LOG(0, "INFO: Initial parameters are " << model->getParameters() << ".");
approximator(FunctionApproximation::ParameterDerivative);
} else {
ELOG(0, "We require parameter derivatives for a box constraint minimization.");
return 1;
}
// create a map of each fragment with error.
typedef std::multimap< double, size_t > WorseFragmentMap_t;
WorseFragmentMap_t WorseFragmentMap;
HomologyContainer::range_t fragmentrange = homologies.getHomologousGraphs(graph);
// fragments make it into the container in reversed order, hence count from top down
size_t index= std::distance(fragmentrange.first, fragmentrange.second)-1;
for (HomologyContainer::const_iterator iter = fragmentrange.first;
iter != fragmentrange.second;
++iter) {
const Fragment& fragment = iter->second.first;
const double &energy = iter->second.second;
// create arguments from the fragment
FunctionModel::extractor_t extractor = model->getFragmentSpecificExtractor();
FunctionModel::arguments_t args = extractor(fragment, 1);
// calculate value from potential
const double fitvalue = (*model)(args)[0];
// insert difference into map
const double error = fabs(energy - fitvalue);
WorseFragmentMap.insert( std::make_pair( error, index-- ) );
{
// give only the distances in the debugging text
std::stringstream streamargs;
BOOST_FOREACH (argument_t arg, args) {
streamargs << " " << arg.distance*AtomicLengthToAngstroem;
}
LOG(2, "DEBUG: frag.#" << index+1 << "'s error is |" << energy << " - " << fitvalue
<< "| = " << error << " for args " << streamargs.str() << ".");
}
}
LOG(0, "RESULT: WorstFragmentMap " << WorseFragmentMap << ".");
params = model->getParameters();
SerializablePotential *potential = dynamic_cast(model);
if (potential != NULL) {
LOG(1, "STATUS: Resulting parameters are " << std::endl << *potential << ".");
} else {
LOG(1, "INFO: FunctionModel is no serializable potential.");
}
}
}
delete model;
// remove static instances
PotentialFactory::purgeInstance();
return 0;
}