1 | //
|
---|
2 | // mpqc_extract.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of MPQC.
|
---|
10 | //
|
---|
11 | // MPQC is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // MPQC is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU General Public License
|
---|
22 | // along with the MPQC; see the file COPYING. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 | // \note This was extracted from \file mpqc.cc for refactoring into a library.
|
---|
28 |
|
---|
29 | #ifdef HAVE_CONFIG_H
|
---|
30 | #include <scconfig.h>
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | #ifdef HAVE_JOBMARKET
|
---|
34 | // include headers that implement a archive in simple text format
|
---|
35 | // otherwise BOOST_CLASS_EXPORT_IMPLEMENT has no effect
|
---|
36 | #include <boost/archive/text_oarchive.hpp>
|
---|
37 | #include <boost/archive/text_iarchive.hpp>
|
---|
38 |
|
---|
39 | #include "JobMarket/Results/FragmentResult.hpp"
|
---|
40 | #include "JobMarket/poolworker_main.hpp"
|
---|
41 |
|
---|
42 | #include "chemistry/qc/scf/scfops.h"
|
---|
43 |
|
---|
44 | #ifdef HAVE_MPQCDATA
|
---|
45 | #include "Jobs/MPQCJob.hpp"
|
---|
46 | #include "Fragmentation/Summation/Containers/MPQCData.hpp"
|
---|
47 |
|
---|
48 | #include <chemistry/qc/basis/obint.h>
|
---|
49 | #include <chemistry/qc/basis/symmint.h>
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | #include <algorithm>
|
---|
53 | #include <stdlib.h>
|
---|
54 | #endif
|
---|
55 |
|
---|
56 | #include <chemistry/qc/scf/linkage.h>
|
---|
57 | #include <chemistry/qc/dft/linkage.h>
|
---|
58 | #include <chemistry/qc/mbpt/linkage.h>
|
---|
59 | #ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_MBPTR12
|
---|
60 | # include <chemistry/qc/mbptr12/linkage.h>
|
---|
61 | #endif
|
---|
62 | #ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_CINTS
|
---|
63 | # include <chemistry/qc/cints/linkage.h>
|
---|
64 | #endif
|
---|
65 | //#include <chemistry/qc/psi/linkage.h>
|
---|
66 | #include <util/state/linkage.h>
|
---|
67 | #ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_CC
|
---|
68 | # include <chemistry/qc/cc/linkage.h>
|
---|
69 | #endif
|
---|
70 | #ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_PSI
|
---|
71 | # include <chemistry/qc/psi/linkage.h>
|
---|
72 | #endif
|
---|
73 | #ifdef HAVE_SC_SRC_LIB_CHEMISTRY_QC_INTCCA
|
---|
74 | # include <chemistry/qc/intcca/linkage.h>
|
---|
75 | #endif
|
---|
76 |
|
---|
77 | #include "mpqc_extract.h"
|
---|
78 |
|
---|
79 | using namespace std;
|
---|
80 | using namespace sc;
|
---|
81 |
|
---|
82 | static int getCoreElectrons(const int z)
|
---|
83 | {
|
---|
84 | int n=0;
|
---|
85 | if (z > 2) n += 2;
|
---|
86 | if (z > 10) n += 8;
|
---|
87 | if (z > 18) n += 8;
|
---|
88 | if (z > 30) n += 10;
|
---|
89 | if (z > 36) n += 8;
|
---|
90 | if (z > 48) n += 10;
|
---|
91 | if (z > 54) n += 8;
|
---|
92 | return n;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /** Finds the region index to a given timer region name.
|
---|
96 | *
|
---|
97 | * @param nregion number of regions
|
---|
98 | * @param region_names array with name of each region
|
---|
99 | * @param name name of desired region
|
---|
100 | * @return index of desired region in array
|
---|
101 | */
|
---|
102 | int findTimerRegion(const int &nregion, const char **®ion_names, const char *name)
|
---|
103 | {
|
---|
104 | int region=0;
|
---|
105 | for (;region<nregion;++region) {
|
---|
106 | //std::cout << "Comparing " << region_names[region] << " and " << name << "." << std::endl;
|
---|
107 | if (strcmp(region_names[region], name) == 0)
|
---|
108 | break;
|
---|
109 | }
|
---|
110 | if (region == nregion)
|
---|
111 | region = 0;
|
---|
112 | return region;
|
---|
113 | }
|
---|
114 |
|
---|
115 | /** Extractor function that is called after all calculations have been made.
|
---|
116 | *
|
---|
117 | * \param data result structure to fill
|
---|
118 | */
|
---|
119 | void extractResults(
|
---|
120 | Ref<MolecularEnergy> &mole,
|
---|
121 | void *_data
|
---|
122 | )
|
---|
123 | {
|
---|
124 | MPQCData &data = *static_cast<MPQCData *>(_data);
|
---|
125 | Ref<Wavefunction> wfn;
|
---|
126 | wfn << mole;
|
---|
127 | // ExEnv::out0() << "The number of atomic orbitals: " << wfn->ao_dimension()->n() << endl;
|
---|
128 | // ExEnv::out0() << "The AO density matrix is ";
|
---|
129 | // wfn->ao_density()->print(ExEnv::out0());
|
---|
130 | // ExEnv::out0() << "The natural density matrix is ";
|
---|
131 | // wfn->natural_density()->print(ExEnv::out0());
|
---|
132 | // ExEnv::out0() << "The Gaussian basis is " << wfn->basis()->name() << endl;
|
---|
133 | // ExEnv::out0() << "The Gaussians sit at the following centers: " << endl;
|
---|
134 | // for (int nr = 0; nr< wfn->basis()->ncenter(); ++nr) {
|
---|
135 | // ExEnv::out0() << nr << " basis function has its center at ";
|
---|
136 | // for (int i=0; i < 3; ++i)
|
---|
137 | // ExEnv::out0() << wfn->basis()->r(nr,i) << "\t";
|
---|
138 | // ExEnv::out0() << endl;
|
---|
139 | // }
|
---|
140 | // store accuracies
|
---|
141 | data.accuracy = mole->value_result().actual_accuracy();
|
---|
142 | data.desired_accuracy = mole->value_result().desired_accuracy();
|
---|
143 | // print the energy
|
---|
144 | data.energies.total = wfn->energy();
|
---|
145 | data.energies.nuclear_repulsion = wfn->nuclear_repulsion_energy();
|
---|
146 | {
|
---|
147 | CLHF *clhf = dynamic_cast<CLHF*>(wfn.pointer());
|
---|
148 | if (clhf != NULL) {
|
---|
149 | double ex, ec;
|
---|
150 | clhf->two_body_energy(ec, ex);
|
---|
151 | data.energies.electron_coulomb = ec;
|
---|
152 | data.energies.electron_exchange = ex;
|
---|
153 | clhf = NULL;
|
---|
154 | } else {
|
---|
155 | ExEnv::out0() << "INFO: There is no direct CLHF information available." << endl;
|
---|
156 | data.energies.electron_coulomb = 0.;
|
---|
157 | data.energies.electron_exchange = 0.;
|
---|
158 | }
|
---|
159 | }
|
---|
160 | SCF *scf = NULL;
|
---|
161 | {
|
---|
162 | MBPT2 *mbpt2 = dynamic_cast<MBPT2*>(wfn.pointer());
|
---|
163 | if (mbpt2 != NULL) {
|
---|
164 | data.energies.correlation = mbpt2->corr_energy();
|
---|
165 | scf = mbpt2->ref().pointer();
|
---|
166 | CLHF *clhf = dynamic_cast<CLHF*>(scf);
|
---|
167 | if (clhf != NULL) {
|
---|
168 | double ex, ec;
|
---|
169 | clhf->two_body_energy(ec, ex);
|
---|
170 | data.energies.electron_coulomb = ec;
|
---|
171 | data.energies.electron_exchange = ex;
|
---|
172 | clhf = NULL;
|
---|
173 | } else {
|
---|
174 | ExEnv::out0() << "INFO: There is no reference CLHF information available either." << endl;
|
---|
175 | data.energies.electron_coulomb = 0.;
|
---|
176 | data.energies.electron_exchange = 0.;
|
---|
177 | }
|
---|
178 | mbpt2 = 0;
|
---|
179 | } else {
|
---|
180 | ExEnv::out0() << "INFO: There is no MBPT2 information available." << endl;
|
---|
181 | data.energies.correlation = 0.;
|
---|
182 | scf = dynamic_cast<SCF*>(wfn.pointer());
|
---|
183 | if (scf == NULL)
|
---|
184 | abort();
|
---|
185 | }
|
---|
186 | }
|
---|
187 | {
|
---|
188 | // taken from clscf.cc: CLSCF::scf_energy() (but see also Szabo/Ostlund)
|
---|
189 |
|
---|
190 | RefSymmSCMatrix t = scf->overlap();
|
---|
191 | RefSymmSCMatrix cl_dens_ = scf->ao_density();
|
---|
192 |
|
---|
193 | SCFEnergy *eop = new SCFEnergy;
|
---|
194 | eop->reference();
|
---|
195 | if (t.dim()->equiv(cl_dens_.dim())) {
|
---|
196 | Ref<SCElementOp2> op = eop;
|
---|
197 | t.element_op(op,cl_dens_);
|
---|
198 | op=0;
|
---|
199 | }
|
---|
200 | eop->dereference();
|
---|
201 |
|
---|
202 | data.energies.overlap = eop->result();
|
---|
203 |
|
---|
204 | delete eop;
|
---|
205 | t = 0;
|
---|
206 | cl_dens_ = 0;
|
---|
207 | }
|
---|
208 | {
|
---|
209 | // taken from Wavefunction::core_hamiltonian()
|
---|
210 | RefSymmSCMatrix hao(scf->basis()->basisdim(), scf->basis()->matrixkit());
|
---|
211 | hao.assign(0.0);
|
---|
212 | Ref<PetiteList> pl = scf->integral()->petite_list();
|
---|
213 | Ref<SCElementOp> hc =
|
---|
214 | new OneBodyIntOp(new SymmOneBodyIntIter(scf->integral()->kinetic(), pl));
|
---|
215 | hao.element_op(hc);
|
---|
216 | hc=0;
|
---|
217 |
|
---|
218 | RefSymmSCMatrix h(scf->so_dimension(), scf->basis_matrixkit());
|
---|
219 | pl->symmetrize(hao,h);
|
---|
220 |
|
---|
221 | // taken from clscf.cc: CLSCF::scf_energy() (but see also Szabo/Ostlund)
|
---|
222 | RefSymmSCMatrix cl_dens_ = scf->ao_density();
|
---|
223 |
|
---|
224 | SCFEnergy *eop = new SCFEnergy;
|
---|
225 | eop->reference();
|
---|
226 | if (h.dim()->equiv(cl_dens_.dim())) {
|
---|
227 | Ref<SCElementOp2> op = eop;
|
---|
228 | h.element_op(op,cl_dens_);
|
---|
229 | op=0;
|
---|
230 | }
|
---|
231 | eop->dereference();
|
---|
232 |
|
---|
233 | data.energies.kinetic = 2.*eop->result();
|
---|
234 |
|
---|
235 | delete eop;
|
---|
236 | hao = 0;
|
---|
237 | h = 0;
|
---|
238 | cl_dens_ = 0;
|
---|
239 | }
|
---|
240 | {
|
---|
241 | // set to potential energy between nuclei and electron charge distribution
|
---|
242 | RefSymmSCMatrix hao(scf->basis()->basisdim(), scf->basis()->matrixkit());
|
---|
243 | hao.assign(0.0);
|
---|
244 | Ref<PetiteList> pl = scf->integral()->petite_list();
|
---|
245 | Ref<SCElementOp> hc =
|
---|
246 | new OneBodyIntOp(new SymmOneBodyIntIter(scf->integral()->nuclear(), pl));
|
---|
247 | hao.element_op(hc);
|
---|
248 | hc=0;
|
---|
249 |
|
---|
250 | RefSymmSCMatrix h(scf->so_dimension(), scf->basis_matrixkit());
|
---|
251 | pl->symmetrize(hao,h);
|
---|
252 |
|
---|
253 | // taken from clscf.cc: CLSCF::scf_energy() (but see also Szabo/Ostlund)
|
---|
254 | RefSymmSCMatrix cl_dens_ = scf->ao_density();
|
---|
255 |
|
---|
256 | SCFEnergy *eop = new SCFEnergy;
|
---|
257 | eop->reference();
|
---|
258 | if (h.dim()->equiv(cl_dens_.dim())) {
|
---|
259 | Ref<SCElementOp2> op = eop;
|
---|
260 | h.element_op(op,cl_dens_);
|
---|
261 | op=0;
|
---|
262 | }
|
---|
263 | eop->dereference();
|
---|
264 |
|
---|
265 | data.energies.hcore = 2.*eop->result();
|
---|
266 |
|
---|
267 | delete eop;
|
---|
268 | hao = 0;
|
---|
269 | h = 0;
|
---|
270 | cl_dens_ = 0;
|
---|
271 | }
|
---|
272 | ExEnv::out0() << "total is " << data.energies.total << endl;
|
---|
273 | ExEnv::out0() << "nuclear_repulsion is " << data.energies.nuclear_repulsion << endl;
|
---|
274 | ExEnv::out0() << "electron_coulomb is " << data.energies.electron_coulomb << endl;
|
---|
275 | ExEnv::out0() << "electron_exchange is " << data.energies.electron_exchange << endl;
|
---|
276 | ExEnv::out0() << "correlation is " << data.energies.correlation << endl;
|
---|
277 | ExEnv::out0() << "overlap is " << data.energies.overlap << endl;
|
---|
278 | ExEnv::out0() << "kinetic is " << data.energies.kinetic << endl;
|
---|
279 | ExEnv::out0() << "hcore is " << data.energies.hcore << endl;
|
---|
280 | ExEnv::out0() << "sum is " <<
|
---|
281 | data.energies.nuclear_repulsion
|
---|
282 | + data.energies.electron_coulomb
|
---|
283 | + data.energies.electron_exchange
|
---|
284 | + data.energies.correlation
|
---|
285 | + data.energies.kinetic
|
---|
286 | + data.energies.hcore
|
---|
287 | << endl;
|
---|
288 |
|
---|
289 | ExEnv::out0() << endl << indent
|
---|
290 | << scprintf("Value of the MolecularEnergy: %15.10f",
|
---|
291 | mole->energy())
|
---|
292 | << endl;
|
---|
293 | // print the gradient
|
---|
294 | RefSCVector grad;
|
---|
295 | if (mole->gradient_result().computed()) {
|
---|
296 | grad = mole->gradient_result().result_noupdate();
|
---|
297 | }
|
---|
298 | // gradient calculation needs to be activated in the configuration
|
---|
299 | // some methods such as open shell MBPT2 do not allow for gradient calc.
|
---|
300 | // else {
|
---|
301 | // grad = mole->gradient();
|
---|
302 | // }
|
---|
303 | if (grad.nonnull()) {
|
---|
304 | data.forces.resize(grad.dim()/3);
|
---|
305 | for (int j=0;j<grad.dim()/3; ++j) {
|
---|
306 | data.forces[j].resize(3, 0.);
|
---|
307 | }
|
---|
308 | ExEnv::out0() << "Gradient of the MolecularEnergy:" << std::endl;
|
---|
309 | for (int j=0;j<grad.dim()/3; ++j) {
|
---|
310 | ExEnv::out0() << "\t";
|
---|
311 | for (int i=0; i< 3; ++i) {
|
---|
312 | data.forces[j][i] = grad[3*j+i];
|
---|
313 | ExEnv::out0() << grad[3*j+i] << "\t";
|
---|
314 | }
|
---|
315 | ExEnv::out0() << endl;
|
---|
316 | }
|
---|
317 | } else {
|
---|
318 | ExEnv::out0() << "INFO: There is no gradient information available." << endl;
|
---|
319 | }
|
---|
320 | grad = NULL;
|
---|
321 |
|
---|
322 | {
|
---|
323 | // eigenvalues (this only works if we have a OneBodyWavefunction, i.e. SCF procedure)
|
---|
324 | // eigenvalues seem to be invalid for unrestricted SCF calculation
|
---|
325 | // (see UnrestrictedSCF::eigenvalues() implementation)
|
---|
326 | UnrestrictedSCF *uscf = dynamic_cast<UnrestrictedSCF*>(wfn.pointer());
|
---|
327 | if ((scf != NULL) && (uscf == NULL)) {
|
---|
328 | // const double scfernergy = scf->energy();
|
---|
329 | RefDiagSCMatrix evals = scf->eigenvalues();
|
---|
330 |
|
---|
331 | ExEnv::out0() << "Eigenvalues:" << endl;
|
---|
332 | for(int i=0;i<wfn->oso_dimension(); ++i) {
|
---|
333 | data.energies.eigenvalues.push_back(evals(i));
|
---|
334 | ExEnv::out0() << i << "th eigenvalue is " << evals(i) << endl;
|
---|
335 | }
|
---|
336 | } else {
|
---|
337 | ExEnv::out0() << "INFO: There is no eigenvalue information available." << endl;
|
---|
338 | }
|
---|
339 | }
|
---|
340 | // we do sample the density only on request
|
---|
341 | {
|
---|
342 | // fill positions and charges (NO LONGER converting from bohr radii to angstroem)
|
---|
343 | const double AtomicLengthToAngstroem = 1.;//0.52917721;
|
---|
344 | data.positions.reserve(wfn->molecule()->natom());
|
---|
345 | data.atomicnumbers.reserve(wfn->molecule()->natom());
|
---|
346 | data.charges.reserve(wfn->molecule()->natom());
|
---|
347 | for (int iatom=0;iatom < wfn->molecule()->natom(); ++iatom) {
|
---|
348 | data.atomicnumbers.push_back(wfn->molecule()->Z(iatom));
|
---|
349 | double charge = wfn->molecule()->Z(iatom);
|
---|
350 | if (data.DoValenceOnly == MPQCData::DoSampleValenceOnly)
|
---|
351 | charge -= getCoreElectrons((int)charge);
|
---|
352 | data.charges.push_back(charge);
|
---|
353 | std::vector<double> pos(3, 0.);
|
---|
354 | for (int j=0;j<3;++j)
|
---|
355 | pos[j] = wfn->molecule()->r(iatom, j)*AtomicLengthToAngstroem;
|
---|
356 | data.positions.push_back(pos);
|
---|
357 | }
|
---|
358 | ExEnv::out0() << "We have "
|
---|
359 | << data.positions.size() << " positions and "
|
---|
360 | << data.charges.size() << " charges." << endl;
|
---|
361 | }
|
---|
362 | if (data.DoLongrange) {
|
---|
363 | if (data.sampled_grid.level != 0)
|
---|
364 | {
|
---|
365 | // we now need to sample the density on the grid
|
---|
366 | // 1. get max and min over all basis function positions
|
---|
367 | assert( scf->basis()->ncenter() > 0 );
|
---|
368 | SCVector3 bmin( scf->basis()->r(0,0), scf->basis()->r(0,1), scf->basis()->r(0,2) );
|
---|
369 | SCVector3 bmax( scf->basis()->r(0,0), scf->basis()->r(0,1), scf->basis()->r(0,2) );
|
---|
370 | for (int nr = 1; nr< scf->basis()->ncenter(); ++nr) {
|
---|
371 | for (int i=0; i < 3; ++i) {
|
---|
372 | if (scf->basis()->r(nr,i) < bmin(i))
|
---|
373 | bmin(i) = scf->basis()->r(nr,i);
|
---|
374 | if (scf->basis()->r(nr,i) > bmax(i))
|
---|
375 | bmax(i) = scf->basis()->r(nr,i);
|
---|
376 | }
|
---|
377 | }
|
---|
378 | ExEnv::out0() << "Basis min is at " << bmin << " and max is at " << bmax << endl;
|
---|
379 |
|
---|
380 | // 2. choose an appropriately large grid
|
---|
381 | // we have to pay attention to capture the right amount of the exponential decay
|
---|
382 | // and also to have a power of two size of the grid at best
|
---|
383 | SCVector3 boundaryV(5.); // boundary extent around compact domain containing basis functions
|
---|
384 | bmin -= boundaryV;
|
---|
385 | bmax += boundaryV;
|
---|
386 | for (size_t i=0;i<3;++i) {
|
---|
387 | if (bmin(i) < data.sampled_grid.begin[i])
|
---|
388 | bmin(i) = data.sampled_grid.begin[i];
|
---|
389 | if (bmax(i) > data.sampled_grid.end[i])
|
---|
390 | bmax(i) = data.sampled_grid.end[i];
|
---|
391 | }
|
---|
392 | // set the non-zero window of the sampled_grid
|
---|
393 | data.sampled_grid.setWindow(bmin.data(), bmax.data());
|
---|
394 |
|
---|
395 | // for the moment we always generate a grid of full size
|
---|
396 | // (NO LONGER converting grid dimensions from angstroem to bohr radii)
|
---|
397 | const double AtomicLengthToAngstroem = 1.;//0.52917721;
|
---|
398 | SCVector3 min;
|
---|
399 | SCVector3 max;
|
---|
400 | SCVector3 delta;
|
---|
401 | size_t samplepoints[3];
|
---|
402 | // due to periodic boundary conditions, we don't need gridpoints-1 here
|
---|
403 | // TODO: in case of open boundary conditions, we need data on the right
|
---|
404 | // hand side boundary as well
|
---|
405 | // const int gridpoints = data.sampled_grid.getGridPointsPerAxis();
|
---|
406 | for (size_t i=0;i<3;++i) {
|
---|
407 | min(i) = data.sampled_grid.begin_window[i]/AtomicLengthToAngstroem;
|
---|
408 | max(i) = data.sampled_grid.end_window[i]/AtomicLengthToAngstroem;
|
---|
409 | delta(i) = data.sampled_grid.getDeltaPerAxis(i)/AtomicLengthToAngstroem;
|
---|
410 | samplepoints[i] = data.sampled_grid.getWindowGridPointsPerAxis(i);
|
---|
411 | }
|
---|
412 | ExEnv::out0() << "Grid starts at " << min
|
---|
413 | << " and ends at " << max
|
---|
414 | << " with a delta of " << delta
|
---|
415 | << " to get "
|
---|
416 | << samplepoints[0] << ","
|
---|
417 | << samplepoints[1] << ","
|
---|
418 | << samplepoints[2] << " samplepoints."
|
---|
419 | << endl;
|
---|
420 | assert( data.sampled_grid.sampled_grid.size() == samplepoints[0]*samplepoints[1]*samplepoints[2]);
|
---|
421 |
|
---|
422 | // 3. sample the atomic density
|
---|
423 | const double element_volume_conversion =
|
---|
424 | 1./AtomicLengthToAngstroem/AtomicLengthToAngstroem/AtomicLengthToAngstroem;
|
---|
425 | SCVector3 r = min;
|
---|
426 |
|
---|
427 | std::set<int> valence_indices;
|
---|
428 | RefDiagSCMatrix evals = scf->eigenvalues();
|
---|
429 | if (data.DoValenceOnly == MPQCData::DoSampleValenceOnly) {
|
---|
430 | // find valence orbitals
|
---|
431 | // std::cout << "All Eigenvalues:" << std::endl;
|
---|
432 | // for(int i=0;i<wfn->oso_dimension(); ++i)
|
---|
433 | // std::cout << i << "th eigenvalue is " << evals(i) << std::endl;
|
---|
434 | // int n_electrons = scf->nelectron();
|
---|
435 | int n_core_electrons = wfn->molecule()->n_core_electrons();
|
---|
436 | std::set<double> evals_sorted;
|
---|
437 | {
|
---|
438 | int i=0;
|
---|
439 | double first_positive_ev = std::numeric_limits<double>::max();
|
---|
440 | for(i=0;i<wfn->oso_dimension(); ++i) {
|
---|
441 | if (evals(i) < 0.)
|
---|
442 | evals_sorted.insert(evals(i));
|
---|
443 | else
|
---|
444 | first_positive_ev = std::min(first_positive_ev, (double)evals(i));
|
---|
445 | }
|
---|
446 | // add the first positive for the distance
|
---|
447 | evals_sorted.insert(first_positive_ev);
|
---|
448 | }
|
---|
449 | std::set<double> evals_distances;
|
---|
450 | std::set<double>::const_iterator advancer = evals_sorted.begin();
|
---|
451 | std::set<double>::const_iterator iter = advancer++;
|
---|
452 | for(;advancer != evals_sorted.end(); ++advancer,++iter)
|
---|
453 | evals_distances.insert((*advancer)-(*iter));
|
---|
454 | const double largest_distance = *(evals_distances.rbegin());
|
---|
455 | ExEnv::out0() << "Largest distance between EV is " << largest_distance << std::endl;
|
---|
456 | advancer = evals_sorted.begin();
|
---|
457 | iter = advancer++;
|
---|
458 | for(;advancer != evals_sorted.begin(); ++advancer,++iter)
|
---|
459 | if (fabs(fabs((*advancer)-(*iter)) - largest_distance) < 1e-10)
|
---|
460 | break;
|
---|
461 | assert( advancer != evals_sorted.begin() );
|
---|
462 | const double last_core_ev = (*iter);
|
---|
463 | ExEnv::out0() << "Last core EV might be " << last_core_ev << std::endl;
|
---|
464 | ExEnv::out0() << "First valence index is " << n_core_electrons/2 << std::endl;
|
---|
465 | for(int i=n_core_electrons/2;i<wfn->oso_dimension(); ++i)
|
---|
466 | if (evals(i) > last_core_ev)
|
---|
467 | valence_indices.insert(i);
|
---|
468 | // {
|
---|
469 | // int i=0;
|
---|
470 | // std::cout << "Valence eigenvalues:" << std::endl;
|
---|
471 | // for (std::set<int>::const_iterator iter = valence_indices.begin();
|
---|
472 | // iter != valence_indices.end(); ++iter)
|
---|
473 | // std::cout << i++ << "th eigenvalue is " << (*iter) << std::endl;
|
---|
474 | // }
|
---|
475 | } else {
|
---|
476 | // just insert all indices
|
---|
477 | for(int i=0;i<wfn->oso_dimension(); ++i)
|
---|
478 | valence_indices.insert(i);
|
---|
479 | }
|
---|
480 |
|
---|
481 | // testing alternative routine from SCF::so_density()
|
---|
482 | RefSCMatrix oso_vector = scf->oso_eigenvectors();
|
---|
483 | RefSCMatrix vector = scf->so_to_orthog_so().t() * oso_vector;
|
---|
484 | oso_vector = 0;
|
---|
485 | RefSymmSCMatrix occ(scf->oso_dimension(), scf->basis_matrixkit());
|
---|
486 | occ.assign(0.0);
|
---|
487 | for (std::set<int>::const_iterator iter = valence_indices.begin();
|
---|
488 | iter != valence_indices.end(); ++iter) {
|
---|
489 | const int i = *iter;
|
---|
490 | occ(i,i) = scf->occupation(i);
|
---|
491 | ExEnv::out0() << "# " << i << " has ev of " << evals(i) << ", occupied by " << scf->occupation(i) << std::endl;
|
---|
492 | }
|
---|
493 | RefSymmSCMatrix d2(scf->so_dimension(), scf->basis_matrixkit());
|
---|
494 | d2.assign(0.0);
|
---|
495 | d2.accumulate_transform(vector, occ);
|
---|
496 |
|
---|
497 | // taken from scf::density()
|
---|
498 | RefSCMatrix nos
|
---|
499 | = scf->integral()->petite_list()->evecs_to_AO_basis(scf->natural_orbitals());
|
---|
500 | RefDiagSCMatrix nd = scf->natural_density();
|
---|
501 | GaussianBasisSet::ValueData *valdat
|
---|
502 | = new GaussianBasisSet::ValueData(scf->basis(), scf->integral());
|
---|
503 | std::vector<double>::iterator griditer = data.sampled_grid.sampled_grid.begin();
|
---|
504 | const int nbasis = scf->basis()->nbasis();
|
---|
505 | double *bs_values = new double[nbasis];
|
---|
506 |
|
---|
507 | // TODO: need to take care when we have periodic boundary conditions.
|
---|
508 | for (size_t x = 0; x < samplepoints[0]; ++x, r.x() += delta(0)) {
|
---|
509 | std::cout << "Sampling now for x=" << r.x() << std::endl;
|
---|
510 | for (size_t y = 0; y < samplepoints[1]; ++y, r.y() += delta(1)) {
|
---|
511 | for (size_t z = 0; z < samplepoints[2]; ++z, r.z() += delta(2)) {
|
---|
512 | scf->basis()->values(r,valdat,bs_values);
|
---|
513 |
|
---|
514 | // loop over natural orbitals adding contributions to elec_density
|
---|
515 | double elec_density=0.0;
|
---|
516 | for (int i=0; i<nbasis; ++i) {
|
---|
517 | double tmp = 0.0;
|
---|
518 | for (int j=0; j<nbasis; ++j) {
|
---|
519 | tmp += d2(j,i)*bs_values[j]*bs_values[i];
|
---|
520 | }
|
---|
521 | elec_density += tmp;
|
---|
522 | }
|
---|
523 | const double dens_at_r = elec_density * element_volume_conversion;
|
---|
524 | // const double dens_at_r = scf->density(r) * element_volume_conversion;
|
---|
525 |
|
---|
526 | // if (fabs(dens_at_r) > 1e-4)
|
---|
527 | // std::cout << "Electron density at " << r << " is " << dens_at_r << std::endl;
|
---|
528 | if (griditer != data.sampled_grid.sampled_grid.end())
|
---|
529 | *griditer++ = dens_at_r;
|
---|
530 | else
|
---|
531 | std::cerr << "PAST RANGE!" << std::endl;
|
---|
532 | }
|
---|
533 | r.z() = min.z();
|
---|
534 | }
|
---|
535 | r.y() = min.y();
|
---|
536 | }
|
---|
537 | delete[] bs_values;
|
---|
538 | delete valdat;
|
---|
539 | assert( griditer == data.sampled_grid.sampled_grid.end());
|
---|
540 | // normalization of electron charge to equal electron number
|
---|
541 | {
|
---|
542 | double integral_value = 0.;
|
---|
543 | const double volume_element = pow(AtomicLengthToAngstroem,3)*delta(0)*delta(1)*delta(2);
|
---|
544 | for (std::vector<double>::const_iterator diter = data.sampled_grid.sampled_grid.begin();
|
---|
545 | diter != data.sampled_grid.sampled_grid.end(); ++diter)
|
---|
546 | integral_value += *diter;
|
---|
547 | integral_value *= volume_element;
|
---|
548 | int n_electrons = scf->nelectron();
|
---|
549 | if (data.DoValenceOnly == MPQCData::DoSampleValenceOnly)
|
---|
550 | n_electrons -= wfn->molecule()->n_core_electrons();
|
---|
551 | const double normalization =
|
---|
552 | ((integral_value == 0) || (n_electrons == 0)) ?
|
---|
553 | 1. : n_electrons/integral_value;
|
---|
554 | std::cout << "Created " << data.sampled_grid.sampled_grid.size() << " grid points"
|
---|
555 | << " with integral value of " << integral_value
|
---|
556 | << " against " << ((data.DoValenceOnly == MPQCData::DoSampleValenceOnly) ? "n_valence_electrons" : "n_electrons")
|
---|
557 | << " of " << n_electrons << "." << std::endl;
|
---|
558 | // with normalization we also get the charge right : -1.
|
---|
559 | for (std::vector<double>::iterator diter = data.sampled_grid.sampled_grid.begin();
|
---|
560 | diter != data.sampled_grid.sampled_grid.end(); ++diter)
|
---|
561 | *diter *= -1.*normalization;
|
---|
562 | }
|
---|
563 | }
|
---|
564 | }
|
---|
565 | scf = 0;
|
---|
566 | }
|
---|
567 |
|
---|
568 | void extractTimings(
|
---|
569 | Ref<RegionTimer> &tim,
|
---|
570 | void *_data)
|
---|
571 | {
|
---|
572 | MPQCData &data = *static_cast<MPQCData *>(_data);
|
---|
573 | // times obtain from key "mpqc" which should be the first
|
---|
574 | const int nregion = tim->nregion();
|
---|
575 | //std::cout << "There are " << nregion << " timed regions." << std::endl;
|
---|
576 | const char **region_names = new const char*[nregion];
|
---|
577 | tim->get_region_names(region_names);
|
---|
578 | // find "gather"
|
---|
579 | size_t gather_region = findTimerRegion(nregion, region_names, "gather");
|
---|
580 | size_t mpqc_region = findTimerRegion(nregion, region_names, "mpqc");
|
---|
581 | delete[] region_names;
|
---|
582 |
|
---|
583 | // get timings
|
---|
584 | double *cpu_time = new double[nregion];
|
---|
585 | double *wall_time = new double[nregion];
|
---|
586 | double *flops = new double[nregion];
|
---|
587 | tim->get_cpu_times(cpu_time);
|
---|
588 | tim->get_wall_times(wall_time);
|
---|
589 | tim->get_flops(flops);
|
---|
590 | if (cpu_time != NULL) {
|
---|
591 | data.times.total_cputime = cpu_time[mpqc_region];
|
---|
592 | data.times.gather_cputime = cpu_time[gather_region];
|
---|
593 | }
|
---|
594 | if (wall_time != NULL) {
|
---|
595 | data.times.total_walltime = wall_time[mpqc_region];
|
---|
596 | data.times.gather_walltime = wall_time[gather_region];
|
---|
597 | }
|
---|
598 | if (flops != NULL) {
|
---|
599 | data.times.total_flops = flops[mpqc_region];
|
---|
600 | data.times.gather_flops = flops[gather_region];
|
---|
601 | }
|
---|
602 | delete[] cpu_time;
|
---|
603 | delete[] wall_time;
|
---|
604 | delete[] flops;
|
---|
605 | }
|
---|
606 |
|
---|