source: src/Jobs/InterfaceVMGJob.cpp

Candidate_v1.6.1
Last change on this file was 9eb71b3, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

Commented out MemDebug include and Memory::ignore.

  • MemDebug clashes with various allocation operators that use a specific placement in memory. It is so far not possible to wrap new/delete fully. Hence, we stop this effort which so far has forced us to put ever more includes (with clashes) into MemDebug and thereby bloat compilation time.
  • MemDebug does not add that much usefulness which is not also provided by valgrind.
  • Property mode set to 100644
File size: 14.2 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2012 University of Bonn. All rights reserved.
5 * Copyright (C) 2013 Frederik Heber. All rights reserved.
6 *
7 *
8 * This file is part of MoleCuilder.
9 *
10 * MoleCuilder is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * MoleCuilder is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24/*
25 * InterfaceVMGJob.cpp
26 *
27 * Created on: 10.06.2012
28 * Author: Frederik Heber
29 */
30
31#ifdef HAVE_CONFIG_H
32#include <config.h>
33#endif
34
35#ifdef HAVE_MPI
36#include "mpi.h"
37#endif
38
39#include "base/vector.hpp"
40#include "base/math.hpp"
41#include "comm/comm.hpp"
42#include "grid/grid.hpp"
43#include "grid/multigrid.hpp"
44#include "units/particle/comm_mpi_particle.hpp"
45#include "units/particle/interpolation.hpp"
46#include "units/particle/linked_cell_list.hpp"
47#include "mg.hpp"
48
49#include "InterfaceVMGJob.hpp"
50
51//#include "CodePatterns/MemDebug.hpp"
52
53#include <cmath>
54#include <iostream>
55#include <limits>
56
57#include "CodePatterns/Log.hpp"
58
59#include "Fragmentation/Summation/SetValues/FragmentForces.hpp"
60#include "Jobs/WindowGrid_converter.hpp"
61#include "Jobs/ChargeSmearer.hpp"
62
63using namespace VMG;
64using VMGInterfaces::InterfaceVMGJob;
65
66InterfaceVMGJob::InterfaceVMGJob(const SamplingGrid &_sampled_input,
67 VMGData &_returndata,
68 const std::vector< std::vector<double> > &_particle_positions,
69 const std::vector< double > &_particle_charges,
70 VMG::Boundary boundary,
71 int levelMin,
72 int levelMax,
73 const VMG::Vector &_box_begin,
74 vmg_float _box_end,
75 const int& near_field_cells,
76 const ImportParticles_t _ImportParticles,
77 const bool _DoPrintDebug,
78 const bool _DoSmearCharges,
79 int coarseningSteps,
80 double alpha) :
81 VMG::Interface(boundary, levelMin, levelMax,
82 _box_begin, _box_end, coarseningSteps, alpha),
83 nfc(near_field_cells),
84 meshwidth(Extent(MaxLevel()).MeshWidth().Max()),
85 spl(nfc, meshwidth),
86 sampled_input(_sampled_input),
87 returndata(_returndata),
88 level(levelMax),
89 ImportParticles(_ImportParticles),
90 DoPrintDebug(_DoPrintDebug),
91 OpenBoundaryCondition(boundary[0] == VMG::Open),
92 DoSmearCharges(_DoSmearCharges)
93{
94 for (size_t i=0;i<3;++i) {
95 box_begin[i] = _box_begin[i];
96 box_end[i] = _box_begin[i]+_box_end;
97 }
98 std::vector< std::vector<double> >::const_iterator positer = _particle_positions.begin();
99 std::vector<double>::const_iterator chargeiter = _particle_charges.begin();
100 double pos[3];
101 for (; positer != _particle_positions.end(); ++positer, ++chargeiter) {
102 ASSERT( (*positer).size() == 3,
103 "InterfaceVMGJob::InterfaceVMGJob() - particle "
104 +toString(distance(_particle_positions.begin(), positer))+" has not exactly 3 coordinates.");
105 for (size_t i=0;i<3;++i)
106 pos[i] = (*positer)[i];
107 particles.push_back(Particle::Particle(pos, *chargeiter));
108 }
109}
110
111void InterfaceVMGJob::ImportRightHandSide(Multigrid& multigrid)
112{
113 Index i;
114 Vector pos;
115 // VMG::TempGrid *temp_grid = new VMG::TempGrid(129, 0, 0., 1.);
116
117 Grid& grid = multigrid(multigrid.MaxLevel());
118 grid.Clear();
119 //grid.ClearBoundary(); // we don't have a boundary under periodic boundary conditions
120
121 // print debugging info on grid size
122 LOG(1, "INFO: Mesh has extent " << grid.Extent().MeshWidth() << ".");
123 const int gridpoints = pow(2, level);
124 LOG(1, "INFO: gridpoints on finest level are " << gridpoints << ".");
125 LOG(1, "INFO: "
126 << "X in [" << grid.Local().Begin().X() << "," << grid.Local().End().X() << "],"
127 << "Y in [" << grid.Local().Begin().Y() << "," << grid.Local().End().Y() << "],"
128 << "Z in [" << grid.Local().Begin().Z() << "," << grid.Local().End().Z() << "].");
129
130 /// 1. assign nuclei as smeared-out charges to the grid
131
132 /*
133 * Charge assignment on the grid
134 */
135 Particle::CommMPI& comm = *dynamic_cast<Particle::CommMPI*>(MG::GetComm());
136 Grid& particle_grid = comm.GetParticleGrid();
137 particle_grid.Clear();
138
139 // distribute particles
140 particles.clear();
141 comm.CommParticles(grid, particles);
142
143 assert(particle_grid.Global().LocalSize().IsComponentwiseGreater(
144 VMG::MG::GetFactory().GetObjectStorageVal<int>("PARTICLE_NEAR_FIELD_CELLS")));
145
146 if (ImportParticles == DoImportParticles) {
147 // create smeared-out particle charges on particle_grid via splines
148 LOG(1, "INFO: Creating particle grid for " << particles.size() << " particles.");
149 for (std::list<Particle::Particle>::iterator iter = particles.begin();
150 iter != particles.end(); ++iter) {
151 LOG(2, "DEBUG: Current particle is at " << (*iter).Pos()
152 << " with charge " << (*iter).Charge() << ".");
153 spl.SetSpline(particle_grid, *iter);
154 }
155 }
156
157 // Communicate charges over halo
158 comm.CommFromGhosts(particle_grid);
159
160 if (DoPrintDebug) {
161 // print nuclei grid to vtk
162 comm.PrintGrid(particle_grid, "Sampled Nuclei Density");
163 }
164
165 // add sampled electron charge density onto grid
166 if (DoSmearCharges) {
167 ChargeSmearer &smearer = ChargeSmearer::getInstance();
168 smearer.initializeSplineArray(spl, nfc, meshwidth);
169 }
170 WindowGrid_converter::addWindowOntoGrid(
171 grid,
172 sampled_input,
173 1.,
174 OpenBoundaryCondition,
175 DoSmearCharges);
176
177 if (DoPrintDebug) {
178 // print electron grid to vtk
179 comm.PrintGrid(grid, "Sampled Electron Density");
180 }
181
182 // add particle_grid onto grid
183 for (int i=0; i<grid.Local().Size().X(); ++i)
184 for (int j=0; j<grid.Local().Size().Y(); ++j)
185 for (int k=0; k<grid.Local().Size().Z(); ++k)
186 grid(grid.Local().Begin().X() + i,
187 grid.Local().Begin().Y() + j,
188 grid.Local().Begin().Z() + k) = 4.0 * VMG::Math::pi * (
189 grid(grid.Local().Begin().X() + i,
190 grid.Local().Begin().Y() + j,
191 grid.Local().Begin().Z() + k) +
192 particle_grid.GetVal(particle_grid.Local().Begin().X() + i,
193 particle_grid.Local().Begin().Y() + j,
194 particle_grid.Local().Begin().Z() + k));
195
196 // calculate sum over grid times h^3 as check, should be roughly zero
197 const double element_volume = grid.Extent().MeshWidth().Product();
198 double charge_sum = 0.0;
199 for (Grid::iterator grid_iter = grid.Iterators().Local().Begin();
200 grid_iter != grid.Iterators().Local().End();
201 ++grid_iter)
202 charge_sum += grid.GetVal(*grid_iter);
203 charge_sum = element_volume * comm.GlobalSum(charge_sum);
204 comm.PrintOnce(Debug, "Grid charge integral: %e", charge_sum/(4.0 * VMG::Math::pi));
205
206 if (DoPrintDebug) {
207 // print total grid to vtk
208 comm.PrintGrid(grid, "Total Charge Density");
209 }
210
211// delete temp_grid;
212}
213
214void InterfaceVMGJob::ExportSolution(Grid& grid)
215{
216 /// sample the obtained potential to evaluate with the electron charge density
217
218 // grid now contains the sough-for potential
219 //Comm& comm = *MG::GetComm();
220 Particle::CommMPI& comm = *dynamic_cast<Particle::CommMPI*>(MG::GetComm());
221
222
223 if (DoPrintDebug) {
224 // print output grid to vtk
225 comm.PrintGrid(grid, "Potential Solution");
226 }
227
228 // obtain sampled potential from grid
229 returndata.sampled_potential.setWindow(
230 box_begin,
231 box_end
232 );
233 WindowGrid_converter::addGridOntoWindow(
234 grid,
235 returndata.sampled_potential,
236 +1.,
237 OpenBoundaryCondition
238 );
239
240 // calculate integral over potential as long-range energy contribution
241 const double element_volume =
242 grid.Extent().MeshWidth().X() * grid.Extent().MeshWidth().Y() * grid.Extent().MeshWidth().Z();
243 Grid::iterator grid_iter;
244 double potential_sum = 0.0;
245 for (grid_iter=grid.Iterators().Local().Begin(); grid_iter!=grid.Iterators().Local().End(); ++grid_iter)
246 potential_sum += grid.GetVal(*grid_iter);
247 potential_sum = element_volume * comm.GlobalSum(potential_sum);
248 comm.PrintOnce(Debug, "Grid potential sum: %e", potential_sum);
249
250 {
251 Grid::iterator grid_iter = grid.Iterators().Local().Begin();
252 comm.PrintOnce(Debug, "Grid potential at (0,0,0): %e", grid.GetVal(*grid_iter));
253 }
254
255 //Particle::CommMPI& comm = *dynamic_cast<Particle::CommMPI*>(MG::GetComm()); returndata.e_long = potential_sum;
256
257 /// Calculate potential energy of nuclei
258
259 vmg_float e = 0.0;
260 vmg_float e_long = 0.0;
261 vmg_float e_self = 0.0;
262 vmg_float e_short_peak = 0.0;
263 vmg_float e_short_spline = 0.0;
264
265 Factory& factory = MG::GetFactory();
266
267 /*
268 * Get parameters and arrays
269 */
270 const vmg_int& near_field_cells = factory.GetObjectStorageVal<int>("PARTICLE_NEAR_FIELD_CELLS");
271 const vmg_int& interpolation_degree = factory.GetObjectStorageVal<int>("PARTICLE_INTERPOLATION_DEGREE");
272
273 Particle::Interpolation ip(interpolation_degree);
274
275 const vmg_float r_cut = near_field_cells * grid.Extent().MeshWidth().Max();
276
277 /*
278 * Copy potential values to a grid with sufficiently large halo size.
279 * This may be optimized in future.
280 * The parameters of this grid have been set in the import step.
281 */
282 Grid& particle_grid = comm.GetParticleGrid();
283
284 {
285 Index i;
286 for (i.X()=0; i.X()<grid.Local().Size().X(); ++i.X())
287 for (i.Y()=0; i.Y()<grid.Local().Size().Y(); ++i.Y())
288 for (i.Z()=0; i.Z()<grid.Local().Size().Z(); ++i.Z())
289 particle_grid(i + particle_grid.Local().Begin()) = grid.GetVal(i + grid.Local().Begin());
290 comm.CommToGhosts(particle_grid);
291 }
292
293 /*
294 * Compute potentials
295 */
296 Particle::LinkedCellList lc(particles, near_field_cells, grid);
297 Particle::LinkedCellList::iterator p1, p2;
298 Grid::iterator iter;
299
300 comm.CommLCListToGhosts(lc);
301
302 for (int i=lc.Local().Begin().X(); i<lc.Local().End().X(); ++i)
303 for (int j=lc.Local().Begin().Y(); j<lc.Local().End().Y(); ++j)
304 for (int k=lc.Local().Begin().Z(); k<lc.Local().End().Z(); ++k) {
305
306 if (lc(i,j,k).size() > 0)
307 ip.ComputeCoefficients(particle_grid, Index(i,j,k) - lc.Local().Begin() + particle_grid.Local().Begin());
308
309 for (p1=lc(i,j,k).begin(); p1!=lc(i,j,k).end(); ++p1) {
310
311 // Interpolate long-range part of potential and electric field
312 ip.Evaluate(**p1);
313
314 // Subtract self-induced potential
315 (*p1)->Pot() -= (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
316
317 e_long += 0.5 * (*p1)->Charge() * ip.EvaluatePotentialLR(**p1);
318 e_self += 0.5 * (*p1)->Charge() * (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
319
320 for (int dx=-1*near_field_cells; dx<=near_field_cells; ++dx)
321 for (int dy=-1*near_field_cells; dy<=near_field_cells; ++dy)
322 for (int dz=-1*near_field_cells; dz<=near_field_cells; ++dz) {
323
324 for (p2=lc(i+dx,j+dy,k+dz).begin(); p2!=lc(i+dx,j+dy,k+dz).end(); ++p2)
325
326 if (*p1 != *p2) {
327
328 const Vector dir = (*p1)->Pos() - (*p2)->Pos();
329 const vmg_float length = dir.Length();
330
331 if ((length < r_cut) && (length > std::numeric_limits<double>::epsilon())) {
332
333 (*p1)->Pot() += (*p2)->Charge() / length * (1.0 + spl.EvaluatePotential(length));
334 (*p1)->Field() += (*p2)->Charge() * dir * spl.EvaluateField(length);
335
336 e_short_peak += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length;
337 e_short_spline += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length * spl.EvaluatePotential(length);
338 }
339 }
340 }
341 }
342 }
343
344 const vmg_int& num_particles_local = factory.GetObjectStorageVal<vmg_int>("PARTICLE_NUM_LOCAL");
345
346 /* Remove average force term */
347// if (!particles.empty()) {
348// Vector average_force = 0.0;
349// for (std::list<Particle::Particle>::const_iterator iter=particles.begin(); iter!=particles.end(); ++iter)
350// average_force += iter->Charge() * iter->Field();
351// const vmg_int num_particles_global = comm.GlobalSum(num_particles_local);
352// average_force /= (double)num_particles_global;
353// comm.GlobalSumArray(average_force.vec(), 3);
354// for (std::list<Particle::Particle>::iterator iter=particles.begin(); iter!=particles.end(); ++iter)
355// iter->Field() -= average_force / iter->Charge();
356// comm.PrintOnce(Debug, "Average force term is: %e %e %e", average_force[0], average_force[1], average_force[2]);
357// }
358
359 comm.CommParticlesBack(particles);
360
361 vmg_float* q = factory.GetObjectStorageArray<vmg_float>("PARTICLE_CHARGE_ARRAY");
362 const vmg_float* p = factory.GetObjectStorageArray<vmg_float>("PARTICLE_POTENTIAL_ARRAY");
363 const vmg_float* f = factory.GetObjectStorageArray<vmg_float>("PARTICLE_FIELD_ARRAY");
364
365 // extract forces
366 if (!particles.empty()) {
367 size_t index = 0;
368 returndata.forces.resize(
369 num_particles_local, FragmentForces::force_t(3, 0.) );
370 for (FragmentForces::forces_t::iterator iter = returndata.forces.begin();
371 iter != returndata.forces.end(); ++iter) {
372 comm.PrintOnce(Debug, "%d force vector: %e %e %e", (index/3)+1, f[index+0], f[index+1], f[index+2]);
373 for (size_t i=0;i<3;++i)
374 (*iter)[i] = f[index++];
375 }
376 returndata.hasForces = true;
377 }
378
379 e_long = comm.GlobalSumRoot(e_long);
380 e_short_peak = comm.GlobalSumRoot(e_short_peak);
381 e_short_spline = comm.GlobalSumRoot(e_short_spline);
382 e_self = comm.GlobalSumRoot(e_self);
383
384 for (int j=0; j<num_particles_local; ++j)
385 e += 0.5 * p[j] * q[j];
386 e = comm.GlobalSumRoot(e);
387
388 comm.PrintOnce(Debug, "E_long: %e", e_long);
389 comm.PrintOnce(Debug, "E_short_peak: %e", e_short_peak);
390 comm.PrintOnce(Debug, "E_short_spline: %e", e_short_spline);
391 comm.PrintOnce(Debug, "E_self: %e", e_self);
392 comm.PrintOnce(Debug, "E_total: %e", e);
393 comm.PrintOnce(Debug, "E_total*: %e", e_long + e_short_peak + e_short_spline - e_self);
394
395 returndata.nuclei_long = e_long;
396 returndata.electron_long = e_long;
397
398 // calculate residual
399 const vmg_float& res = factory.GetObjectStorageVal<vmg_float>("RESIDUAL");
400 const vmg_float& init_res = factory.GetObjectStorageVal<vmg_float>("INITIAL_RESIDUAL");
401 const vmg_float& precision = factory.GetObjectStorageVal<vmg_float>("PRECISION");
402 const vmg_float rel_res = (init_res != 0.) ? std::fabs(res / init_res) : 0.;
403 returndata.precision = precision;
404 returndata.residual = res;
405 returndata.relative_residual = rel_res;
406}
Note: See TracBrowser for help on using the repository browser.