/* * MemDebug.cpp * * Created on: Apr 28, 2010 * Author: crueger */ #ifndef NDEBUG #ifndef NO_MEMDEBUG #include #include #include #include #ifdef __GNUC__ #include #include #endif using namespace std; // we need our own low level mutexex, since we cannot assure the time of construction and destruction // otherwise #if defined(unix) || defined(__unix) #include #include #define mutex_t pthread_mutex_t #define mutex_init PTHREAD_MUTEX_INITIALIZER #define mutex_lock(mtx) \ do{\ int res = pthread_mutex_lock(&(mtx));\ assert(!res && "Could not lock mutex!");\ }while(0) #define mutex_unlock(mtx) \ do{\ int res = pthread_mutex_unlock(&(mtx));\ assert(!res && "Could not unlock mutex!");\ }while(0) #else # error "No thread structure defined for this plattform..." #endif namespace Memory { // This struct is added before each memory chunk // and contains tracking information. Anything used // to track memory cannot use any dynamic memory, so // we have to resort to classic C-idioms here. // This struct also contains pointers to the next // an previous chunks to allow fast traversion of // all allocated memory blocks struct entry_t { // we seperate the tracking info from the rest // A checksum will be calculated for this part of // the struct, so the information in here should // not change during the lifetime of the memory struct info_t { enum {length = 64}; char file[length+1]; int line; #ifdef __GNUC__ // function tracking only works with GCC // function names can get looooong enum {length2 = 256}; char function[length2+1]; #endif size_t nbytes; bool isUsed; void *location; } info; bool isIgnored; char checksum; entry_t *prev; entry_t *next; }; mutex_t memorylock = mutex_init; // start and end of the doubly-linked list entry_t *begin=0; entry_t *end=0; // current amount of allocated memory size_t state = 0; // maximum amount of allocated memory size_t max = 0; // number of allocations that have been done so far unsigned int allocs = 0; // this sets the alignment of the returned memory block // malloc guarantees an alignment at the 8 byte border, // so we just do the same const int alignment = 8; // calculates a simple checksum for the info block // the checksum is used to find memory corruptions inline char calcChecksum(entry_t::info_t *info){ char *buffer = (char*)info; char checksum =0; for(size_t i=0;inext){ cout << "\nChunk of " << pos->info.nbytes << " bytes" << " still available" << endl; #ifdef __GNUC__ cout << "Chunk reserved at: " << pos->info.function << " (" << pos->info.file << ":" << pos->info.line << ")" << endl; #else cout << "Chunk reserved at: " << pos->info.file << ":" << pos->info.line << endl; #endif } } // Adds an entry to the linked list void addEntry(entry_t *entry){ // check if the entry is already in the list if(!entry->isIgnored) return; mutex_lock(Memory::memorylock); entry->next=0; // the created block is last in the list entry->prev=Memory::end; // the created block is last in the list if(!Memory::begin){ // the list was empty... start a new one Memory::begin=entry; } else { // other blocks present... we can add to the last one Memory::end->next=entry; } Memory::end=entry; // update some global info Memory::state += entry->info.nbytes; if(Memory::state>Memory::max){ Memory::max = Memory::state; } ++Memory::allocs; // done with the list... it is safe to unlock now mutex_unlock(Memory::memorylock); entry->isIgnored = false; } // Deletes an entry from the linked list void deleteEntry(entry_t *entry){ if(entry->isIgnored) return; mutex_lock(memorylock); if(entry->prev){ entry->prev->next = entry->next; } else{ // this node was the beginning of the list begin = entry->next; } if(entry->next){ entry->next->prev = entry->prev; } else{ // this node was the end of the list end = entry->prev; } Memory::state -= entry->info.nbytes; mutex_unlock(memorylock); entry->isIgnored = true; } void _ignore(void *ptr){ // just deletes the node from the list, but leaves the info intact static const size_t entrySpace = Memory::doAlign(sizeof(Memory::entry_t)); entry_t *entry = (Memory::entry_t*)((char*)ptr-entrySpace); deleteEntry(entry); } #ifdef __GNUC__ // this function let's us find the caller's name char* getCaller(){ // stack looks like this: // getCaller(); // operator new(); // function_we_are_looking_for(); <- const size_t max_depth = 3; void* stack_addrs[max_depth]; size_t stack_depth; char **stack_strings=0; const char *func_name=0; const char *toplevel = "Global scope"; char *retval=0; // get the backtrace, depth three stack_depth = backtrace(stack_addrs,max_depth); stack_strings = backtrace_symbols(stack_addrs, stack_depth); // used later for demangling // reserved here, so we can free it unconditionally char *dm_function = static_cast(malloc(entry_t::info_t::length2)); if(!dm_function){ // malloc failed... we are out of luck throw std::bad_alloc(); } // see if we found our function name if(stack_depth==max_depth){ // find the mangled function name char *begin = stack_strings[max_depth-1]; // function name starts with a ( while(*begin && *begin!='(') ++begin; char *end=begin; while(*end && *end!='+') ++end; // see if we found our function name if(*begin && *end){ *begin++ = 0; *end = 0; // use the C++ demangler size_t sz = entry_t::info_t::length2; int status; char *func_ret = abi::__cxa_demangle(begin, dm_function, &sz, &status); if(func_ret){ // abi might have realloced... dm_function = func_ret; func_name = dm_function; } else{ // demangling failed... get the function name without demangling func_name = begin; } } else{ // function name not found... get the whole line func_name = stack_strings[max_depth-1]; } } else{ func_name = toplevel; } // now we copy the desired function name if((retval = static_cast(malloc(strlen(func_name)+1)))){ // we know that the string will fit, so strcpy is safe here strcpy(retval,func_name); } else{ free(stack_strings); // malloc()ed by backtrace_symbols free(dm_function); // uh-uh ... seems we are out of luck for allocations now throw std::bad_alloc(); } free(dm_function); free(stack_strings); // malloc()ed by backtrace_symbols return retval; } #endif } #ifdef __GNUC__ void *operator new(size_t nbytes,const char* file, int line, const char* func) throw(std::bad_alloc) { // to avoid allocations of 0 bytes if someone screws up // allocation with 0 byte size are undefined behavior, so we are // free to handle it this way if(!nbytes) { nbytes = 1; } // get the size of the entry, including alignment static const size_t entrySpace = Memory::doAlign(sizeof(Memory::entry_t)); void *res; if(!(res=malloc(entrySpace + nbytes))){ // new must throw, when space is low throw std::bad_alloc(); } // build the entry in front of the space Memory::entry_t *entry = (Memory::entry_t*) res; memset(res,0,entrySpace); entry->info.nbytes = nbytes; entry->info.isUsed = true; strncpy(entry->info.file,file,Memory::entry_t::info_t::length); entry->info.file[Memory::entry_t::info_t::length] = '\0'; entry->info.line=line; strncpy(entry->info.function,func,Memory::entry_t::info_t::length2); entry->info.function[Memory::entry_t::info_t::length2] = '\0'; // the space starts behind the info entry->info.location = (char*)res + entrySpace; // mark the block as not in the list (will be changed by addEntry) entry->isIgnored = true; Memory::addEntry(entry); // get the checksum... entry->checksum = Memory::calcChecksum(&entry->info); // ok, space is prepared... the user can have it. // the rest (constructor, deleting when something is thrown etc) // is handled automatically return entry->info.location; } #else void *operator new(size_t nbytes,const char* file, int line) throw(std::bad_alloc) { // to avoid allocations of 0 bytes if someone screws up // allocation with 0 byte size are undefined behavior, so we are // free to handle it this way if(!nbytes) { nbytes = 1; } // get the size of the entry, including alignment static const size_t entrySpace = Memory::doAlign(sizeof(Memory::entry_t)); void *res; if(!(res=malloc(entrySpace + nbytes))){ // new must throw, when space is low throw std::bad_alloc(); } // build the entry in front of the space Memory::entry_t *entry = (Memory::entry_t*) res; memset(res,0,entrySpace); entry->info.nbytes = nbytes; entry->info.isUsed = true; strncpy(entry->info.file,file,Memory::entry_t::info_t::length); entry->info.file[Memory::entry_t::info_t::length] = '\0'; entry->info.line=line; // the space starts behind the info entry->info.location = (char*)res + entrySpace; // mark the block as not in the list (will be changed by addEntry) entry->isIgnored = true; Memory::addEntry(entry); // get the checksum... entry->checksum = Memory::calcChecksum(&entry->info); // this will be set to true, when the block is removed from // the list for any reason entry->isIgnored = false; // ok, space is prepared... the user can have it. // the rest (constructor, deleting when something is thrown etc) // is handled automatically return entry->info.location; } #endif void *operator new(size_t nbytes) throw(std::bad_alloc) { // Just forward to the other operator, when we do not know from // where the allocation came #ifdef __GNUC__ // this might throw bad_alloc char *caller = Memory::getCaller(); void* retval = 0; // if this throws, we have to clean up the caller anyway try{ retval = operator new(nbytes,"Unknown",0,caller); } catch(...) { free(caller); // malloc()ed by Memory::getCaller(); throw; } free(caller); // malloc()ed by Memory::getCaller(); return retval; #else return operator new(nbytes,"Unknown",0); #endif } #ifdef __GNUC__ void *operator new[] (size_t nbytes,const char* file, int line, const char* func) throw(std::bad_alloc) { // The difference between new and new[] is just for compiler bookkeeping. return operator new(nbytes,file,line,func); } #else void *operator new[] (size_t nbytes,const char* file, int line) throw(std::bad_alloc) { // The difference between new and new[] is just for compiler bookkeeping. return operator new(nbytes,file,line); } #endif void *operator new[] (size_t nbytes) throw(std::bad_alloc) { // Forward again #ifdef __GNUC__ // this might throw bad_alloc char *caller = Memory::getCaller(); void *retval=0; // if this throws, we have to clean up the caller anyway try{ retval = operator new[] (nbytes,"Unknown",0,caller); } catch(...) { free(caller); // malloc()ed by Memory::getCaller(); throw; } free(caller); // malloc()ed by Memory::getCaller(); return retval; #else return operator new[] (nbytes,"Unknown",0); #endif } void operator delete(void *ptr) throw() { if(!ptr){ cerr << "Warning: Deleting NULL pointer" << endl; return; } // get the size for the entry, including alignment static const size_t entrySpace = Memory::doAlign(sizeof(Memory::entry_t)); // get the position for the entry from the pointer the user gave us Memory::entry_t *entry = (Memory::entry_t*)((char*)ptr-entrySpace); // let's see if the checksum is still matching if(Memory::calcChecksum(&entry->info)!=entry->checksum){ cerr << "Possible memory corruption detected!" << endl; cerr << "Trying to recover allocation information..." << endl; cerr << "Memory was allocated at " << entry->info.file << ":" << entry->info.line << endl; terminate(); } // this will destroy the checksum, so double deletes are caught entry->info.isUsed = false; Memory::deleteEntry(entry); // delete the space reserved by malloc free((char*)ptr-entrySpace); } // operator that is called when the constructor throws // do not call manually void operator delete(void *ptr,const char*, int) throw() { operator delete(ptr); } void operator delete[](void *ptr){ // again difference between delete and delete[] is just in compiler bookkeeping operator delete(ptr); } // and another operator that can be called when a constructor throws void operator delete[](void *ptr,const char*, int) throw(){ operator delete(ptr); } #endif #endif