1 | /*
|
---|
2 | * TrainingData.hpp
|
---|
3 | *
|
---|
4 | * Created on: 15.10.2012
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #ifndef TRAININGDATA_HPP_
|
---|
9 | #define TRAININGDATA_HPP_
|
---|
10 |
|
---|
11 | // include config.h
|
---|
12 | #ifdef HAVE_CONFIG_H
|
---|
13 | #include <config.h>
|
---|
14 | #endif
|
---|
15 |
|
---|
16 | #include <iosfwd>
|
---|
17 | #include <boost/function.hpp>
|
---|
18 |
|
---|
19 | #include "Fragmentation/Homology/HomologyContainer.hpp"
|
---|
20 | #include "FunctionApproximation/FunctionApproximation.hpp"
|
---|
21 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
22 |
|
---|
23 | /** This class encapsulates the training data for a given potential function
|
---|
24 | * to learn.
|
---|
25 | *
|
---|
26 | * The data is added piece-wise by calling the operator() with a specific
|
---|
27 | * Fragment.
|
---|
28 | *
|
---|
29 | * In TrainingData::operator() we construct first all pair-wise distances as
|
---|
30 | * list of all arguments. Then, these are filtered depending on the specific
|
---|
31 | * FunctionModel's Filter and only these are handed to down to evaluate it.
|
---|
32 | *
|
---|
33 | */
|
---|
34 | class TrainingData
|
---|
35 | {
|
---|
36 | public:
|
---|
37 | //!> typedef for a range within the HomologyContainer at which fragments to look at
|
---|
38 | typedef std::pair<
|
---|
39 | HomologyContainer::const_iterator,
|
---|
40 | HomologyContainer::const_iterator> range_t;
|
---|
41 | //!> Training tuple input vector pair
|
---|
42 | typedef FunctionApproximation::inputs_t InputVector_t;
|
---|
43 | //!> Training tuple output vector pair
|
---|
44 | typedef FunctionApproximation::outputs_t OutputVector_t;
|
---|
45 | //!> Typedef for a table with columns of all distances and the energy
|
---|
46 | typedef std::vector< std::vector<double> > DistanceEnergyTable_t;
|
---|
47 | //!> Typedef for a map of each fragment with error.
|
---|
48 | typedef std::multimap< double, size_t > L2ErrorConfigurationIndexMap_t;
|
---|
49 |
|
---|
50 |
|
---|
51 | public:
|
---|
52 | /** Constructor for class TrainingData.
|
---|
53 | *
|
---|
54 | */
|
---|
55 | explicit TrainingData(const FunctionModel::filter_t &_filter) :
|
---|
56 | filter(_filter)
|
---|
57 | {}
|
---|
58 |
|
---|
59 | /** Destructor for class TrainingData.
|
---|
60 | *
|
---|
61 | */
|
---|
62 | ~TrainingData()
|
---|
63 | {}
|
---|
64 |
|
---|
65 | /** We go through the given \a range of homologous fragments and call
|
---|
66 | * TrainingData::filter on them in order to gather the distance and
|
---|
67 | * the energy value, stored internally.
|
---|
68 | *
|
---|
69 | * \param range given range within a HomologyContainer of homologous fragments
|
---|
70 | */
|
---|
71 | void operator()(const range_t &range);
|
---|
72 |
|
---|
73 | /** Getter for const access to internal training data inputs.
|
---|
74 | *
|
---|
75 | * \return const ref to training tuple of input vector
|
---|
76 | */
|
---|
77 | const InputVector_t& getTrainingInputs() const {
|
---|
78 | return ArgumentVector;
|
---|
79 | }
|
---|
80 |
|
---|
81 | /** Getter for const access to internal list of all pair-wise distances.
|
---|
82 | *
|
---|
83 | * \return const ref to all arguments
|
---|
84 | */
|
---|
85 | const InputVector_t& getAllArguments() const {
|
---|
86 | return DistanceVector;
|
---|
87 | }
|
---|
88 |
|
---|
89 | /** Getter for const access to internal training data outputs.
|
---|
90 | *
|
---|
91 | * \return const ref to training tuple of output vector
|
---|
92 | */
|
---|
93 | const OutputVector_t& getTrainingOutputs() const {
|
---|
94 | return EnergyVector;
|
---|
95 | }
|
---|
96 |
|
---|
97 | /** Returns the average of each component over all OutputVectors.
|
---|
98 | *
|
---|
99 | * This is useful for initializing the offset of the potential.
|
---|
100 | *
|
---|
101 | * @return average output vector
|
---|
102 | */
|
---|
103 | const FunctionModel::results_t getTrainingOutputAverage() const;
|
---|
104 |
|
---|
105 | /** Calculate the L2 error of a given \a model against the stored training data.
|
---|
106 | *
|
---|
107 | * \param model model whose L2 error to calculate
|
---|
108 | * \return sum of squared differences at training tuples
|
---|
109 | */
|
---|
110 | const double getL2Error(const FunctionModel &model) const;
|
---|
111 |
|
---|
112 | /** Calculate the Lmax error of a given \a model against the stored training data.
|
---|
113 | *
|
---|
114 | * \param model model whose Lmax error to calculate
|
---|
115 | * \return maximum difference over all training tuples
|
---|
116 | */
|
---|
117 | const double getLMaxError(const FunctionModel &model) const;
|
---|
118 |
|
---|
119 | /** Calculate the Lmax error of a given \a model against the stored training data.
|
---|
120 | *
|
---|
121 | * \param model model whose Lmax error to calculate
|
---|
122 | * \param range given range within a HomologyContainer of homologous fragments
|
---|
123 | * \return map with L2 error per configuration
|
---|
124 | */
|
---|
125 | const L2ErrorConfigurationIndexMap_t getWorstFragmentMap(
|
---|
126 | const FunctionModel &model,
|
---|
127 | const range_t &range) const;
|
---|
128 |
|
---|
129 | /** Creates a table of columns with all distances and the energy.
|
---|
130 | *
|
---|
131 | * \return array with first columns containing distances, last column energy
|
---|
132 | */
|
---|
133 | const DistanceEnergyTable_t getDistanceEnergyTable() const;
|
---|
134 |
|
---|
135 | private:
|
---|
136 | // prohibit use of default constructor, as we always require extraction functor.
|
---|
137 | TrainingData();
|
---|
138 |
|
---|
139 | private:
|
---|
140 | //!> private training data vector
|
---|
141 | InputVector_t DistanceVector;
|
---|
142 | OutputVector_t EnergyVector;
|
---|
143 | //!> list of all filtered arguments over all tuples
|
---|
144 | InputVector_t ArgumentVector;
|
---|
145 | //!> function to be used for training input data extraction from a fragment
|
---|
146 | const FunctionModel::filter_t filter;
|
---|
147 | };
|
---|
148 |
|
---|
149 | // print training data for debugging
|
---|
150 | std::ostream &operator<<(std::ostream &out, const TrainingData &data);
|
---|
151 |
|
---|
152 | #endif /* TRAININGDATA_HPP_ */
|
---|