source: src/FunctionApproximation/TrainingData.hpp@ 26b4d62

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 26b4d62 was af2c7ec, checked in by Frederik Heber <heber@…>, 12 years ago

TrainingData now generates internal list of all arguments.

  • Property mode set to 100644
File size: 4.1 KB
Line 
1/*
2 * TrainingData.hpp
3 *
4 * Created on: 15.10.2012
5 * Author: heber
6 */
7
8#ifndef TRAININGDATA_HPP_
9#define TRAININGDATA_HPP_
10
11// include config.h
12#ifdef HAVE_CONFIG_H
13#include <config.h>
14#endif
15
16#include <iosfwd>
17#include <boost/function.hpp>
18
19#include "Fragmentation/Homology/HomologyContainer.hpp"
20#include "FunctionApproximation/FunctionApproximation.hpp"
21#include "FunctionApproximation/FunctionModel.hpp"
22
23/** This class encapsulates the training data for a given potential function
24 * to learn.
25 *
26 * The data is added piece-wise by calling the operator() with a specific
27 * Fragment.
28 *
29 * In TrainingData::operator() we construct first all pair-wise distances as
30 * list of all arguments. Then, these are filtered depending on the specific
31 * FunctionModel's Filter and only these are handed to down to evaluate it.
32 *
33 */
34class TrainingData
35{
36public:
37 //!> typedef for a range within the HomologyContainer at which fragments to look at
38 typedef std::pair<
39 HomologyContainer::const_iterator,
40 HomologyContainer::const_iterator> range_t;
41 //!> Training tuple input vector pair
42 typedef FunctionApproximation::inputs_t InputVector_t;
43 //!> Training tuple output vector pair
44 typedef FunctionApproximation::outputs_t OutputVector_t;
45 //!> Typedef for a table with columns of all distances and the energy
46 typedef std::vector< std::vector<double> > DistanceEnergyTable_t;
47
48public:
49 /** Constructor for class TrainingData.
50 *
51 */
52 explicit TrainingData(const FunctionModel::filter_t &_filter) :
53 filter(_filter)
54 {}
55
56 /** Destructor for class TrainingData.
57 *
58 */
59 ~TrainingData()
60 {}
61
62 /** We go through the given \a range of homologous fragments and call
63 * TrainingData::filter on them in order to gather the distance and
64 * the energy value, stored internally.
65 *
66 * \param range given range within a HomologyContainer of homologous fragments
67 */
68 void operator()(const range_t &range);
69
70 /** Getter for const access to internal training data inputs.
71 *
72 * \return const ref to training tuple of input vector
73 */
74 const InputVector_t& getTrainingInputs() const {
75 return ArgumentVector;
76 }
77
78 /** Getter for const access to internal list of all pair-wise distances.
79 *
80 * \return const ref to all arguments
81 */
82 const InputVector_t& getAllArguments() const {
83 return DistanceVector;
84 }
85
86 /** Getter for const access to internal training data outputs.
87 *
88 * \return const ref to training tuple of output vector
89 */
90 const OutputVector_t& getTrainingOutputs() const {
91 return EnergyVector;
92 }
93
94 /** Returns the average of each component over all OutputVectors.
95 *
96 * This is useful for initializing the offset of the potential.
97 *
98 * @return average output vector
99 */
100 const FunctionModel::results_t getTrainingOutputAverage() const;
101
102 /** Calculate the L2 error of a given \a model against the stored training data.
103 *
104 * \param model model whose L2 error to calculate
105 * \return sum of squared differences at training tuples
106 */
107 const double getL2Error(const FunctionModel &model) const;
108
109 /** Calculate the Lmax error of a given \a model against the stored training data.
110 *
111 * \param model model whose Lmax error to calculate
112 * \return maximum difference over all training tuples
113 */
114 const double getLMaxError(const FunctionModel &model) const;
115
116 /** Creates a table of columns with all distances and the energy.
117 *
118 * \return array with first columns containing distances, last column energy
119 */
120 const DistanceEnergyTable_t getDistanceEnergyTable() const;
121
122private:
123 // prohibit use of default constructor, as we always require extraction functor.
124 TrainingData();
125
126private:
127 //!> private training data vector
128 InputVector_t DistanceVector;
129 OutputVector_t EnergyVector;
130 //!> list of all filtered arguments over all tuples
131 InputVector_t ArgumentVector;
132 //!> function to be used for training input data extraction from a fragment
133 const FunctionModel::filter_t filter;
134};
135
136// print training data for debugging
137std::ostream &operator<<(std::ostream &out, const TrainingData &data);
138
139#endif /* TRAININGDATA_HPP_ */
Note: See TracBrowser for help on using the repository browser.