1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2012 University of Bonn. All rights reserved.
|
---|
5 | * Please see the COPYING file or "Copyright notice" in builder.cpp for details.
|
---|
6 | *
|
---|
7 | *
|
---|
8 | * This file is part of MoleCuilder.
|
---|
9 | *
|
---|
10 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
11 | * it under the terms of the GNU General Public License as published by
|
---|
12 | * the Free Software Foundation, either version 2 of the License, or
|
---|
13 | * (at your option) any later version.
|
---|
14 | *
|
---|
15 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
18 | * GNU General Public License for more details.
|
---|
19 | *
|
---|
20 | * You should have received a copy of the GNU General Public License
|
---|
21 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
22 | */
|
---|
23 |
|
---|
24 | /*
|
---|
25 | * TrainingData.cpp
|
---|
26 | *
|
---|
27 | * Created on: 15.10.2012
|
---|
28 | * Author: heber
|
---|
29 | */
|
---|
30 |
|
---|
31 | // include config.h
|
---|
32 | #ifdef HAVE_CONFIG_H
|
---|
33 | #include <config.h>
|
---|
34 | #endif
|
---|
35 |
|
---|
36 | #include "CodePatterns/MemDebug.hpp"
|
---|
37 |
|
---|
38 | #include "TrainingData.hpp"
|
---|
39 |
|
---|
40 | #include <iostream>
|
---|
41 |
|
---|
42 | #include "CodePatterns/toString.hpp"
|
---|
43 |
|
---|
44 | #include "Fragmentation/SetValues/Fragment.hpp"
|
---|
45 | #include "FunctionApproximation/FunctionModel.hpp"
|
---|
46 |
|
---|
47 | void TrainingData::operator()(const range_t &range) {
|
---|
48 | for (HomologyContainer::const_iterator iter = range.first; iter != range.second; ++iter) {
|
---|
49 | // get distance out of Fragment
|
---|
50 | const Fragment &fragment = iter->second.first;
|
---|
51 | FunctionModel::arguments_t args = extractor(
|
---|
52 | fragment,
|
---|
53 | DistanceVector.size()
|
---|
54 | );
|
---|
55 | DistanceVector.push_back( args );
|
---|
56 | const double &energy = iter->second.second;
|
---|
57 | EnergyVector.push_back( FunctionModel::results_t(1, energy) );
|
---|
58 | }
|
---|
59 | }
|
---|
60 |
|
---|
61 | const double TrainingData::getL2Error(const FunctionModel &model) const
|
---|
62 | {
|
---|
63 | double L2sum = 0.;
|
---|
64 |
|
---|
65 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
66 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
67 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
68 | const FunctionModel::results_t result = model((*initer));
|
---|
69 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
70 | L2sum += temp*temp;
|
---|
71 | }
|
---|
72 | return L2sum;
|
---|
73 | }
|
---|
74 |
|
---|
75 | const double TrainingData::getLMaxError(const FunctionModel &model) const
|
---|
76 | {
|
---|
77 | double Lmax = 0.;
|
---|
78 | size_t maxindex = -1;
|
---|
79 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
80 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
81 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
82 | const FunctionModel::results_t result = model((*initer));
|
---|
83 | const double temp = fabs((*outiter)[0] - result[0]);
|
---|
84 | if (temp > Lmax) {
|
---|
85 | Lmax = temp;
|
---|
86 | maxindex = std::distance(
|
---|
87 | const_cast<const FunctionApproximation::inputs_t &>(DistanceVector).begin(),
|
---|
88 | initer
|
---|
89 | );
|
---|
90 | }
|
---|
91 | }
|
---|
92 | return Lmax;
|
---|
93 | }
|
---|
94 |
|
---|
95 | std::ostream &operator<<(std::ostream &out, const TrainingData &data)
|
---|
96 | {
|
---|
97 | const TrainingData::InputVector_t &DistanceVector = data.getTrainingInputs();
|
---|
98 | const TrainingData::OutputVector_t &EnergyVector = data.getTrainingOutputs();
|
---|
99 | out << "(" << DistanceVector.size()
|
---|
100 | << "," << EnergyVector.size() << ") data pairs: " << std::endl;
|
---|
101 | FunctionApproximation::inputs_t::const_iterator initer = DistanceVector.begin();
|
---|
102 | FunctionApproximation::outputs_t::const_iterator outiter = EnergyVector.begin();
|
---|
103 | for (; initer != DistanceVector.end(); ++initer, ++outiter) {
|
---|
104 | for (size_t index = 0; index < (*initer).size(); ++index)
|
---|
105 | out << "(" << (*initer)[index].indices.first << "," << (*initer)[index].indices.second
|
---|
106 | << ") " << (*initer)[index].distance;
|
---|
107 | out << " with energy ";
|
---|
108 | out << (*outiter);
|
---|
109 | out << std::endl;
|
---|
110 | }
|
---|
111 | return out;
|
---|
112 | }
|
---|